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Numbers are concepts whose content, structure, and organization are influenced by the 
material forms used to represent and manipulate them. Indeed, as argued here, it is the 
inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional 
forms like pebbles and abaci, and written notations) that is the mechanism of numerical 
elaboration. Further, variety in employed forms explains at least part of the synchronic 
and diachronic variability that exists between and within cultural number systems. 
Material forms also impart characteristics like linearity that may persist in the form of 
knowledge and behaviors, ultimately yielding numerical concepts that are irreducible to 
and functionally independent of any particular form. Material devices used to represent 
and manipulate numbers also interact with language in ways that reinforce or contrast 
different aspects of numerical cognition. Not only does this interaction potentially explain 
some of the unique aspects of numerical language, it suggests that the two are 
complementary but ultimately distinct means of accessing numerical intuitions and 
insights. The potential inclusion of materiality in contemporary research in numerical 
cognition is advocated, both for its explanatory power, as well as its influence on 
psychological, behavioral, and linguistic aspects of numerical cognition. 

Keywords: numerical cognition; numerical elaboration; extended cognition; 
Material Engagement Theory; materiality 

 

 Number is a mystery. Alternately deemed metaphysically real (Maddy, 1990) and created 
entirely by the powers of the human mind (Brouwer, 1981), numbers are considered “pure” 
concepts whose “abstract, non-empirical nature” describes but somehow lies beyond the physical 
world itself (Stewart, 2014, p. 8). Insight into the nature of number has been sought in the 
perceptual experience of quantity, something shared by so many species it would be surprising to 
find one that lacked, minimally, the ability to distinguish more from less. Bridging the gulf 
between the perceptual experience of quantity and elaborated forms of number has historically 
been challenging. More recently, number has been argued to be a cultural construct, informed by 
but distinct from shared quantity perception (Núñez, 2017). 
 Núñez’s numerical–quantical distinction is a crucial starting point for understanding what 
numbers are: concepts realized and elaborated through the interaction of psychological 
processes, physiological characteristics, behaviors, and material forms and their attributes (e.g., 
quantity perception; pentadactyl limbs; pairing and handwriting; objects with quantity and 
attributes like persistence and manipulability). The first three span cultures, languages, and time. 
The perceptual experience of quantity appears universal even across the WEIRD/non-WEIRD 
divide (Henrich, Heine, & Norenzayan, 2010). Hands and feet with five digits are an 
unambiguous human physiological norm. Similarly distributed are behaviors like finger-counting 
(Domahs, Kaufmann, & Fischer, 2012) and the use of comparison and combinatorial strategies, 
phenomena whose universality is attested by the somatic basis of numbers, behavioral strategies 
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like one-to-one correspondence, and the use of material forms to represent and manipulate 
numerical concepts (e.g., McCrink, Spelke, Dehaene, & Pica, 2013; Von den Steinen, 1894). 
Despite these commonalities, number systems demonstrate a wide variability in attributes like 
finite number (Greenberg, 1978) and organizing base (Comrie, 2011, 2013), as do their users in 
matters of how the fingers are used in counting (Bender & Beller, 2012) and the degree to which 
numbers are visualized as linear (Núñez, 2011). 
 Wide variability despite psychological, physiological, and behavioral commonalities 
suggests the material domain be examined for its influence on number concepts. Here it is argued 
that number concepts are constructed through material engagement, that their properties reflect 
and originate in different material forms incorporated into the cognitive system for numbers, and 
that numerical variability results primarily from different material forms and combinatorial 
choices used for representing and manipulating numbers. This materially informed variability 
creates conceptual differences between number systems and within number systems over time. 
Discussion is structured as follows: What numbers are as concepts and how they vary 
diachronically and synchronically is examined first, followed by a discussion of how material 
forms influence their content, structure, and organization. The role of particular material forms in 
elaborating numerical concepts is then outlined. Materiality and language are discussed as 
interacting and complementary but likely distinct means of accessing numerical intuitions and 
insights. Finally, a role for materiality in numerical cognition research is advocated. 
 The framework for this analysis is Material Engagement Theory (Malafouris, 2013), 
which considers cognition as extended (i.e., cognition is a system composed of brain, body, and 
materiality) and enactive (cognition is the interactivity between the components of the system). 
An extended/enactive framework for analyzing numerical cognition is appropriate, given that, 
for example, calculating with written numerical notations is an “amalgam of two [inseparable] 
activities, thinking (imagining actions) and scribbling (making ideal marks)” (Rotman, 2000, p. 
39). Fingers and notations are also treated as physical forms with material qualities equivalent to 
those of physical devices like tallies and abaci, albeit possessing unique biological or symbolic 
qualities. This approach necessitates the conceptual boundaries of what is considered material be 
flexible, perhaps to an uncomfortable degree. However, it allows qualities like linearity, 
persistence, and manipulability to be examined across the full range of devices used to represent 
and manipulate numbers, and it provides insight into how fingers and notations fit within longer 
sequences of devices in numerical elaboration. The analysis focuses on material properties, how 
these interact with psychological and behavioral properties (e.g., quantity perception; 
comparison strategies), and how psychological–behavioral–material interactions inform the 
content, structure, and organization of numerical concepts. 
 

