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ABSTRACT

Three neural network processing approaches in a direct numerical optimization model reduction

scheme are proposed and investigated.

INTRODUCTION

Large structural systems, such as large space structures, offer new challenges to both structural

dynamicists and control engineers. One such challenge is that of dimensionality. Indeed these distributed

parameter systems can be modeled either by infinite dimensional mathematical models (typically partial

differential equations) or by high dimensional discrete models (typically finite element models) often

exhibiting thousands of vibrational modes usually closely spaced and with little, if any, damping. Clearly, some

form of model reduction is in order, especially for the control engineer wlao can actively control but a few of the

modes using system identification based on a limited number of sensors. Inasmuch as the amount of "control

spillover" (in which the control inputs excite the neglected dynamics) and/or "observation spillover" (where

neglected dynamics affect system identification) is to a large extent determined by the choice of a particular

reduced model (RM), the way in which this model reduction is carried out is often critical.

Different techniques to obtain RM's have been proposed by various authors. While they are based on

the same philosophy of retaining only those modes which play a significant role, they differ in the way the

roles of the modes are quantified. Among these techniques we mention: (i) Modal Truncation; (ii) Balanced

Controller Reduction; (iii) Component Cost Analysis; (iv) Optimal Projection Conditions; (v) Energy Based

Model Reduction (also referred to as Modal Performance Tracking); (vi) Subsystem Balancing. (See [1] for

references on methods (ii-iv), [2] and the references therein for method (v) and [3] for (vi).)

Model reduction can also be viewed as providing an answer to the question: What are the m < n

linear combinations of the n < -0 states of the full model which best describe the behavior of the system?

The various techniques only differ in the way "best" is defined. As such, model reduction is an optimization
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problem. In fact, most model reduction schemes first attempt to find an analytical solution to the optimization

problem, using necessary optimality conditions to obtain one or several equations to be satisfied by the

solution and which can then be solved in an iterative numerical scheme. Viewed in this light, most currently

available model reduction schemes suffer from three shortcomings: (i) they are restricted to optimality criteria

for which a (partial) analytical solution to the optimization problem can be found, (ii) being based on

necessary conditions, they cannot guarantee that the solution so obtained is the actual optimum sought, and

(iii) the iterative numerical construction of the solution can be a formidable task. Recently, to alleviate the

above shortcomings, we proposed to carry model reduction by direct numerical solution of the optimization

problem [4]. In this paper we propose and investigate the use ofneuraI network processing methods to carry

out this direct optimization. First we review the direct numerical optimization approach proposed in [4].

DIRECT NUMERICAL OPTIMIZATION METHOD

Consider the n-th order linear time-invariant state space model of a large structural system

x = Ax +Bu (la)

y = C x . (lb)

Here x, u and y are the n, r and p-dimensional state, input and output vectors respectively, A, B, and C are

constant matrices of appropriate dimensions and the system is assumed to be completely controllable. Model

reduction consists of finding a model of order m<n

Xm ffi A m x m + B m u (2a)

y,. = C.x., (2b)

Here x m and y,, are m and p-dimensional state and output vectors, while Am, B,. and C,, are constant

matrices of appropriate dimensions, which "best approximates" the full order model (1 a,b).

In this paper, as in [4], we restrict ourselves to model reduction schemes based on an integral-square-

error performance index (in particular to the optimal projection method of Hyland and Bemstein), [1,5], but the

methodology is applicable to other schemes as well. We are thus interested in determining matrices A m, B m

and C_ which minimize

J(Am,Bm,C m ) = I i m El(y-y,,,) r a(y-y,.)]
I-4--

when u is white noise with intensity V. In (3) E[ ] denotes expected value and R is a positive

definite weighting matrix.

Introducing the augmented system of order n+m

(3)
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Xa = A,,x. +B.u

y. = C. x. ,

where

i l, [:ol, i.],xa = Y- = Y'Ym A, ffi B, =
Xm ' Am Bm

the optimality criterion (3) is written as

J(Am,Bm,C m) = I i m E[yfTR y,] =tr[Q,R,]
| ..., e.

where Q a is the positive semidefinite solution of the Lyapunov equation

(4a)

(4b)

c.=[c-c.], (5)

(6)

0 = AaQ, + Q, AT +B, VB T (7)

and

R, = C l R C T

The model reduction problem has been recast as the optimization problem:

min tr[Q,R,]

subject to 0 ffi A, Q, + Q, A r + B, VB_r

Similar results hold for other integral-square-error performance indices (see [6] for example).

Introducing the partition

(8)

(9)

(7)

(10)

compatible with partitions (5), the constraint (7) is decomposed as

0 = A Ql + Ql AT + B V B T (l l a)

0 = AQ, + Q_A T +BVB x_ (lib)

0 --- A,. Q,. + Q.,, A-r + B.. VBr=. (llc)

Note, from (1 la), that Qx is completely determined from knowledge &the full model. Thus expanding the
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objective function in (9) and neglecting the constant term involving Qt, the optimization problem (9,7) is

rewritten as

min {tr[Q,. Cr,, R C_]- 2 tr[Q_ r C r R C.]}

subject to 0 = A Q_ + Q2 AT + B V B r_

0 --A.Q=+Q.A r_ +B. VBr_ .

