71,508 research outputs found

    Toric grammars: a new statistical approach to natural language modeling

    Full text link
    We propose a new statistical model for computational linguistics. Rather than trying to estimate directly the probability distribution of a random sentence of the language, we define a Markov chain on finite sets of sentences with many finite recurrent communicating classes and define our language model as the invariant probability measures of the chain on each recurrent communicating class. This Markov chain, that we call a communication model, recombines at each step randomly the set of sentences forming its current state, using some grammar rules. When the grammar rules are fixed and known in advance instead of being estimated on the fly, we can prove supplementary mathematical properties. In particular, we can prove in this case that all states are recurrent states, so that the chain defines a partition of its state space into finite recurrent communicating classes. We show that our approach is a decisive departure from Markov models at the sentence level and discuss its relationships with Context Free Grammars. Although the toric grammars we use are closely related to Context Free Grammars, the way we generate the language from the grammar is qualitatively different. Our communication model has two purposes. On the one hand, it is used to define indirectly the probability distribution of a random sentence of the language. On the other hand it can serve as a (crude) model of language transmission from one speaker to another speaker through the communication of a (large) set of sentences

    A knowledge-based system with learning for computer communication network design

    Get PDF
    Computer communication network design is well-known as complex and hard. For that reason, the most effective methods used to solve it are heuristic. Weaknesses of these techniques are listed and a new approach based on artificial intelligence for solving this problem is presented. This approach is particularly recommended for large packet switched communication networks, in the sense that it permits a high degree of reliability and offers a very flexible environment dealing with many relevant design parameters such as link cost, link capacity, and message delay

    Textual Mediation in Simulated Nursing Handoffs: Examining How Student Writing Coordinates Action

    Get PDF
    In clinical nursing simulations, a group of students provide care for a robotic patient during a structured scenario. As care is transferred from one group to another, they participate in a patient handoff, with outgoing students passing key information onto incoming students. In healthcare, the nursing handoff is a critical and perilous communication moment that is mediated by a range of participants and texts. Drawing on observations and video recordings of 52 simulation handoffs in the United States, this article examines how two student-designed texts – a collaborative patient chart and individual notes – are leveraged during the handoff. I also consider how handoff talk and writing changes as student nursing knowledge increases over the course of a year. By focusing on textual mediation of the simulated nursing handoff, this article contributes to existing research on professional writing pedagogy and to nursing scholarship on the handoff. Ultimately, it argues that a textual mediation framework can help bridge class room and professional contexts by evaluating student writing not for how successfully it meets a set of imposed criteria but for how effectively it supports classroom activities

    Constructing a concept of number

    Get PDF
    Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics like linearity that may persist in the form of knowledge and behaviors, ultimately yielding numerical concepts that are irreducible to and functionally independent of any particular form. Material devices used to represent and manipulate numbers also interact with language in ways that reinforce or contrast different aspects of numerical cognition. Not only does this interaction potentially explain some of the unique aspects of numerical language, it suggests that the two are complementary but ultimately distinct means of accessing numerical intuitions and insights. The potential inclusion of materiality in contemporary research in numerical cognition is advocated, both for its explanatory power, as well as its influence on psychological, behavioral, and linguistic aspects of numerical cognition

    Using Counts as Heuristics for the Analysis of Static Models

    Get PDF
    The upstream activities of software development are often viewed as both the most important, in terms of cost, and the yet the least understood, and most problematic, particularly in terms of satisfying customer requirements. Business process modelling is one solution that is being increasingly used in conjunction with traditional software development, often feeding in to requirements and analysis activities. In addition, research in Systems Engineering for Business Process Change, highlights the importance of modelling business processes in evolving and maintaining the legacy systems that support those processes. However, the major use of business process modelling, is to attempt to restructure the business process, in order to improve some given aspect, e.g., cost or time. This restructuring may be seen either as separate activity or as a pre-cursor to the development of systems to support the new or improved process. Hence, the analysis of these business models is vital to the improvement of the process, and as a consequence to the development of supporting software systems. Supporting this analysis is the focus of this paper. Business processes are typically described with static (diagrammatic) models. This paper proposes the use of measures (counts) to aid analysis and comparison of these static process descriptions. The proposition is illustrated by showing how measures can be applied to a commonly used process-modelling notation, Role Activity Diagrams (RADs). Heuristics for RADs are described and measures suggested which support those heuristics. An example process is used to show how a coupling measure can be used to highlight features in RADs useful to the process modeller. To fully illustrate the proposition the paper describes and applies a framework for the theoretical validation of the coupling measure. An empirical evaluation follows. This is illustrated by two case studies; the first based on the bidding process of a large telecommunications systems supplier, and the second a study of ten prototyping processes across a number of organisations. These studies found that roles of the same type exhibited similar levels of coupling across processes. Where roles did not adhere to tentative threshold values, further investigation revealed unusual circumstances or hidden behaviour. Notably, study of the prototyping roles, which exhibited the greatest variation in coupling, found that coupling was highly correlated with the size of the development team. This suggests that prototyping in large projects had a different process to that for small projects, using more mechanisms for communication. Hence, the empirical studies support the view that counts (measures) may be useful in the analysis of static process models