1.0 Numbers as Concepts that Vary Diachronically and Synchronically 
 There is a tendency to think that what numbers are today is what numbers are everywhere 
and have always been. That is, a monolithic number is assumed for contemporary Western and 
non-Western peoples, as well as ancient societies and cultures (Rotman, 2000). However, today’s 
Western numbers were elaborated over millennia. This elaboration has, among other things, 
turned one, zero, fractions, and negatives into numbers, and discarded any extensional conditions 
or restrictions on what numbers might apply to (Bender & Beller, 2011; Gouvêa, 2008; Ifrah, 
1981, 2000; Klein, 1992; Rotman, 1987; Russell, 1920; Selin, 2000). Matters as seemingly self-
evident and incontrovertible as 1 + 1 = 2 have been questioned, and ways to prove them 
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formulated (Peano, 1889; Whitehead & Russell, 1927). Western numbers have become entities 
related to each other numerically in ways that are manipulable through operations and functions: 
The number 4 is itself; 2 + 2; 4 × 1; 10 – 6; 20 ÷ 5; √16; –1,365,908 ÷ –341,477; and any and 
simultaneously all of infinitely possible relations. The number 4 and its fellows are elements of a 
system in which the relations between them are as critical to what numbers are and what we can 
do with them as notes are to music and sounds are to language (Plato, 1892). 
 Yet not all numbers are characterized by infinite set of potential relations. The traditional 
numbers of the Oksapmin people of Papua New Guinea are an ordinal sequence counted on the 
body (Lean, 1992; Saxe, 2012). Their set of relations are those implicit to ordinal sequencing 
(e.g., more than, less than) and enable Oksapmin numbers to be incremented and decremented 
using positions on the body. Numbers related ordinally differ from numbers with infinite 
relations in ways that affect how they can be manipulated in performing arithmetical tasks. 
Asked to add and subtract with body-counting, Oksapmin respondents developed innovative 
strategies like double enumeration: Subtracting 7 from 16 involved creating “internal 
correspondences within the body system, using one series of body parts, in this case the thumb 
(1) through forearm (7) (the subtrahend), to keep track of the subtraction from 16 (the minuend)” 
(Saxe, 2012, p. 86). Quantity-wise, Oksapmin numbers are identical to Western numbers, but 
lack the ideas that 7, 9, and 16 are related beyond their ordinality and that operations like 
subtraction can be performed by manipulating those relations.i How such relations and 
operations are explicated materially and ultimately retained in forms like conceptual knowledge 
are discussed below. 
 A number that can be incremented and decremented ordinally involves the use of a 
contiguous material form to represent the sequence. Numbers that have not been collected onto a 
single material form (e.g., fingers, tallies) differ in the linearity of their organization. The 
Mundurukú use fat, arms, and parents—material forms with the requisite (approximate) 
cardinality but physically and conceptually unconnected—to represent two, three, and four 
(Rooryck, Saw, Tonda, & Pica, 2017).ii Their numerical mapping is nonlinear (Dehaene, Izard, 
Spelke, & Pica, 2008). These conditions are plausibly related: Numbers represented by disparate 
material forms might tend not to be organized in the same way influenced by contiguous forms 
like the fingers and tallies (e.g., linear with stable order), nor defined against one another to 
become more discrete. Numbers collected onto nonlinear material forms might also be less 
linearized. Yupno numbers are counted on the body in a sequence that crosses the hands, 
descends to cross the feet, rises to zigzag the head, and descends to zigzag the torso; altogether, 
direction reverses nine times horizontally and three vertically (Wassmann & Dasen, 1994). 
While portions of the sequence are linear (e.g., those crossing the hands), the complete pattern is 
not; this may be the reason Yupno number-users do not demonstrate a linearized mental number 
line (Núñez, Cooperrider, & Wassmann, 2012). As a cultural construct (Núñez, 2011), a mental 
number line is plausibly related to the linearity of the material form(s) used to represent and 
manipulate numbers. This is possibly a priming effect of material forms perceived visuospatially 
(Stoianov, Kramer, Umiltà, & Zorzi, 2008), with uncollected numbers showing a logarithmic 
distribution (Dehaene, 2003) and numbers collected onto a linear device being influenced toward 
linear structure. Increased linearization of the mental number line, in turn, likely facilitates the 
conceptualization of higher quantities in regularized and productive ways. 
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2.0 How Material Forms Inform Concepts Like Numbers 
 Material forms are integral to human cognition in ways that extend beyond their 
historically recognized role in storing mental content.iii This is particularly true of numbers, 
where material forms make the perceptual experience of quantity tangible (Malafouris, 2010) 
and comprensible (Frege, 1953). Material forms anchor and stabilize concepts, and their 
properties act as proxies for conceptual relationships (Hutchins, 2005). Given material form, 
quantity becomes discrete, persists, and can be represented and shared. It acquires content, 
structure, and organization from material properties like linearity and manipulability. These 
qualities increase the likelihood that someone interacting with an artifact will notice similarities 
and patterns in the quantities it instantiates, like each new notch on a tally being (one) more than 
the previous notch. Patterns and similarities, in turn, can be codified and will endure as artifacts, 
knowledge, behaviors, and language. Material forms support the visualization of numerical and 
mathematical concepts, and this pervades the full spectrum of mathematical elaboration 
(Dreyfus, 1991; Kaput, 1987), not only in the forms of gestures, objects, and diagrams but as 
notations and equations as well (Landy, 2010; Landy & Goldstone, 2007), forms whose semantic 
concision preserves numerical, spatial, topological, and geometric relations and facilitates pattern 
accessibility and informational manipulability in ways that paragraphs and discourse cannot 
(Larkin & Simon, 1987; Sfard & Linchevski, 1994). 
 Artifacts provide a medium for collaboration, enabling cultural systems like numbers to 
be realized and refined over generations of effort (given social investment in sustaining the 
requisite behaviors and specialization). Artifacts for counting place the realization of numbers 
within reach of societies comprised of average individuals. This is fortunate, for three reasons. 
Cumulatively, average capabilities and capacities have a regression-to-the-mean effect, so that 
the material forms used to represent and manipulate numbers (e.g., abaci, numerals) remain 
synchronized to average traits while becoming increasingly optimized for eliciting specific 
behavioral and psychological effects. The use of material forms as a common collaborative 
medium means that change in the cognitive system for numbers occurs on the level of the 
community of users, not just the individual. It also means that societies need not await a genius 
to invent such systems whole-cloth, assuming such massive invention were even possible. 
 Artifacts help mediate between what a society knows and an individual learns (Haas, 
1996), interacting with psychological and physical abilities to pattern, habituate, and automate 
knowledge, behaviors, and skills. They enable problems to be decomposed into series of smaller 
tasks, which are more easily solved because they are smaller (Beer, 2003). This reduces a large, 
complex task to a sequence of relatively small and simple tasks (e.g., 98.713 × 1456.2 begins 
with 3 × 2) (Hodder, 2012). Decomposing problems also makes it easier for multiple individuals 
to collaborate in formulating solutions, increasing the potential for realizing novel outcomes (the 
two-heads-are-better-than-one effect writ large). Solutions can be encoded in artifacts, making 
the information available to other individuals and future generations. This accumulates social 
knowledge, distributing cognitive effort over space and time in a way that decreases the effort 
required by any particular generation (Hutchins, 1995). Societies need not reinvent numbers; 
rather, they use and extend the knowledge encoded in forms like abaci and numerals. This opens 
up further opportunities to refine or extend artifacts to new uses, affording additional possibilities 
for change (Damerow, 2010). 
 As more material forms are recruited into the cognitive system for numbers, qualities 
associated with older material forms can persist in the way newer forms are used, not in the 



