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Abstract— In the last 15 years, the use of rail infrastructure by different train operating companies (shared 

railway system) has been proposed as a way to improve infrastructure utilization and to increase efficiency in 

the railway industry. Shared use requires coordination between the infrastructure manager and multiple train 

operators in a competitive framework, so that regulators must design appropriate capacity pricing and 

allocation mechanisms. However, the resulting capacity utilization from a given mechanism in the railway 

industry cannot be known in the absence of operations. Therefore assessment of capacity requires the 

determination of the train timetable, which eliminates any potential conflicts in bids from the operators. 

Although there is a broad literature that proposes train timetabling methods for railway systems with single 

operators, there are few models for shared competitive railway systems.  This paper proposes a train 

timetabling model for shared railway systems that explicitly considers network effects and the existence of 

multiple operators requesting to operate several types of trains traveling along different routes in the network. 

The model is formulated and solved both as a mixed integer linear programming (MILP) problem (using a 
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commercial solver) and as a dynamic programming (DP) problem.  We solve the DP formulation with a novel 

algorithm based on a linear programming (LP) approach to approximate dynamic programming (ADP) that 

can solve much larger problems than are computationally intractable with commercial MILP solvers. The 

model simulates the optimal decisions by an infrastructure manager for a shared railway system with respect 

to a given objective function and safety constraints.  This model can be used to evaluate alternative capacity 

pricing and allocation mechanism. We demonstrate the method for one possible capacity pricing and 

allocation mechanism, and show how the competing demands and the decisions of the infrastructure manager 

under this mechanism impact the operations on a shared railway system for all stakeholders. 

Keywords— Shared railway systems capacity planning, train timetabling problem, linear programming 

approach to approximate dynamic programming, adaptive learning, q-factors 

1. INTRODUCTION 

In the last 15 years, several countries have promoted the use of shared railway systems that allow independent 

operators to access the infrastructure. This enables higher levels of infrastructure utilization (Gomez-Ibanez and de 

Rus, 2006). However, shared railway corridors require coordination between the infrastructure manager – typically 

the owner of the infrastructure – and multiple train operators (Gomez-Ibanez, 2003). This coordination involves 

determining which trains can access the infrastructure at each time (capacity allocation) and the access price they 

need to pay (capacity pricing). 

According to (Roth, 2002) and (Vazquez, 2003), ideal capacity pricing and allocation mechanisms should be 

reproducible and transparent, easy to understand, and non-discriminatory (especially when the operators compete in 

the same market). Simple capacity pricing and allocation rules are used in other network industries (such as electric 

power or telecommunication). However, in the railway industry, the characteristics of the network and operations 

critically affect capacity and safety. According to (Krueger et al., 1999) railway capacity is defined as “a measure of 

the ability to move a specific amount of traffic over a defined rail with a given set of resources under a specific 

service plan.” As a result, the implications for the railway system of the capacity pricing and allocation mechanism 

remain unclear, even for simple mechanisms used in other contexts. In other words, to understand the implications of 

capacity regulation in the rail industry, we have to recognize that infrastructure capacity utilization is endogenous: it 
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depends on the capacity allocation and must be calculated by determining the train timetable. The train timetable 

determines the arrival and departure time at every station of all trains scheduled. The resulting timetable will specify 

how competing demands for the infrastructure were prioritized to meet the infrastructure manager’s objectives and 

constraints. 

This paper presents a train timetabling model for shared railway systems that would allow regulators and decision 

makers to simulate the behavior of the infrastructure manager. This model will explicitly consider network effects to 

analyze the interdependencies between operation and infrastructure and to determine the optimal use of infrastructure 

capacity (train timetable) under different capacity pricing and allocation mechanisms. The model is not intended to 

replicate the actual behavior of infrastructure managers, but rather provides a tool for determining the optimal 

capacity allocation plan given the operator’s demand for capacity and the specific capacity pricing and allocation 

mechanism. 

There are several papers that propose mixed integer linear programming (MILP) approaches to solve the train 

timetabling problem. Castillo et al. (2009), Ghoseiri et al. (2004), Liebchen et al. (2004), and Zhou and Zhong (2005) 

present formulations to compute the train arrival and departure times with different objectives and constraints. 

Traditionally, these models have been called multi-mode resource constrained project scheduling models. Other 

studies are based on MILP approaches that formulate the train timetabling problem as a multi-commodity flow 

problem (Caimi et al., 2009; Caimi et al., 2011; Caprara et al., 2002; Caprara et al., 2007; Courdeau et al., 1998). 

This approach represents the final timetable as a collection of nodes and arcs that represent possible train arrival and 

departure times at stations. Infrastructure and operational constraints are imposed by determining subsets of 

compatible and incompatible arcs.  

With the exception of (Caprara et al., 2007), the approaches above assume that there is a single operator trying to 

schedule trains on the infrastructure. Most of the papers also assume that all trains follow the same path. This paper 

proposes a multi-mode resource constrained project schedule formulation considering different operators using a 

common infrastructure for different types of services (commuter, intercity and freight services) with different routes. 

These additional complexities result in 1) the need to specify safety constraints that depend on the path of each train, 

and 2) the need for operators to specify their desired timetable with flexibility margins to ensure that their trains get 

scheduled with minimal adjustments in the case of a conflict with another operator’s request.  These additional 
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considerations make the problem more difficult to solve than the traditional single-operator timetable: simplifications 

used in other train timetabling problems (such as exogenously fixing train order or classical decomposition 

approaches) cannot be used because the safety constraints are specific to each individual train and because the need 

for large flexibility margins impacts the execution time of the problem. 

