113,600 research outputs found

    Train Timetable Design for Shared Railway Systems using a Linear Programming Approach to Approximate Dynamic Programming

    Get PDF
    In the last 15 years, the use of rail infrastructure by different train operating companies (shared railway system) has been proposed as a way to improve infrastructure utilization and to increase efficiency in the railway industry. Shared use requires coordination between the infrastructure manager and multiple train operators in a competitive framework, so that regulators must design appropriate capacity pricing and allocation mechanisms. However, the resulting capacity utilization from a given mechanism in the railway industry cannot be known in the absence of operations. Therefore assessment of capacity requires the determination of the train timetable, which eliminates any potential conflicts in bids from the operators. Although there is a broad literature that proposes train timetabling methods for railway systems with single operators, there are few models for shared competitive railway systems. This paper proposes a train timetabling model for shared railway systems that explicitly considers network effects and the existence of multiple operators requesting to operate several types of trains traveling along different routes in the network. The model is formulated and solved both as a mixed integer linear programming (MILP) problem (using a commercial solver) and as a dynamic programming (DP) problem. We solve the DP formulation with a novel algorithm based on a linear programming (LP) approach to approximate dynamic programming (ADP) that can solve much larger problems than are computationally intractable with commercial MILP solvers. The model simulates the optimal decisions by an infrastructure manager for a shared railway system with respect to a given objective function and safety constraints. This model can be used to evaluate alternative capacity pricing and allocation mechanism. We demonstrate the method for one possible capacity pricing and allocation mechanism, and show how the competing demands and the decisions of the infrastructure manager under this mechanism impact the operations on a shared railway system for all stakeholders

    Optimal Posted Prices for Online Cloud Resource Allocation

    Full text link
    We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either takes the current prices, renting resources to execute its job, or refuses the prices without running its job there. We design pricing functions based on the current resource utilization ratios, in a wide array of demand-supply relationships and resource occupation durations, and prove worst-case competitive ratios of the pricing functions in terms of social welfare. In the basic case of a single-type, non-recycled resource (i.e., allocated resources are not later released for reuse), we prove that our pricing function design is optimal, in that any other pricing function can only lead to a worse competitive ratio. Insights obtained from the basic cases are then used to generalize the pricing functions to more realistic cloud systems with multiple types of resources, where a job occupies allocated resources for a number of time slots till completion, upon which time the resources are returned back to the cloud resource pool

    The Diversity of Design of TSOs

    Get PDF
    International audienceIt is puzzling today to explain diversity and imperfection of actual transmission monopoly designs in competitive electricity markets. We argue that transmission monopoly in competitive electricity markets has to be analysed within a Wilson (2002) modular framework. Applied to the management of electricity flows, at least three modules make the core of transmission design: 1° the short run management of network externalities; 2° the long run management of network investment; and 3° the coordination of neighboring Transmission System Operators for cross border trade. In order to tackle this diversity of designs of TSOs, we show that for each of these modules, three different basic ways of managing them are possible. Among the identified twenty seven options of organisation, we define an Ideal TSO. Second, we demonstrate that 1°monopoly design differs from this Ideal TSO and cannot handle these three modules irrespective of the “institutional” definition and allocation of property rights on transmission; while 2°definition and allocation of property rights on transmission cannot ignore the existing electrical industry and transmission network structure: they have to complement each other to be efficient. Some conclusions for regulatory issues of transmission systems operators are derived from this analysis of network monopoly organisation

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})
    • 

    corecore