CONSTRUCTING A CONCEPT OF NUMBER 

physical forms themselves but rather, through mental and behavioral mechanisms like 
knowledge, beliefs, and expectations; behavioral conditioning, patterning, and habituation; the 
predispositional effects of psychological, physiological, and behavioral capacities and 
capabilities; and enculturation effects (Tang et al., 2006). The persistence of material structure in 
mental/behavioral form tends to make numbers, relations, and operations independent of any 
particular material form used to represent and manipulate them; accordingly, numbers become 
irreducible to all the material forms they might take (Overmann, 2017a). That is, while 
conceptual content is related to the materiality that gives it form, there is more to the former than 
what the latter instantiates. Ancient Greek mathematicians used dot matrices to visualize and 
investigate numerical properties (the term square originated in matrices for numbers like 4, 
which consisted of 2 × 2 dots) (Klein, 1992). It was certainly possible for Neolithic 
Mesopotamians to have arranged four clay tokens in a two-by-two square. However, the Greeks 
conceived numbers as entities, while Neolithic Mesopotamians were more likely to have 
conceived four tokens as a collection. Four cones and four dots are nearly identical physically, 
but they represent distinct notions of the number 4. And this is exactly the difficulty: When we 
look at them, we superimpose our number 4 on their notations. The material form’s 
representational intelligibility obscures differences in the conceptualization of number. 
 

3.0 The Role of Particular Material Forms in Elaborating Numerical Concepts 
 The previous sections suggested that numerical content, structure, and organization are 
closely related but not reducible to the material form(s) used for representation and manipulation. 
Here the foundational idea is that the incorporation of material devices is the mechanism of 
numerical elaboration. The analysis is summarized in Table 1. 
 