From a computational standpoint, the size of the model increases exponentially with the number of stations and the 

number of trains to schedule. We propose an alternative class of solution algorithms using approximate dynamic 

programming (ADP) techniques (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2006; Powell, 2007). This paper develops 

a novel Q-factor Adaptive Relaxed Linear Programming (QARLP) algorithm that extends previous algorithms 

developed by (Farias and Van Roy, 2003a; Farias and Van Roy, 2003b). This algorithm allows us to decompose and 

solve larger problems that are intractable with MILP solvers with less computation while still converging to a 

solution within an optimality gap. 

This paper makes both methodological and railway systems-specific contributions. In terms of methodology, we 

present a model that explicitly considers the relevant characteristics of shared railway systems, and a novel ADP 

algorithm for solving this train timetable problem for large system sizes. In terms of transportation science, the model 

simulates optimal decisions by an infrastructure manager for shared railway systems, which can be used to evaluate 

alternative capacity pricing and allocation mechanism. We propose this modeling and algorithmic framework to 

allow regulators and decision makers to quantify these impacts for alternative mechanism designs.  

The rest of the paper is structured as follows: Section 2 describes and formulates the train timetabling problem in 

shared railway systems, and motivates the assumptions of the paper. Section 3 presents a dynamic programming (DP) 

formulation of the problem, and describes the linear programming (LP)-based ADP solution algorithm. Section 4 

compares the computational performance of the ADP algorithm with the performance of commercial MILP solvers, 

presents the timetables obtained for several scenarios with traffic patterns similar to the traffic of the Northeast 

Corridor in the U.S., and discusses the implications of the results for different stakeholders. Section 5 presents 

concluding remarks. 

2. TRAIN TIMETABLING PROBLEM IN SHARED RAILWAY SYSTEMS 

In this section, we formulate the train timetabling problem for shared railway systems under capacity pricing and 
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allocation mechanisms. There are two main types of mechanisms for capacity pricing and allocation in infrastructure 

capacity markets for shared railway systems: 1) mechanisms that determine the price at which capacity will be 

offered, and let operators decide whether they are willing to access the infrastructure or not (price-based, cost-

allocation mechanisms); and 2) mechanisms that determine the amount of capacity that will be offered, and let the 

operators reveal the price that they are willing to pay to use that capacity (quantity-based, auction mechanisms) 

(Gibson, 2003). Cost-allocation mechanisms are typically complemented with priority rules that allow the 

infrastructure manager to decide which train to schedule when there are conflicts (multiple operators willing to pay 

the pre-determined access charges). 

The model presented here determines the optimal set of trains that the infrastructure manager can accommodate, 

assuming that an auction mechanism is implemented. Under an auction, at some predetermined frequency, the 

operators will have the opportunity to submit bids. Each bid will consist of a list of the trains that the operator wants 

to schedule on the infrastructure, the desired timetable for each train, and the access charges they are willing to pay to 

schedule each train. The infrastructure manager will then determine the set of trains that can actually be scheduled, 

their timetable, and the access charges that the operators will pay.  We assume that the infrastructure manager’s 

objective is to maximize revenue, subject to infrastructure constraints (e.g., safety, infrastructure maintenance plans).  

We also discuss below how to modify the model to determine the optimal set of trains that the infrastructure 

manager can accommodate under alternative cost-allocation mechanisms. The differences between the infrastructure 

manager models for each mechanism affect mainly the definition of the parameters and the choice of the objective 

function. The constraints however are related to the physical and safe operation of the trains and remain unchanged 

across mechanisms.  The model formulation is discussed below. 

2.1. Sets 

�,	  � ∈{1,…,�}  trains proposed by the operators in the bidding process 

�,	  � ∈{1,	  2,…,	  �}  railway system stations 

2.2. Parameters 

We use lower-case letters to denote parameters. The information that the train operators provide in the bidding 

process for every train � is: 
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�����, a Boolean matrix that indicates the initial station � from which train � departs  

�����, a Boolean matrix that indicates the final destination (station �) of train �  

��, the maximum access price (access fee) that the operator is willing to pay if train � is scheduled. For price-

based mechanisms the access price will be pre-determined (using for example a cost-allocation model) and fixed by 

the infrastructure manager depending on the characteristics of the service. It is important to note that the operator will 

only operate a train if that price is less than or equal to its willingness to pay. 

������,	  ������, the desired arrival and departure time of train � at every station � in the path of train � 

Δ���,	   ��Δ��, maximum acceptable translation, defined as the maximum acceptable difference between the 

desired timetable and the actual timetable at the initial station (see Figure 1) of train � and per-unit penalty imposed 

by the operator if the infrastructure manager translates the train over the desired timetable. The penalty specifies the 

reduction in the access price that the operator is willing to pay 

Δ���,	   ��Δ��, maximum acceptable change in train � total travel time (see Figure 1) and per-unit penalty 

imposed by the operator if the infrastructure manager increases the travel time of train � at any station over the 

desired timetable 

The information about the topology of the line and the type of service is represented by the following two matrices: 

������, a Boolean matrix that indicates whether train � travels through station � or not 

�������′, a Boolean matrix that indicates for each train � the station �′ that train � will visit immediately after 

station �. Train � may not stop at station �′. 

In addition, the topology of the track and the signaling system will determine the minimum safe headway (time 

elapsed) between consecutive maneuvers at every station: 

ℎ����,ℎ���� minimum headway between consecutive arrivals/departures to/from station � 

In some cases the minimum safe headway depends also on the type of service and on the characteristics of the 

rolling stock. If that is the case, the former parameters will have different values for each train pair. The 

infrastructure manager can set larger minimum headway to ensure the reliability of the timetable (including time-
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slack to recover delays in the system). 