(12)

(llb)

(llc)

Note that all of the above manipulations were aimed at transforming the statement of the optimization

problem and not at obtaining a (partial) solution. Thus, this approach does indeed alleviate thefirst two of the

shortcomings mentioned earlier since it is not restricted to particular optimality criteria (although it was

illustrated here for a particular one), and it is guaranteed to yield at least a local minimum. In addition, we can

choose the numerical optimization scheme wh-ich is best adapted to theparticuiar 0ptimi_tion problem which

the RM must satisfy: In [4] some promising preliminary results for a classic and somewhat pathological

example [5,7] and the use of a generalized reduced gradient algorithm [8] were presented. Here we investigate

the feasibility of using neural network processing methods to solve the optimization problem (9,7) or

(12,1 lb,c). Improving the computational efficiency for large problems through massive parallelization is the

motivation for using these methods, thus alleviating the third shortcoming.

NEURAL NETWORK PROCESSING METHOD

The neural network processing method is an extension of the Hopfield neural network model [9] which

has been successfully used to solve combinatorial optimization problems such as the Travelling Salesman

problem. Developed by W. Jeffrey and R. Rosner to solve a class of ill posed inverse problems, the neural

network processing method [10] is a reformulation of the H0pfield model. Our aim is to apply this

methodology to the model reduction problem. We begin with some details of the method.

Consider a network, possibly modeled by analog electronic components, the energy E of which at any

time can be expressed as a quadratic function of its state x as

E(x) = -xWx + 2T T x . (13)

E(x) can be regarded as the objective function in an optimization problem for which x is the design variable.
Matrix W and vector T are constant valued and arise from the mapping of the optimization problem into the

above format.

The change in the energy function resulting from a discrete step, i.e. a change Ax k in a single element

x k of x, can be shown to be given as

AE k = (-2 w k x + 2 Tk - w_ Ax k ) AX k (14)

[
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where Ax k = _k ( -2 Wk X + 2 Tk), Wk being the k-th row of W, w_ the k,k-th element of W, T k the k-

th element of T and k k the step size for Ax k. The parallel processing capabilities come into play here since

all the elements of x can be changed simultaneously, increasing the computational speed.

We now continue changing x in this manner until AE k = 0 for all k. The state so obtained represents a

minimum energy state. By adjusting the size of _'a we can show that AE k <__0for all Ax k. Since we can

reduce equation (14) to

AE k = ( _ - Wkk ) (AXk)2 , (15)

1
then AE k =0 when "7--<w_ for k u <0.

A,k

Hopfield and Tank [9] showed that the stable state reached is a minimum for the optimization problem.

Jeffrey and Rosner [10] extended this formulation by allowing for higher order (i.e. non quadratic) terms to be

included in the energy function when necessary. The details of their formulation, being similar to the analysis

just presented, are not given here.

Note that the neural network processing method of Jeffrey and Rosner is restricted to unconstrained

optimization problems. Before applying it to the model reduction application at hand, the constrained

optimization problem (9,7) or (12,1 lb,c) must first be recast as an unconstrained one. We now present three

ways in which this can be accomplished: first a penalty function approach, then by solving the problem as a

sequence of unconstrained problems in a multi-stage approach, and finally a substitution approach in which the

constraint equation is solved and substituted into the objective function.

PENALTY FUNCTION APPROACH

The penalty function approach incorporates all of the constraints into the energy function via penalty

terms. The problem becomes an unconstrained problem for the penalty function. This is accomplished in two

steps:

1. The equality Constraints (7) or (1 lb,c) are incorporated into the energy function to create a modified

Lagrangian or penalty function [11], that is:

E(x) ffi F(x) + "_[_h_ (x) + Tl,l hli(x)] (16)
l,./

where F(x) is the objective function of the constrained problem ( tr[Q.R.] or {tr[Qm cT R C.] -

2tr[Q_ C T R Cm] } for the problem at hand), d?and T are penalty parameters, ill are Lagrange multipliers and
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hq is thei,j-th element of the equality constraint.

2. The underlying inequality constraint Qa >0 is enforced by factoring Q, as the product of an upper

triangular matrix Ma, partitioned as

Ma = I3_ t M=M2]' (17)

and its transpose. In (17) M t and M= are upper triangular matrices such that Q2 = M2 MT and Qm =

M m M T . These are substituted into the energy function so that the vector of design variables x is made up of

(i) elements of A m, (ii) elements of B m, (iii) elements of Mz, (iv) non zero (i.e. upper triangular)

elements of M m, and (iv)lij the Lagrange multipliers.