3.1 Initial Numbers: Perceptual Experience, Quantity Comparisons, Distributed Exemplars 
 The idea that numbers are cardinality shared by sets of objects (Russell, 1910, 1920), along 
with data on emerging number-words (e.g., Closs, 1993; Lean, 1992), suggest that numbers start as 
judgments of sameness and difference in pairs and single objects (e.g., two objects share quantity; 
a single object and a pair differ in quantity). The ability to abstract quantity, a categorical judgment 
of relation, while suppressing superfluous information (e.g., color) appears unique to humans 
(Christie & Gentner, 2007). The ethnographic literature documents the representation of such 
concepts through iconicity (e.g., recreating an exemplar’s quantity with the matching quantity of 
fingers, objects, or syllablesiv) and indexicality (pointing to an exemplar with gesture or words). As 
such exemplars can be distributed throughout an environment (as in the Mundurukú example) 
rather than being collected onto a contiguous material form, the associated number concepts tend 
to be limited to perceptible (i.e., mainly subitizable) quantities that are less discrete than they 
presumably become once collected onto a material form (where proximity and comparison act to 
define them against one another). Number-words are also collected into sequences, which tend not 
to be associated with linearized mental number lines (e.g., the Mundurukú and Yupno examples). 
Neither can number-words be manipulated into the kinds of (visual) patterns that stimulate 
numerical insights (e.g., adding or dividing words does not have the same potential for occasioning 
concepts of accumulation and divisibility as adding or dividing objects). Without further 
incorporation of material forms that can be used to scaffold concepts of higher quantity (e.g., the 
fingers on the hand and five), numbers will remain consistent with the capacity of processes 
influencing the subitizing range: object tracking (Carey, 2009), attention (Burr, Turi, & Anobile, 
2010; Ester, Drew, Klee, Vogel, & Awh, 2012), and memory (Rooryck et al., 2017).



 

Table 1. Analysis of Device Types 
 

Type Concept and transition Capacities and properties New capabilities New limitations 
Distributed 
exemplars 

− Equivalences 
− Emergence of number 

concept 

− Perception of quantity 
− Abstraction of quantity 

similarity or dissimilarity 

− Recreated iconically (fingers, objects, 
syllables) and indexically (gesture, 
words) 

− Unstructured 
− Limited to subitizing 
− Ephemeral 

Fingers − Equivalences 
− Imposition of basic 

structure 

− Neurologically integrated 
with the perception of 
quantity 

− Ready availability 
− Psychological–behavioral–

material bridge 

− Linearity and stable order − Limited capacity 
− Ephemeral 

One 
dimension 
(e.g., tally) 

− Collections related to 
enumerated objects 

− Use of material 
culture 

− Linearity and stable order 
− Accumulation 

− More capacity (higher numbers) 
− Persistent 

− Visually 
indiscriminable 

− Not manipulable 

Two 
dimensions 
(e.g., abacus) 

− Collections related to 
each other, as well as 
to enumerated objects 

− Emergence of 
knowledge-based 
numeration 

− Linearity and stable order 
(imposed) 

− More operations 
− Greater capacity (higher 

numbers) 

− Grouped (more discriminable; 
productive) 

− Manipulable (more explicit relations, 
new operations, more complex 
operations) 

− Loose (need for 
containment) 

− Neither concise nor 
persistent (not 
suitable for 
recording) 

Written 
notations 

− Conceptualized as 
entities (see note) 

− Numbers defined by 
relations 

− Linearity and stable order 
(imposed) 

− Many operations 
− Two-dimensional structure 

(imposed) 
− Even greater capacity 

− Integrity of form 
− Concise and persistent (suitable for 

recording) 
− Handwritten (literacy effects) 
− Ability to record large volumes of data 
− Whole–part relations 
− Greater calculational complexity 
− Manipulation by conceptual relations 

between fixed signs 

− Fixed (not 
manipulable) 