2.3. Variables 

We use capital letters for variables. The endogenous decision variables of this problem are: 

�� binary variable that indicates whether train � is scheduled 

������,������ final arrival and departure time (timetable) of every train � scheduled at every station � in 

the path of the train 

Δ���,	  Δ���� final train � translation and increment of travel time per station �. Note that these variables can 

be determined knowing ������,������ and vice versa. This paper assumes Δ����≥0 to ensure that the 

resulting train timetable is feasible. Δ��� can either be positive or negative; so we define the auxiliary positive 

variable Δ���+ as the absolute value of Δ���. 

���′� is a binary disjunctive variable with value 1 if train � departs before train �′ at station � and value 0 

otherwhise. 

2.4. Objective Function 

As discussed before, the objective of the problem is to determine which trains should be scheduled and when to 

maximize the infrastructure manager’s revenue: 

��������−	  ��Δ��Δ���+−��Δ�������� (1) 

Alternative objective functions could be defined for different capacity pricing and allocation mechanisms. For 

example, the functions: 

������	   (2) 

��������� (3) 

could be used to maximize the number of trains scheduled or the number of priority trains scheduled respectively 

under a cost-allocation and priority rules mechanisms. In this case ��� would be a parameter that indicates the 

priority level of each train �. This priority level can, for example, be proportional to the number of passengers times 

the miles of the service. 
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2.5. Constraints 

The first set of constraints establishes the relation between the desired timetable and the final timetable of every 

train scheduled:  

The departure time from the first station can be determined as: 

������=������+Δ���,	  	  ∀�,�:�� ��� (4) 

The travel time between intermediate stations can be determined as: 

���′���−������=���′���−������+Δ����,	   	   ∀�,�, �′:	   ��� ����′	   ���	  

�����′+�� ���′=0 (5) 

At the final station, the travel time can be determined using: 

���′���−������=���′���−������+Δ����,	  	  ∀�,�, �′:	  ��� ����′	  ���	  �� ���′	   (6) 

Note that the arrival time at the initial station is not defined in the timetable, nor is the departure time from the last 

station.  

To ensure that the timetable is feasible, the final stopping and travel times at each station must be greater than or 

equal to the stopping and travel time in the desired timetable:  

������−������≥������−������,	  	  ∀�,�:��� ���	  ���	  �� ���+�� ���=0 (7) 

���′���−������≥���′���−������,	  	  ∀�,�:��� ���′�	  ���	  �� ���+�� ���=0 (8) 

The maximum translation and increment of travel time for each train scheduled are also constrained. The allowable 

translation of a train is bounded by a maximum translation defined by the operator: 

−Δ���≤Δ���≤Δ���,	  	  ∀� (9) 

In addition, the absolute value of the translation (Δ���+=Δ���) is determined using the following linear 

constraints: 

Δ���+≥Δ���,Δ���+≥−Δ���	  	  	  ∀� (10) 
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The maximum change on travel time is bounded by the maximum increment on travel time specified by the 

operator: 

�:��� ���Δ����≤Δ���,	  	  ∀� (11) 

The operator may impose additional conditions within the bid to define the acceptable changes with respect to the 

desired timetable. That happens when the operator is not interested in operating the train if the departure from or the 

arrival at one major station is changed. In this case, additional constraints are included to ensure that the timetable 

respects the operator’s requests if the train is scheduled.  

The final set of constraints ensures that the timetable proposed by the infrastructure manager can be accommodated 

by the existing infrastructure. The infrastructure manager must ensure first that the difference between the departure 

times of every pair of trains scheduled is greater than or equal to the minimum safe headway, so at least one of the 

following equations must hold: 

������−���′���≥ℎ���� (12) 

���′���−������≥ℎ���� (13) 

These conditions can be expressed using the following constraints: 

������−���′���≥ℎ�����−� ���′�+2−��−��′,	   	   ∀�,�′,�:�< �′	   ���	   ��� ���	   ���	  

��� ��′� (14) 

���′���−������≥ℎ����−� 3−���′�−��−��′,	   	   ∀�,�′,�:�< �′	   ���	   ��� ���	   ���	  

�����′� (15) 

In these equations � is a “big enough” number for the disjunctive formulation. In this formulation we use 

�=ℎ����+��′����−������+Δ���′+Δ���+max(Δ���,Δ���′), which is the smallest possible � that can be 

chosen for this problem. The binary disjunctive variable ���′� is used to automatically activate only one of the 

constraints depending on the value of the other variables. ���′� has value 1 if train � departs before train �′ at 
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station �. This problem will have on the order of �(�2�) binary variables and will be very difficult to solve for large 

� (number of trains).  

Similar constraints are included for inter-arrival times to ensure that the order of the trains is preserved between 

stations. 

���+1���−��′�+1���≥ℎ�+1���−� ���′�+2−��−��′,	   	   ∀�,�′,�:�< �′	   ���	   ��� ���+1	  

���	  ��� ��′�+1 (16) 

��′�+1���−���+1���≥ℎ�+1���−� 3−���′�−��−��′,	   	   ∀�,�′,�:�< �′	   ���	   ��� ���+1	  

���	  ��� ��′�+1 (17) 

For these constraints, a value of �=ℎ�+1���+��′	  � ���−������+Δ���′	  +Δ���+max����,�� ��′	   is 

used.  

Note that these constraints are valid for any shared railway system. The information about the topology of the 

infrastructure, the route of the trains, the safe headways imposed by the signaling system, etc. is introduced in the 

model parameterization. 

3. LINEAR PROGRAMMING APPROACH FOR APPROXIMATE DYNAMIC PROGRAMMING 

As discussed above, the size of the MILP model proposed in Section 2 increases exponentially as a function of the 

number of stations and trains to schedule. We propose a novel solution algorithm using ADP techniques (Bertsekas 

and Tsitsiklis, 1996; Bertsekas, 2006; Powell, 2007) to tractably solve large timetabling problems in shared railway 

systems. 

