9,988 research outputs found

    A Broad Class of Discrete-Time Hypercomplex-Valued Hopfield Neural Networks

    Full text link
    In this paper, we address the stability of a broad class of discrete-time hypercomplex-valued Hopfield-type neural networks. To ensure the neural networks belonging to this class always settle down at a stationary state, we introduce novel hypercomplex number systems referred to as real-part associative hypercomplex number systems. Real-part associative hypercomplex number systems generalize the well-known Cayley-Dickson algebras and real Clifford algebras and include the systems of real numbers, complex numbers, dual numbers, hyperbolic numbers, quaternions, tessarines, and octonions as particular instances. Apart from the novel hypercomplex number systems, we introduce a family of hypercomplex-valued activation functions called B\mathcal{B}-projection functions. Broadly speaking, a B\mathcal{B}-projection function projects the activation potential onto the set of all possible states of a hypercomplex-valued neuron. Using the theory presented in this paper, we confirm the stability analysis of several discrete-time hypercomplex-valued Hopfield-type neural networks from the literature. Moreover, we introduce and provide the stability analysis of a general class of Hopfield-type neural networks on Cayley-Dickson algebras

    GPU-accelerated stochastic predictive control of drinking water networks

    Get PDF
    Despite the proven advantages of scenario-based stochastic model predictive control for the operational control of water networks, its applicability is limited by its considerable computational footprint. In this paper we fully exploit the structure of these problems and solve them using a proximal gradient algorithm parallelizing the involved operations. The proposed methodology is applied and validated on a case study: the water network of the city of Barcelona.Comment: 11 pages in double column, 7 figure

    Low-Complexity Iterative Methods for Complex-Variable Matrix Optimization Problems in Frobenius Norm

    Full text link
    Complex-variable matrix optimization problems (CMOPs) in Frobenius norm emerge in many areas of applied mathematics and engineering applications. In this letter, we focus on solving CMOPs by iterative methods. For unconstrained CMOPs, we prove that the gradient descent (GD) method is feasible in the complex domain. Further, in view of reducing the computation complexity, constrained CMOPs are solved by a projection gradient descent (PGD) method. The theoretical analysis shows that the PGD method maintains a good convergence in the complex domain. Experiment results well support the theoretical analysis.Comment: This paper has been submitted to IEEE signal processing letter for possible publicatio

    Model reduction for the dynamics and control of large structural systems via neutral network processing direct numerical optimization

    Get PDF
    Three neural network processing approaches in a direct numerical optimization model reduction scheme are proposed and investigated. Large structural systems, such as large space structures, offer new challenges to both structural dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed parameter systems can be modeled either by infinite dimensional mathematical models (typically partial differential equations) or by high dimensional discrete models (typically finite element models) often exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some form of model reduction is in order, especially for the control engineer who can actively control but a few of the modes using system identification based on a limited number of sensors. Inasmuch as the amount of 'control spillover' (in which the control inputs excite the neglected dynamics) and/or 'observation spillover' (where neglected dynamics affect system identification) is to a large extent determined by the choice of particular reduced model (RM), the way in which this model reduction is carried out is often critical
    corecore