Note: Entities differ from collections in the copula used: two and two are four (beads on an abacus), but two plus two is four (notations) (Gowers, 2008). Table 
adapted from Overmann (2017), Concepts and how they get that way, Phenomenology and the Cognitive Sciences, available online 31 October 2017 through 
Springer Science+Business Media B.V. (https://doi.org/10.1007/s11097-017-9545-8). 
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3.2 Basic Structure: Fingers Influence Linearity and Stable Order 
 The prevalence of anatomical bases (e.g., 10, 5, and 20) in documented number systems 
implies that numbers are often collected onto the hand,v a typical material structure for 
representing the first non-subitizable quantities (five and tenvi). There are several reasons why 
the hand might be used enough to pattern the world’s number systems and make finger-counting 
a behavior that spans significant differences in language, culture, and numerical elaboration: 
First, the angular gyrus, the region of the brain implicated in finger gnosia, finger-counting, and 
the ability to calculate, associates fingers and numbers (Roux, Boetto, Sacko, Chollet, & 
Trémoulet, 2003).vii Finger gnosia predicts numerical performance: The better someone “knows” 
her fingers, the more likely she will perform well on mathematical tasks (Gracia-Bafalluy & 
Noël, 2008; Marinthe, Fayol, & Barrouillet, 2001; Penner-Wilger et al., 2007; Reeve & 
Humberstone, 2011). The mental abacus, where participants move their fingers to manipulate an 
imaginary device, also associates fingers and numbers; interference experiments suggest that 
calculation does not depend on actually moving the fingers but involves motor-movement 
planning (Brooks, Barner, Frank, & Goldin-Meadow, 2014; Frank & Barner, 2012). Second, the 
use of the hand in representing quantity evokes the general tendency to judge the size of body 
and world by comparing them to each other (Mattens, 2013). Finally, the hand, as both actor and 
instrument, bridges the psychological, behavioral, and material dimensions of numeracy 
(Gallagher, 2013; Malafouris, 2013): The hand’s quantity, position, and movement are 
appreciated thorough vision, proprioception, and interoception; it touches and manipulates 
objects being counted, as well as devices representing and manipulating numerical information, 
and of course it can itself act as a device. 
 While it is supported by its neurological underpinnings, finger-counting is learned 
behavior (as is finger-montring, display involving non-sequential finger patterns that facilitate 
biomechanical production and improve visual distinguishability). People blind from birth do not 
count on their fingers (Crollen, Mahe, Collignon, & Seron, 2011), presumably because it is 
behavior learned by watching social others and supported by visual interaction with the material 
structure of the hand and objects being enumerated. While finger-counting patterns vary cross-
culturally (Domahs, Moeller, Huber, Willmes, & Nuerk, 2010; Huylebrouck, 1997), all known 
variants involve choosing some feature to start counting (e.g., an outside finger or finger 
segment) and proceeding sequentially in some fashion to another feature that finishes counting 
(Overmann, 2014). In other words, social groups tend to do the same thing—count with their 
fingers—in different ways. This suggests that patterns involve but are not determined by 
topographic sensorimotor structure (Harvey, Klein, Petridou, & Dumoulin, 2013); they appear to 
be mediated by material features of the hand and cultural exposure. Patterns are repeated enough 
to become habitual; the reasons for this become apparent when alternatives are considered: 
Using the fingers randomly would be less consistent and reliable, while using the fingers non-
sequentially would be biomechanically awkward and less distinguishable visually. By 
comparison, starting with the same point, proceeding in the same fashion, and ending at the same 
point reduce demands on memory and attention, facilitate biomechanical production, and 
improve informational consistency and reliability, matters improved further by behavioral 
automaticity. 
 The hand’s role in production is related to its natural grouping into fives and tens 
(twenties with toes). Once fingers and perhaps toes have been used on one person, the next 
natural grouping is repeating the sequence on the same person or using the fingers/toes of 
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another person. Natural grouping tends to limit the capacity of a single hand to five. Fingers also 
do not specify what they count, information that must be maintained elsewhere (e.g., typically, in 
memory or context). The hand is also perishable as a representational device, as it is needed for 
other purposes in fairly short order. These characteristics not only inform the basic numerical 
structure and organization, they also motivate the incorporation of other material forms. 
 

3.3 Transition to Material Culture: Devices with a Single Dimension 
 New material forms are selected because of capabilities and properties they share with 
previous forms, and because they address their limitations. Fingers accumulate and represent, but 
typically not to quantities that necessitate grouping; they impose linearity and stable order, and 
they lack capacity and persistence. Devices that follow fingers include tallies, knotted strings, 
stringed beads, torn leaves, marks on the ground, body-counting, and pebbles. Notably, these 
devices supplement (not supplant) finger-counting, and they do not necessarily entail the 
availability of lexical names for all the quantities they represent (i.e., as devices like rosaries 
need not involve lexical counting). As a group, these devices support accumulation, influence or 
reinforce linearity and stable order, and provide capacity and persistence. They share the 
potential for scaffolding higher quantities, and with the increased number of exemplars, more 
intra- and inter-exponential relations (Beller & Bender, 2011; also see Figure 1). However, they 
also inject new limitations (e.g., not being manipulable). Fixed forms like tally marks have less 
capacity for removal (subtraction) and grouping (multiplication and division) than do 
manipulable forms like pebbles. Given the potential of these devices for accumulation (all) and 
removal/grouping (some), it cannot be coincidental that addition is generally the first 
arithmetical operation to emerge across number systems.viii They also represent the involvement 
of material forms beyond the body, most frequently as physical devices used communally, ix 
facilitating the accumulation and distribution of numerical knowledge across individuals and 
generations (Hutchins, 1995). 
 These devices influence numbers toward linearity and stable order for reasons similar to 
those for fingers: Use of the same sequence reduces demands on memory and attention and 
improves informational consistency and reliability. Knowledge and habit also predispose people 
toward certain expectations and behaviors in using (older) material forms, limiting the range of 
how (newer) forms might be used. Numbers that have acquired linearity and stable order from 
finger-counting are thus more likely to be used in similar fashion, even on forms whose structure 
is not inherently linear or ordered (e.g., pebbles). These devices have greater capacity and 
persistence than fingers, qualities that vary with the size and durability of the physical substance. 
Larger surfaces accumulate more marks than smaller ones. Tallies made of bone last longer than 
ones made of wood; devices made of plant materials last longer than marks on the ground or 
body, which are themselves more permanent than finger-counting and gestures. 
 These devices are also characterized by intra-exponential relations (Figure 1). The 
potential for relations begins with two or more elements (this condition arguably obtains with 
distributed exemplars and fingers, but is intensified by the proximity, contiguity, and capacity 
that material forms provide). Devices that accumulate and represent have the potential to help 
explicate the relations implicit to accumulation (e.g., more than) and comparison (same as). 
Devices with manipulability (e.g., pebbles) may support additional relations (e.g., regrouping 
four pebbles as two groups may explicate relations between two and four). Plus one can emerge 
from behaviors like making notches or stringing beads, as the embodied act of making another 



CONSTRUCTING A CONCEPT OF NUMBER 

notch can give rise to a concept of one more. However, devices like tallies and knotted strings 
lack natural grouping like those of the fingers, so they tend not to influence productive grouping 
(perhaps why anatomic grouping tends to persist); as a result, their inter-exponential relations 
tend to be shallow. The combination of some intra-exponential and few inter-exponential 
relations makes the devices one-dimensional. 
 