Specifically, we propose a Q-factor Adaptive Relaxed Linear Programming (QARLP) algorithm that extends the 

Approximate Linear Programming (ALP) and the Relaxed Linear Programming (RLP) algorithms developed by 

(Farias and Van Roy, 2003a; Farias and Van Roy, 2003b). QARLP introduces two main innovations with respect to 

ALP and RLP algorithms: 1) it incorporates the possibility of learning from previous solutions, allowing the 

algorithm to improve the solution obtained by refining the sampling strategy in subsequent iterations, and 2) it 

formulates the Bellman equation using Q-factors, enabling the identification of promising areas in the solution space 
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without needing to explicitly compute the value function at the next stage, which is very difficult for large 

multidimensional problems. This approach decreases the solution time, using fewer samples and iterations than a 

MILP commercial solver while still ensuring convergence to the optimal solution within a specified optimality gap. 

3.1. Dynamic Programming Formulation 

The problem defined in Section 2 can be reformulated as follows. 

3.1.1. Stages 

There are �=1,…,�  stages or decision periods (one for each train proposed to be scheduled).  

3.1.2. State 

The Markovian state variable is the timetable of the trains scheduled so far: 

��=����������−1 (18) 

3.1.3. Control 

At every stage, the control variable indicates whether the infrastructure manager decides to schedule train � or not, 

and, if scheduled, the specific timetable of train � at all stations � in the path.  

��={��,������,������} (19) 

A train can only be scheduled if it does not present any conflict with the trains already scheduled.  

3.1.4. State Transition Function 

Given the state and the control at one decision stage, the state in the following decision stage can be computed, 

which incorporates the timetable of the new train if it is scheduled.  

��+1=�( ��,��)=����������−1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ��	   ��=0����������−1;������,������	  	  ��	  

��=1 (20) 

3.1.5. Cost Function 

The cost associated with a state-control pair is the sum of the penalties minus the revenue obtained if train � is 

finally scheduled. The sign of the cost function has been chosen to formulate a minimization problem. The cost 

associated to each state-action pair is evaluated using: 
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���,��=� ��=−��+Δ�����Δ��+Δ�����Δ��⋅�� (21) 

3.1.6. Bellman Equation 

The policy that minimizes the sum of current and future costs at every decision stage can be determined by solving 

the Bellman equation and calculating the cost-to-go or value function: 

��∗��=min�����+��+1∗���,��	  ���	  �=1,…,�−1  (22) 

��∗��=min�����	   (23) 

This equation can be reformulated using Q-factors, which represent the cost-to-go for every feasible state-control 

pair: 

��∗��,	  ��=� ��+min��+1��+1∗���,��,��+1	  ���	  �=1,…,�−1  (24) 

��∗��,��=� ��	   (25) 

The relation between the cost-to-go function and the Q-factor is: 

��∗��=min����∗��,��	   (26) 

The optimal policy (timetable) can be determined solving the Bellman equation or the Q-factor Bellman equation 

using backward induction. However, when the dimension of the state space and the dimension of the control space 

increase, solution of the exact DP program becomes impracticable because the size of the problem grows 

exponentially. The benefit of reformulating the MILP model as a DP problem is that we can apply efficient solution 

algorithms such as the one proposed next. 

3.2. Linear Programming Algorithm 

Borkar (1988), De Ghellinck (1960), and Manne (1960) show that solving the Bellman equation (22) is equivalent 

to solving the LP problem proposed in equation (27) for any positive vector � because the inequality �≤�∗ holds for 

every feasible solution � of the problem. The vector � is called the state-relevance weight vector 

max�J,  s.t. ����+� J�+1����,��≥J���,	  	  ∀��,�� (27) 

This LP problem has as many variables as possible states (value of the cost-to-go function at each state) and as 
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many constraints as possible state-control pairs. When the state and control space of the problem are large, this 

results in a very large number of variables and constraints.  

Schweitzer and Seidman (1985) and de Farias and Van Roy (2003a) proposed a modification of the previous 

formulation called the Approximate Linear Problem (ALP): 

max�Φ�, s.t.  ����+� Φ�+1����,����+1≥Φ�����,	  	  ∀(��,��)  (28) 

where the real value function ��∗ is approximated by a linear combination of basis functions 

����=�=1,…,� Φ�������=Φi����. In this approximation, there are only �⋅� variables (number of basis 

functions and number of stages). However, the number of constraints remains the same as in algorithm 1 (one 

constraint for each state-control pair).  

To reduce the number of constraints in this problem, De Farias and Van Roy (2003b) proposed a Relaxed Linear 

Problem (RLP) formulation. RLP proposes a strategy which samples the constraints from the ALP formulation to 

include. De Farias and Van Roy showed that for an appropriate probability distribution function Ψ over the set of 

state-control pairs, the number of constraints that must be sampled does not depend on the number of state-control 

pairs. In particular, to obtain a solution close enough to the optimal solution obtained using the ALP formulation with 

1−�  confidence level (Pr|�∗−Φ����1,� −�∗−Φ����1,� |<� ≥1−� ), the number of samples required is on 

the order of a polynomial in the number of state variables, 1/� , and log1/� . Note that these convergence results 

are computed over the basis-function approximation, that is, the RLP formulation converges to the best 

approximation over the basis functions chosen with confidence level 1−�  within a number of samples that does not 

depend on the number of state-action pairs. The RLP formulation is: 

max�Φ�, s.t. ����+� Φ�+1����,����+1≥Φ�����,	  	  ∀��,��∈�  (29) 

where � is the set of state-action pairs sampled.  