The Modified Differential Multiplier Method (MDMM), proposed by Platt [!2] for use in neural

network processing, is then used to solve the problem. This essentially amounts to applying gradient ascent on

the Lagrange multipliers while applying gradient descent on all of the other design variables.

MULTI-STAGE APPROACH

The multi stage approach is loosely based on a model reduction algorithm proposed by Wilson [13]. It

is simply the following algorithm:

1. Pick initial guesses for matrices A= and Bm.

2. Calculate Q_ and Qm.

3. Minimize the objective function using the neural network processing method with elements of B,, as

the only design variables.

4. Update the Am matrix using Am Q_ QT A Q2 -T= Q=. (This is analagous to the necessary

condition for an optimum used by Wilson [13].)

5. Go to step 2 until the objective function stops changing from iteration to iteration

Note that in this approach, the minimization problem of step 3 is an unconstrained problem. Thus the model

reduction problem is solved as a sequence of unconstrained optimization problems.

|
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SUBSTITUTION APPROACH

In the substitution approach the Q2 and Q,,, matrices, as solutions of(1 lb,c), are functions of A m and

B m which are substituted in the objective function of(12) to yield an unconstrained problem where the

elements of A m and B m are the only design variables. Neural network processing is then used with the energy

function E = tr[Q.,,(A,,,B,,,) C a. R C_]- 2 tr[Qr(A,,B,,) C r R C__].

RESULTS

In all examples considered we assumed that actuators and sensors were collocated so that B = C r and

Bm= Cm T, and, without loss of generality, that R and V are identity matrices of appropriate dimensions.

All three methods presented solved only problems of a very limited scope: all methods were able to

solve very small real eigenvalue problems, but all showed an inability to solve problems of a practical size and

nature. For example all three methods yielded an optimal solution for the following very simple problem

considered in [4] (and given here with its solution)

-.005 -.99A = .99 -5000 Ill, B = 100 ' Am = [-4998.1], B m ffi [100.0], obj = -10004.0.

The point of interest of this example is that some model reduction techniques yield a solution corresponding to
a maximum rather than the minimum [5,7].

a. Penalty Func.tion Appr0a.oh

The penalty function approach exhibited poor performance in solving model reduction problems. It was

able to solve problems in which the original A matrix was 4x4 and the reduced matrix A m was 2x2; however,

this was the largest problem that we were able to solve using this method. The encouraging fact is that the

method did yield good, possibly optimal, solutions to a few small problems with complex eigenvalues. For

example the following problem (given here with its solution) was solved successfully

10 -.1 0 ffi r..124 ,oo7.1 __ r_2s671
A = 0 -.5 -1 ' B = ' Am L9.924 -.0794 j' Bm L.1.392j

0 15 -.

, obj = -253.4.

31



Difficulties with this approach were due to a lack of good guiding principles in setting step size and penalty

parameters, a slow convergence, and an apparent large number of local minima.

b_ Multi Stage Approach

The multi stage approach exhibited a slightly differ_tbehavior. S!nfe the traditional optimization

portion of the algorithm which was carried out using neural network processing involved amuch Smaller

problem, the method was able to solve overall larger problems. However, the approach would not solve

problems with complex eigenvalues but would successfully solve problems with strictly real eigenvalues. The

maximum size of these models were 6 inputs, 6 outputs with 16x16 A matrices. As problems with strictly real

eigenvalues have little practical application, this approach was abandoned.

c. Substitution Approach

The substitution approach presented basically the same difficulties as the penalty approach. Although

it successfully solved the example given in the penalty function approach subsection above, yielding the same

solution, it showed limitations in that it was unable to solve problems with A matrices bigger than 4x4.

CONCLUDING REMARKS

The results obtained so far have not lived up to our expectations when we embarked on this

investigation. In all fairness it must be pointed out that the difficulties encountered do not appear to be a result

of the neural network processing approach. Parallel investigations using a standard optimization software

package [8] were also disappointing. The difficulty appears to stem from the fact that the objective function

has apparently a large number of local minima. In particular, it appears that any reasonable starting point is a

local minimum!

A positive result in our lack of success in solving practical sized problems is the development of a type

of modal cost analysis based on the objective function developed for the optimization methods. In this method

we transform the system matrices such that the A matrix has 2x2 blocks on the main diagonal, each block

corresponding to a mode of the structural system_, and th_e B matrixis c°nsis_t_t:with these new coordinates.

Next we calculate the objective function for each 2x2 system individually. The objectiye ya!ues for all of the

individual (1 mode) reduced models are sorted and ihe lowest ones are retained. _t thls time we have not put

enough time into this approach to make any firm statement about the quality and cost of these solutions.

! lowever preliminary results are encouraging. We have reduced models with A matrices up to 168x168 (the

JPL/AFAL experiment structure) down to A m matrices of 108x108 yielding excellent results when looking at

the time response characteristics. We are now looking into this method in more detail to see if this approach

can be used to obtain directly or aid us in finding optimal reduced models. Results will be reported elsewhere

as they become available.

i
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