 
Figure 1. Exponential Dimensions of Counting Devices. Dimensionality is accumulation (a single, intra-exponential 
dimension) and grouping (a second, inter-exponential dimension). (Left) For material forms that accumulate but do 
not group, potential relations between numbers are those of an ordinal counting sequence (shown by the dashed line): 
more than, less than, same as, not the same as, between, and possibly one more. These intra-exponential relations are 
implicitly quantificational but not necessarily explicitly numerical (e.g., as a rosary can accumulate without number-
words). Total value is achieved by accumulating along the single dimension. (Right) With material forms that also 
group, potential relations between numbers are those of the intra-exponential dimension (accumulation along the 
horizontal axis, shown by dashed lines) and those implicit to grouping (inter-exponential; accumulation along the 
vertical axis, shown by solid lines). Total value is achieved by accumulating along both dimensions. Western numbers 
have both dimensions (e.g., the numbers 0 through 9 and exponents 100, 101, 102, etc.); Oksapmin numbers have the 
first (but perhaps not the second, depending on how one views repetitions of the cycle); and Mundurukú numbers 
have neither. Figures based on Chrisomalis (2010). 
 

 One-dimensional devices also interact with quantity perception to impose a new 
limitation: Beyond the subitizing range, the quantity of elements is less visually discriminable. 
This necessitates that total value be obtained by recounting (which entails the availability of a 
lexical counting sequence) or comparison with an external standard (which entails the standard’s 
availability), neither of which is particularly efficient. Visual indiscriminability can be overcome 
by grouping elements (e.g., on a fixed device like a tally, this can be accomplished by differences 
in spacing, length, or orientation during notch production). However, such conventions do not 
necessarily solve the need for manipulability (which affects devices like tallies more than 
knotted strings, as knots can be untied or cut off) or physical integrity (which affects loose 
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objects like pebbles). These considerations may, under social needs for increased enumeration, 
motivate the incorporation of new forms with greater manipulability and physical integrity. 
 