The main drawback of the RLP formulation presented in equation (29) is that the convergence results proved in (de 

Farias and Van Roy, 2003b) are based on an idealized choice of the probability distribution used to sample the 

constraints. In particular, the choice assumes knowledge of an optimal policy. Although it is unrealistic to assume 

that the optimal policy is known a priori, it is possible to obtain a reasonable approximation of the optimal policy by 
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solving the RLP. Applying this idea, we propose the following Adaptive Relaxed Linear Programming (ARLP) 

algorithm: 

Step 0: Set �=0, and sample �0, giving each state-control pair equal probability to be sampled (Ψ0 uniform 

distribution).  

Step 1: Solve the problem max�Φ�, 

s.t.  ����+� Φ�+1����,����+1≥Φ�����,	  	  ∀��,	  ��∈��  

Step 2: Set �=�+1 . Determine the optimal policy according to the last problem solved. Choose the next set of 

constraints sampled using a probability distribution function Ψ� that assigns higher probabilities to those solutions in 

the optimal policy in the last iteration. In general, the variance of the probability distribution Ψ� will decrease with 

�.  

Step 3: It �>�0 or the difference between the objective function is smaller than �, stop. Otherwise go to Step 1.  

Algorithm 1. Adaptive Relaxed Linear Programming (ARLP) algorithm 

The ARLP algorithm iteratively solves a sequence of RLP problems, each with a manageable number of variables 

and constraints. This approach takes advantage of the reduced dimensionality of the RLP formulation while 

incorporating a mechanism to refine the sampling strategy Ψ� using the best approximation of the optimal solution 

obtained so far. As a consequence, the convergence of the algorithm would not require the knowledge of the 

appropriate probability distribution function Ψ a priori.  

However, because the basis function approximation used reduces the dimensionality of the problem, finding the 

state-control pair (timetable) that corresponds to known basis function values becomes a challenge. In other words, 

although it is very easy to determine the value of each basis function for a given state-control pair, solving the inverse 

problem (determining a state-control pair associated with a given basis function value) is extremely difficult in these 

cases. This is because the basis functions are a projection from the higher-order state-action space to a reduced 

dimensionality space, and the mapping from the low-dimensional projection back to the higher dimensional space is 

underdetermined.  Therefore, there is no straightforward way to define Ψ� based on low-cost regions in the basis 

function space, and to sample state-action pairs from it.   
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This problem can be solved by 1) reformulating the algorithm using Q-factors instead of the cost-to-go function, 

and 2) determining Ψ� implicitly using a Metropolis Hasting algorithm (Rubinstein and Kroese, 2008) that accepts 

or rejects a state-control sample based on how promising the sample is using the Q-factor best guess.  

To do that, we sample uniformly across the state-action space to determine a candidate state-action pair (��′,��′), 

we compute the value of its associated Q-factor (Φ���′,��′��), and compute the ratio of this Q-factor with the 

range of possible Q-factor values in the latest iteration (Φ���,����,Φ���,����):  

ϕ=Φ���′,��′��−Φ���,����Φ���,����−Φ���,���� (30) 

We then draw a sample � from a probability distribution Ξ�. We accept the state action pair if ϕ≥�. To ensure 

convergence to the optimal solution, the variance of the probability distribution Ξ� must decrease with �, the 

probability of accepting any sample must be strictly positive, and the probability of accepting any sample with 

associated ϕ≥1 must be 1. To ensure that these conditions hold, we determine the probability of accepting a proposed 

sample based on a sample drawn from Ξ�~�(− 1�,1). In other words, we accept a sample with probability 

�=max1�,min1,ϕ. The performance of the algorithms improves when the state-control pairs associated with binding 

constraints in the previous iteration are retained in future iterations.  

We call this algorithm a Q-factor Adaptive Relaxed Linear Problem (QARLP) algorithm. 

Step 0: Set �=0, and sample �0, giving each state-control pair equal probability to be sampled (Ψ0 uniform 

distribution).  

Step 1: Solve the problem max�Φ�, 

s.t.  ����+� Φ�+1����,��,��+1��+1≥Φ���,����,	  	  ∀��,��,��+1∈�� 

Step 2: Set �=�+1 . Determine the optimal policy according to the last problem solved. Repeatedly sample state-

control pairs until one pair is accepted if the ratio of its associated Q-factor (Φ���,����) and the range of possible 

Q-factor values in the latest iteration (�) is greater or equal than a draw of a probability distribution Ξ�	  (�).  

Step 3: It �>�0 or the difference between the objective function is smaller than �, stop. Otherwise save binding 

constraints from previous iterations and go to Step 1.  
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Algorithm 2. Q-factor Adaptive Relaxed Linear Programming (QARLP) algorithm 

Note that in this algorithm �,Φ,� have slightly different meanings than in Algorithm 1: � is a positive constant for 

every state-control pair at every decision stage and Φ,�  are functions of the state-control pair (not only of the state: 

Φ,�= Φ,� �(��,��)).  

The choice of basis functions that capture relevant information about the state and the action while at the same 

time decreasing the amount redundant information (and hence the dimensionality of the problem) is a critical design 

choice of these types of ADP algorithms. In this paper, we use basis functions that capture: 1) the total number of 

trains scheduled, as well as the total changes in the operator’s desired timetable (state variable), 2) whether train � is 

scheduled or not, and the total changes in the desired timetable, 3) the number of conflicts of the trains scheduled so 

far with the following trains to be scheduled, and 4) and a constant. This reduces the dimensionality of the 

approximate cost-to-function to �=7. That is, 

 Φ���,��=(�′<� ��′,�′<� Δ���,�′<� Δ���,��,Δ���,Δ���,��,1)  (31) 

where �� is the number of conflicts of the trains scheduled so far with the following trains: ��=�′>� (��′). The 

variable ��′ has value 1 if the desired timetable of train conflicts with the timetable of any train scheduled so far and 

0 otherwise. We chose these basis functions after trying different options (with and without ��; with higher and 

lower level of aggregation of the timetable information) and picked these ones because the error of the approximation 

around the optimal solution is low and because they allow differentiating promising solutions from solutions that are 

not as promising.  