    Analyzing Visual Mappings of Traditional and Alternative Music Notation

    Full text link
    In this paper, we postulate that combining the domains of information visualization and music studies paves the ground for a more structured analysis of the design space of music notation, enabling the creation of alternative music notations that are tailored to different users and their tasks. Hence, we discuss the instantiation of a design and visualization pipeline for music notation that follows a structured approach, based on the fundamental concepts of information and data visualization. This enables practitioners and researchers of digital humanities and information visualization, alike, to conceptualize, create, and analyze novel music notation methods. Based on the analysis of relevant stakeholders and their usage of music notation as a mean of communication, we identify a set of relevant features typically encoded in different annotations and encodings, as used by interpreters, performers, and readers of music. We analyze the visual mappings of musical dimensions for varying notation methods to highlight gaps and frequent usages of encodings, visual channels, and Gestalt laws. This detailed analysis leads us to the conclusion that such an under-researched area in information visualization holds the potential for fundamental research. This paper discusses possible research opportunities, open challenges, and arguments that can be pursued in the process of analyzing, improving, or rethinking existing music notation systems and techniques.Comment: 5 pages including references, 3rd Workshop on Visualization for the Digital Humanities, Vis4DH, IEEE Vis 201

    Multi-layer virtual transport network design

    Full text link
    Service overlay networks and network virtualization enable multiple overlay/virtual networks to run over a common physical network infrastructure. They are widely used to overcome deficiencies of the Internet (e.g., resiliency, security and QoS guarantees). However, most overlay/virtual networks are used for routing/tunneling purposes, and not for providing scoped transport flows (involving all mechanisms such as error and flow control, resource allocation, etc.), which can allow better network resource allocation and utilization. Most importantly, the design of overlay/virtual networks is mostly single-layered, and lacks dynamic scope management, which is important for application and network management. In response to these limitations, we propose a multi-layer approach to Virtual Transport Network (VTN) design. This design is a key part of VTN-based network management, where network management is done via managing various VTNs over different scopes (i.e., ranges of operation). Our simulation and experimental results show that our multi-layer approach to VTN design can achieve better performance compared to the traditional single-layer design used for overlay/virtual networks.This work has been partly supported by National Science Foundation awards: CNS-0963974 and CNS-1346688

    Beyond writing: The development of literacy in the Ancient Near East

    Get PDF
    Previous discussions of the origins of writing in the Ancient Near East have not incorporated the neuroscience of literacy, which suggests that when southern Mesopotamians wrote marks on clay in the late-fourth millennium, they inadvertently reorganized their neural activity, a factor in manipulating the writing system to reflect language, yielding literacy through a combination of neurofunctional change and increased script fidelity to language. Such a development appears to take place only with a sufficient demand for writing and reading, such as that posed by a state-level bureaucracy; the use of a material with suitable characteristics; and the production of marks that are conventionalized, handwritten, simple, and non-numerical. From the perspective of Material Engagement Theory, writing and reading represent the interactivity of bodies, materiality, and brains: movements of hands, arms, and eyes; clay and the implements used to mark it and form characters; and vision, motor planning, object recognition, and language. Literacy is a cognitive change that emerges from and depends upon the nexus of interactivity of the components

    RuleCNL: A Controlled Natural Language for Business Rule Specifications

    Full text link
    Business rules represent the primary means by which companies define their business, perform their actions in order to reach their objectives. Thus, they need to be expressed unambiguously to avoid inconsistencies between business stakeholders and formally in order to be machine-processed. A promising solution is the use of a controlled natural language (CNL) which is a good mediator between natural and formal languages. This paper presents RuleCNL, which is a CNL for defining business rules. Its core feature is the alignment of the business rule definition with the business vocabulary which ensures traceability and consistency with the business domain. The RuleCNL tool provides editors that assist end-users in the writing process and automatic mappings into the Semantics of Business Vocabulary and Business Rules (SBVR) standard. SBVR is grounded in first order logic and includes constructs called semantic formulations that structure the meaning of rules.Comment: 12 pages, 7 figures, Fourth Workshop on Controlled Natural Language (CNL 2014) Proceeding
    • …
    corecore