3.4 Knowledge-Based Numeration: Devices with Intra- and Inter-Exponential 
Representation 
 Devices with grouping and manipulability potentialize the explication of inter-
exponential relations, as well as operations beyond accumulation. They include the 
Mesopotamian clay tokens, the abacus, and notations (the last is treated in the next section). Clay 
tokens were used for accounting in Mesopotamia possibly as early as the tenth millennium BCE 
(Moore, 2000) and as late as the first millennium BC (MacGinnis, Monroe, Wicke, & Matney, 
2014), but are particularly associated with the Neolithic (8300–4500 BCE) (Schmandt-Besserat, 
1992). By the mid-to-late fourth millennium BCE, tokens were grouped (or “bundled”): One 
token of a higher unit was equivalent to between two and ten lower-unit tokens. Bundling 
relations were based on things like fingers (10 cycles) and metrology (as four quarts make a 
gallon today). They were encoded as conventions of token shape and size: In the system used to 
count most discrete objects, ten small cones were equivalent to one small sphere, six small 
spheres to one large cone (Nissen, Damerow, & Englund, 1993). Different combinations of 
shape–size conventions also designated the enumerated commodity (e.g., grain, fish), solving 
another problem, the need to represent what was being counted in the absence of writing. 
 Analysis of mathematical texts from later periods suggests that tokens may have been 
used with counting boards, making them an abacus-like device (Høyrup, 2000). Counting boards 
are not attested archaeologically (possibly because organic materials preserve poorly in the 
region; Coinman, 1996), nor are they depicted in reliefs or described textually. However, they 
are suggested by archaic and later cuneiform signs for words like count, number, and chief 
administrator of the temple household (i.e., someone who counted and used numbers), which 
vaguely resembled counting boards (Ifrah, 2000). Even without much formal organization of the 
surfaces on which they were placed, tokens were likely separated by quantity and ordered by 
magnitude.x Comingling tokens without regard to value would have degraded the intelligibility 
and accessibility of the represented information. Alternatively, gradation by increasing 
magnitude would have facilitated the location and exchange of higher and lower units in 
bundling/debundling. Further, calculations supported state-level bureaucratic management, 
suggesting social pressure to achieve reasonable levels of efficiency and effectiveness. Tokens 
likely acquired linearity and stable order from knowledge and habits acquired with earlier 
technologies (possible tallies are attested archaeologically [Coinman, 1996; Copeland & Hours, 
1977; Davis, 1974; Reese, 2002; Tixier, 1974], finger-counting by lexical numbers and 
numerical organization [Edzard, 1980; Englund, 2004; Huehnergard & Woods, 2008]). In 
addition, when tokens began to be impressed in clay in the mid-to-late fourth millennium BCE, 
impressions were organized with linearity and stable order; this organization was not inherent in 
the physical form of either tokens or impressions, suggesting it was already in place when these 
forms were incorporated. Organization by linearity and stable order would ultimately facilitate 
the development of place value by the late third millennium (Robson, 2007). 
 Whether or not Mesopotamian peoples can be credited with originating the abacus (Ifrah, 
1981), that device spread throughout much of the ancient world; it was still used in Europe as 
late as the Middle Ages and remains in some use throughout the world (Donlan & Wu, 2017; 
Reynolds, 1993; Stone, 1972). Instead of representing inter-exponential relations with 
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conventions of shapes and sizes, as the Mesopotamian tokens had, abaci calculation elements 
generally have the same shape and size, with total (intra- and inter-exponential) value indicated 
by place within the full array. Despite this difference, abaci and tokens share the same limitations 
of physical form. First, their elements need containment. In Mesopotamia, this problem was 
addressed in the mid-to-late fourth millennium BCE by sealing tokens inside clay envelopes, an 
innovation that meant breaking the containers to regain access (this would be solved by 
impressing the outsides of envelopes with tokens before placing them inside, a development 
associated with the invention of writing). For abaci, elements in later designs were contained in 
some fashion (e.g., as the beads of the Roman abacus slid along grooves). Second, both were 
limited in the simultaneity and concision of the information they represented, making neither 
device suitable for storage. Represented information was relatively perishable and easily 
disarranged, and neither transportable nor easily recreated. These limitations would motivate the 
incorporation of a new material form: notations. 
 Before delving into notations, the impact of devices with grouping and manipulability on 
numbers and brains should be mentioned. As tokens were incorporated, numbers increased to an 
amazing extent: In Mesopotamia, tokens representing 600 have been dated to 8500–3500 BCE, 
and numerical signs for 3600 and 216,000 are attested in the third millennium BCE (Cuneiform 
Digital Library, 2015, Pennsylvania Sumerian Dictionary Online, 2015). The trend toward higher 
numbers is consistent with managing extensive agriculture, industrialized construction, and 
massive workforces. Grouping is productive, yielding higher numbers that increase potential 
intra- and inter-exponential relations and operations, concepts whose explication is facilitated by 
the use of manipulable forms. This meant that ancient number systems involved more facts than 
ever before: numbers, relations between numbers, operations for calculating, algorithms or 
sequences of calculations. Mesopotamian numeracy was transitioning to knowledge-based 
calculation, increasingly using mental knowledge rather than physical movements in calculation 
procedures. Arguably, this would involve brain regions like the angular gyrus implicated in 
recalling arithmetic facts (Grabner, Ansari, et al., 2009; Grabner, Ischebeck, et al., 2009). 
Simply, recalling arithmetic facts plausibly depends on such facts being available in the first 
place, and the new technologies were making them available to an unprecedented extent. This 
would be intensified even further by the notations that would follow. 
 