4. RESULTS 

In this section, we present the results for the train timetabling problem from both the MILP and the ADP 

formulations. The first subsection presents the computational results of the paper, comparing the solution times 

between the commercial MILP solver and the QARLP algorithm. The second subsection presents the timetables 

obtained for several scenarios of demands from operators, and presents several insights for the context of a shared 

infrastructure and multiple agents.  The third subsection summarizes the main implications for each stakeholder 

group. 
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4.1. Computational results 

We begin by presenting the results obtained from solving the timetable problem for the representative 

infrastructure (Figure 2). It consists of a double-track corridor with 12 stations. The system presented includes the 

critical characteristics required to represent a corridor such as the Northeast Corridor in the U.S., for which the 

Federal Railroad Administration is currently developing a new capacity pricing and allocation mechanism to foster 

rail efficiency. 

Stations 1, 2 and 12 represent main stations in the same metropolitan area (e.g., Boston), stations 3, 4, 5, 9, 10 and 

11 are all in another metropolitan area (e.g., New York), and stations 6, 7 and 8 are in yet a third distinct metropolitan 

area (e.g., Washington D.C.). Five types of services are considered: Boston commuter trains travelling around the 

Boston metropolitan area (stations 1, 2, and 12); New York commuter trains; D.C. commuter trains; and intercity and 

freight trains travelling between Boston and Washington D.C. Intercity and freight trains may not stop at every 

station. Freight trains will travel the line at speeds much lower than commuter and intercity trains. Intercity trains 

travel at higher speeds than commuter trains. 

At present, around 2,000 commuter trains, 150 intercity trains and 70 freight trains travel around the Northeast 

Corridor every day. In practice, most of the conflicts to schedule trains occur around peak hours; where the 

infrastructure manager would have to control for conflicts within sets of around 100-250 trains to make changes in 

the timetable. 

We assume that the commuter operators (one in each city) request to schedule commuter trains in their respective 

urban areas every 30 minutes, and that one intercity operator requests to operate a train every hour. The number of 

trains requested by operators depends on the total time horizon considered. 

The MILP formulation from Section 2 is implemented in GAMS 24.1.2 and solved using CPLEX 12.5 on a PC at 

2.40 GHz, 4GB, intel core i7, under Microsoft Windows 7 64 bits. To reduce the size of the problem, when the 

desired arrival and departure times of two trains are very far apart, the value of the binary variable ���′� is fixed a 

priori (since the relative order in which they pass through the station cannot change). We run CPLEX with options 

CHEAT=0.05, �INSHeur=50, Threads=−1 for faster solution times, and use a 5% optimality gap. A smaller 

optimality gap may be required if the timetable problem has multiple quasi-optimal solutions with very different 
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implications for different operators in terms of which trains are scheduled to ensure that the infrastructure manager 

choice of the trains to schedule is not arbitrary. In practice, for the cases solved for this paper, the difference in the 

objective function between scheduling or not one additional train is large. As a consequence any solution within a 5% 

optimality gap of the optimal solution ensures that the set of trains scheduled is the same than the set of trains 

scheduled in the optimal solution unless there are twin trains (operators willing to pay the same to operate trains with 

the exact same timetable). In that case neither CPLEX nor the QARLP algorithm would be able to distinguish those 

trains in the solution and the choice of one solution over other would be random.  

We then solve the identical problem using the QARLP algorithm proposed in the previous section. Although 

theoretically the relative order of the trains does not change the solutions obtained or the convergence speed of the 

algorithm to the optimal solution, in practice the relative order of the trains may speed up the process of finding the 

optimal solution. The results presented in this paper correspond to cases in which the relative train order (trains 

considered at each stage) was randomly assigned. 

Table 1 shows the number of equations, variables and discrete variables for problems with several different 

numbers of requested commuter and intercity trains. Figure 3 compares the execution time and the number of 

iterations required to convergence (within 5% integrality gap) of the MILP approach and the QARLP algorithm.  

Note that the QARLP execution time increases as a polynomial function of the size of the problem (number of 

stations and number of trains to schedule). In contrast, the MILP solution times increase exponentially with the size 

of the problem.  In particular, solving the MILP problem with CPLEX for 75, 90, or 120 trains within a 5% 

convergence gap is computationally intractable. Extrapolating from a regression estimate (Figure 3), the solution 

time using CPLEX for 120 trains would be approximately 46 days. The solutions obtained with the QARLP 

algorithm for 90 and 120 trains in approximately 20 minutes are better than those obtained for the MILP formulation 

with CPLEX after 20 hours and 35 hours respectively. In the cases with 15, 30, and 60 trains the solutions obtained 

with both methods are almost identical.  

4.2. Design of Timetables for Corridors with Traffic Patterns similar to the Northeast Corridor of the U.S.’s Traffic 

Figures 4, 5 and 6 show time-space diagrams for timetables designed by the infrastructure manager model for 

different capacity use demand scenarios. The y-axes represent distance in miles from station 1 and the x-axes represent 



 19 

time in minutes at which different trains are scheduled to pass through each point of the line (vs. desired scheduled in 

dashed line). The horizontal segments represent the stopping times at stations. We assume no interaction between 

trains travelling in different directions. 

Figure 4 shows the timetable for a scenario with demand to schedule an intercity train in the system when commuter 

trains around the three urban areas operate every 30 minutes. Figure 5 shows a scenario in which two competing 

intercity operators request scheduling intercity trains when commuter trains around the three urban areas operate every 

30 minutes. Figure 6 shows a scenario with demand to schedule a freight train in the system when commuter trains 

around the three urban areas operate every 1 hour. The infrastructure manager model proposes the final timetable 

analyzing the trade-off between eliminating trains and readjusting the desired schedules, according to the objective 

function in (1). For clarity purposes, only the schedules of conflicting trains are shown in the figures. 

For this example, we assume that each commuter train operator pays 1 unit to schedule a commuter service and gets 

a 5% discount from the original access fee for every minute that one of their trains is rescheduled. When the 

infrastructure manager tries to schedule an intercity train, it will initially conflict with 14 commuter trains (see Figure 

4). Rescheduling the commuter trains to accommodate the intercity service requires that the commuter operators 

receive a discount of 2.1 units on their total access fees. As a result, the infrastructure manager would only schedule 

the intercity train if it represents more than 2.1 units of revenue.  

If the frequency of commuter trains increases, for example to one commuter train every 15 minutes instead of every 

30 minutes, the intercity train will initially conflict with 22 commuter trains and will only be scheduled if it represents 

more than 3.6 units of revenue for the infrastructure manager. Conversely, if the frequency of commuter trains 

decreases to one train every 60 minutes, the intercity train will be scheduled if it represents at least 1.5 units of revenue 

for the infrastructure manager. The model can be used to quantify the trade-off between commuter and intercity trains 

for any other frequency of service (see Figure 7). The exact value of the trade-off for low frequencies of commuter 

services depends on whether there are conflicts among the desired timetables of the trains or not. 

Scheduling two intercity trains in Figure 5, assuming the same willingness-to-pay to schedule commuter trains, 

results in a 4.0 units of total discount for commuter operators (the intercity service will initially conflict with 14 

commuter trains). That means that the infrastructure manager would only schedule the two intercity trains if they 
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represent more than 4.0 units of revenue. If the revenue from scheduling the intercity trains represent between 2.1 and 

4.0 units, at most one of the intercity trains would be scheduled.  

Furthermore, note that although both trains would like to depart station 1 at minute 0, one of them will depart at 

minute 3 and the other one at minute 8. In some cases, none of the operators may be interested in operating a second 

intercity service just 5 minutes after another one. In this example, intercity operators may avoid getting their train 

scheduled just after other intercity by controlling 1) how flexible their schedule is, 2) how much discount in the access 

fee they obtain if the schedule of the train is changed, and 3) how much they are willing to pay to access the 

infrastructure.  

Figure 6 assumes that the willingness to pay to access the infrastructure for a freight operator is lower than the 

willingness to pay of other operators. We also assume that the freight operator’s flexibility (total allowed translation 

and increment of travel time) is higher than other operators’ flexibility.  

For the same commuter frequency, a freight train will initially conflict with more commuter trains than an intercity 

train since it travels at a lower speed. As a result, independent of how much each commuter service operator pays, the 

freight train will be scheduled as long as the net access fee paid to the infrastructure manager is positive. The 

minimum access fee that a freight operator must pay when the line is more congested will depend on how many trains 

have to be rescheduled to eliminate conflicts. If the commuter operator wants to increase the frequency of commuter 

service from one train per hour to one train every 30 minutes, the freight train will only be scheduled if the net access 

fee that the freight operator is willing to pay represents more than 3 units of revenue for the infrastructure manager 

(since three commuter services could not be operated). In general, the relative speeds among different types of services 

have a major impact on the capacity utilization of the system. 

4.3. Implications for Stakeholders 

Here we present the main implications of these results for the operators, the infrastructure manager, the users, and 

the regulators. 

4.3.1. The capacity pricing and allocation mechanism determines how different operators are able to compete to 

access capacity 
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This effect is important when there are different types of operators (such as commuters and long-distance 

operators) competing to access the infrastructure. Although the results presented above were calculated assuming that 

the capacity pricing and allocation mechanism in place is an auction, similar effects occur when other mechanisms 

are implemented. For instance, the results of the model demonstrate that intercity and freight services would have a 

disadvantage to compete with commuter trains under capacity allocation methods that maximize how many trains are 

scheduled in the system. This problem could be solved by designing mechanisms that account for the miles or 

passenger miles, by assigning higher priority to long distance services, or by assigning a societal utility to each 

service. The impact of these measures could be quantified using the model proposed for the specific system.  

Competing companies may be concerned about getting their train in the schedule just after another competing 

train. The results for this problem suggest that when the infrastructure is congested, scheduling two competitive 

trains for the same service at similar times represents a high opportunity cost for the infrastructure manager. 

Operators may be able to avoid having their train scheduled at the same time as another competing train by 

controlling the flexibility of their desired timetable and their willingness to pay to access the infrastructure.  

4.3.2. The characteristics of the system and of the capacity pricing and allocation mechanism affect the ability of 

the infrastructure manager to recover infrastructure cost 

The results of the model also show that depending on the operators’ infrastructure access demand (e.g., frequency 

of commuter services), the price that an intercity or freight operator will have to bid to be able to schedule a train can 

vary considerably. This price reflects the congestion rent. The infrastructure manager’s ability to recover costs using 

an auction mechanism, therefore, depends on the level of service (defined by the number of train services offered and 

the mix between different types of train services) of the line. In congested infrastructure, greater cost recovery is 

expected.  

Although cost-allocation mechanisms are usually presented as capacity pricing and allocation mechanisms that 

allow the infrastructure manager to recover infrastructure costs, the operators’ demand to access the infrastructure 

will certainly depend on the infrastructure access fee. For instance, the operators would require high average 

ridership levels to provide a service when they pay high access charges and vice-versa. By this relation the 
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infrastructure access fee is related to the consumer utility not necessary related to the congestion rent of the 

infrastructure manager. 

4.3.3. The characteristics of the system and of the capacity pricing and allocation mechanism also condition the 

level of service experienced by the users of the railway system (passengers and freight shippers) 

This implication is a consequence of the previous ones. The capacity pricing and allocation mechanism determines 

how different operators can compete to get access to the infrastructure and the access charges they will have to pay. 

This will ultimately affect the operators’ infrastructure access demand, which translates into how many services each 

operator will schedule. This will have a direct impact on the level of service.  

Furthermore, the equilibrium between different types of services will also impact the level of service that the users 

will experience: whether it is possible to have frequent intercity services, whether it is possible to operate higher-

speed services in the system, which long-distance services can be operated during peak-hours, etc. 

4.3.4. Regulators’ design of capacity pricing and allocation mechanisms should consider not only overarching 

regulation goals but also the specific characteristics of the railway system 

This paper shows that the implications of the capacity pricing and allocation mechanism for the operators, the 

infrastructure manager, and the users strongly depend on the characteristics of the system. As a consequence, 

regulators should consider these characteristics to analyze whether overarching regulation goals such as mix of 

services, level of infrastructure cost recovered, and level of service are met. 

5. CONCLUSIONS 

This paper proposes a train timetabling model for shared railway system. The model is formulated as both a MILP 

problem and as a DP problem. The MILP is solved using commercial software and the DP is solved using a novel 

algorithm for ADP. The timetables designed with the model are used to evaluate how capacity pricing and allocation 

may impact different railway system stakeholders. As a result, the contributions of this paper are both 

methodological and domain specific.  

On the methodological side, the main contributions of the paper include:  
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1) The formulation of a train timetabling model for shared railway systems that would allow regulators and 

decision makers to simulate the behavior of the infrastructure manager. This model explicitly considers network 

effects to analyze the interdependencies between operation and infrastructure and the existence of different 

operators willing to operate trains with different paths within the infrastructure under various capacity pricing and 

allocation mechanisms. 

2) The development of a novel algorithm for rapidly solving the train timetable problem in shared railway 

systems, which requires fewer samples and iterations and ensures convergence to the optimal solution within a 

specified optimality gap. We obtain solutions within 5% of the optimal solution for problem sizes that cannot be 

solved within a 5% convergence gap using commercial MILP software.  

3) The algorithm developed, a Q-factor Adaptive Relaxed Linear Programming (QARLP) algorithm, extends 

the Approximate Linear Programming (ALP) and the Relaxed Linear Programming (RLP) algorithms developed 

by (Farias and Van Roy, 2003a; Farias and Van Roy, 2003b). QARLP introduces two main innovations with 

respect to ALP and RLP algorithms: 1) it incorporates the possibility of learning from previous solutions, 

allowing the algorithm to improve the solutions obtained by refining the sampling strategy in the next iterations, 

and 2) it formulates the Bellman equation using Q-factors, allowing the identification of promising areas in the 

solution space without computing the value function at the next state (very difficult in large multidimensional 

problems). These ideas can be generalized for other instances. 

Moreover, the results of the train timetabling model can be used to simulate and evaluate the best possible behavior 

of the infrastructure manager in shared railway systems under different capacity pricing and allocation mechanisms. 

The domain-specific contributions of this paper are: 

4) This paper shows that the capacity pricing and allocation mechanisms critically impact the operations on a 

shared railway system for all the stakeholders: it determines whether the infrastructure manager will be able to 

recover costs; it determines how operators offering different or competing services will be able to compete to 

access the infrastructure; and hence it ultimately determines the level of service that will be offered to rail users.  
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5) This paper also shows that the extent of this impact depends on the characteristics of the system and the 

traffic level. We propose the use of this model as a tool to allow regulators and decision makers to quantify the 

impact of different capacity pricing and allocation mechanisms.  

This paper considers the operators’ infrastructure access demand (characterized both as the demand to schedule 

trains and the revealed willingness to pay to access the infrastructure) as exogenous to the problem. However, the 

operator’s infrastructure access demand depends on the capacity pricing and allocation mechanism. Future research 

will integrate the infrastructure manager model proposed with models of operator bidding behavior to better quantify 

the trade-offs between utilization and level of service on the one hand, and infrastructure cost recovered under 

different capacity pricing and allocation mechanisms. These results will be valuable to design and evaluate 

appropriate capacity pricing and allocation mechanisms aimed at the particular characteristics of a specific shared 

railway system. 
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LIST OF TABLES 

Number of 
Trains Equations Continuous/Total 

Variables 
Discrete 

Variables 

15 970 510 91 
30 3,715 1,607 292 
60 14,533 5,565 919 

120 57,481 20,537 3,145 

Table 1. Train timetabling problem size for traffic patterns representative of the Northeast Corridor traffic 
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Figure 1. Time-space diagram representation of possible changes with respect to desired timetable
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Figure 2. Detailed corridor infrastructure 
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Figure 3. Comparison of the execution time and the iterations required to convergence (within 5% integrality gap) of the 

MILP approach and the QARLP algorithm. 
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Figure 4. Timetable proposed by infrastructure manager to schedule an intercity train in a system with commuter trains 

operating every 30 minutes. 
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Figure 5. Timetable proposed by infrastructure manager to schedule two intercity trains in a system with commuter trains 

operating every 30 minutes. 
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Figure 6. Timetable proposed by infrastructure manager to schedule a freight train in a system with commuter trains operating 

every 60 minutes. 
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Figure 7. Intercity train schedule impact on commuter traffic as a function of the commuter frequency 

 