3.5 Numbers as Entities: Handwritten Notationsxi 
 Like their predecessors, written notations developed from capabilities and properties they 
shared with precursor technologies; responded to their limitations; and added new capabilities 
and limitations to the cognitive system for numbers. The properties shared by notations and 
material forms like tokens and tallies are underappreciated, perhaps because their differences 
seem more compelling. However, the importance of their similarities and differences is brought 
into focus when all these forms are compared for their material qualities, associated behaviors, 
and the influence of both on psychological processing. 
 Numerical notations and other material forms (abaci, tallies, fingers, etc.) all represent 
numerical information, and they do so in a manner distinct from that of written non-numerical 
language. That is, numerical notations are a non-glottographic (or semasiographic) notational 
system, like music (Gelb, 1980; Powell, 2009). The distinction between glottographic and non-
glottographic writing (e.g., 7 vs. seven)xii is crucial: Both convey semantic information, but only 
glottographic writing identifies phonetic values (Hyman, 2006; Sampson, 1999). The lack of 
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phonetic specification means that non-glottographic writing “can be read with similar facility by 
speakers of different languages, or ... its reading has the character of paraphrase (i.e., two 
different ‘readings’ are likely to employ significant differences in word choice or syntactic 
construction)” (Hyman, 2006, p. 234). For example, 1 + 1 = 2 is one plus one is two, one added 
to one make two, two is the sum of one plus one, and other such variants in English, with 
analogous counterparts in other languages. This makes numerical notations translinguistic and 
decipherable in otherwise untranslatable or unknown languages and scripts (e.g., Linear A; 
proto-Elamite). The lack of phonetic specification implies that the phonetic value of number-
words is not critical to understanding the material representation of numerical values, even if 
associated thoughts are experienced primarily in language. 
 Notations and other material forms are also similar in distributing numerical information 
over multiple elements. For example, the meaning of 745 is distributed over three numerals (7, 4, 
and 5), each of which assumes a place value understood mentally (as 7 × 100 plus 4 × 10 plus 
5 × 1) rather than explicitly represented. There are numeral systems where the distribution is less 
compact: in Roman numerals, the number has twice as many elements: DCCXLV (one 500, two 
100s, 10 before 50, and five). Ten Mesopotamian tokens would be required: one large cone 
marked with a small sphere (one 600), two large unmarked cones (two 60s), two small spheres 
(two 10s), and five small cones (five units). The fingers of 75 individuals would be needed. 
While intra- and inter-exponential representations differ among these forms, as does their 
physical substance, material qualities, and concision, they are similar in distributing numerical 
information over multiple semantically meaningful elements. 
 Numerical notations can also be distinguished from non-numerical writing by the fact 
that the former, like physical devices, are unambiguous in the information they represent 
(discussed below). In contrast, non-numerical writing requires phonetic specification to identify 
things like word choice, verbal tense, and noun case; without such specification, it is relatively 
ambiguous (Overmann, 2016a). Such qualities give numerical notations a contiguity with other 
physical forms that has no counterpart in non-numerical writing. For example, XXX (Roman 
numerals) and ●●● (Mesopotamian tokens) are semantically meaningful elements whose 
combinations represent the number 30; by comparison, caput (Latin) and a drawing of a head do 
not necessarily both specify the word head. In fact, in archaic Mesopotamian non-numerical 
writing, a head could mean head, person, or capital (a non-exhaustive list of potential meanings; 
it is precisely this ambiguity that motivates writing systems toward glottographic specificity).  
 These differences evoke the semiotic distinction between material and linguistic signs. 
Where material forms persist, spoken words are ephemeral (Malafouris, 2013). The most 
important difference is in how they mean. Material forms instantiate quantity: Three fingers, 
three cones, and III are three; they may be ambiguous regarding what they count, but they are 
unambiguous regarding their quantity. In contrast, language, spoken or written, symbolizes 
meaning: Associations between phonetic values and semantic meanings are conventional. 
Instantiation may explain why written numbers are, like other material representations of 
number, non-glottographic and unambiguous. It may explain why numerical notations are similar 
across significant linguistic and temporal differences: One, two, and three vertical or horizontal 
strokes are signs for subitizable numbers in many numerical notation systems (Chrisomalis, 
2010). Instantiation may also inform conservation of form in numerical signs: Today’s Hindu–
Arabic 1, 2, and 3 are still essentially the same straight lines used since the beginning of writing 
(Branner, 2006; Chrisomalis, 2010; Ifrah, 2000; Martzloff, 1997; Nissen, 1986; Tompack, 1978), 
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despite their transmission through thousands of years and adoption by multiple cultures and 
languages. The same process yielded radical alteration in non-numerical writing, as scripts were 
adapted to different lexicons and phonemic inventories. This difference in semiotic function 
between material and linguistic signs means that numerals remain inherently material, despite 
being written, despite their written form becoming less depictive over time, and despite acquiring 
attributes that are mentally understood or behavioral rather than explicitly represented. 
 While these similarities are profound, if underappreciated, the differences are hardly 
trivial. First, whereas abaci and tokens are manipulable, notations are fixed. This means that 
notations are not a form that permits the explication of relations and operations. They are, 
however, a form that not only represents but whose concision facilitates the representation of 
large volumes of information (e.g., numerical relations). In Mesopotamia, numerical relations 
were explicated (most likely with tokens, whose parts could now also be compared to wholes 
represented notationally) and recorded in tables of relational data (e.g., tables of multiplication 
and reciprocals), which scribes reproduced and thus learned as part of their training (Proust, 
Donbaz, Dönmez, & Cavigneaux, 2007). This would have increased the proportion of knowledge 
in calculating (as compared to physical manipulations). Most importantly, notations are also 
handwritten, which entails a vastly different interaction between the psychological, 
physiological, behavioral, and material dimensions of numerical cognition than that involved in 
manipulating abaci beads or tokens. Simply, handwriting meant the fusiform gyrus becoming 
trained to recognize written objects and interact with Wernicke’s, Broca’s, and Exner’s areas to 
associate number-signs with number-words and handwriting movements (Dehaene et al., 2010; 
Dehaene & Cohen, 2007, 2011; Nakamura et al., 2012; Overmann, 2016a). 
 While a sign like 7 in cuneiform (𒐌𒐌) would still consist of seven elements, it would no 
longer be conceptualized as a collection, as seven small cones were, but would instead be 
conceived as an entity in its own right. Moreover, its concision yielded a historically 
unprecedented ability to record, learn, and apply large volumes of relational data. As a result, 
number-entities would become defined by their relations to one another. And their semantic 
meanings would not change if the signs symbolized rather than instantiated (i.e., as 7 symbolizes, 
𒐌𒐌 instantiates; the former simplifies producing and apprehending multi-element signs), bundled 
(as the Roman V is 5 and cuneiform 𒌋𒌋 is 10), or valued by place (as 7 remains itself when 
multiplied by 10 or 100). This development would ultimately yield a concept of number fairly 
similar to today’s Western notion (which is reasonable, given that Mesopotamian numbers are 
one of its deepest roots). Mesopotamian numbers still differed from Western ones, as their 
grouping was based on the 1:10 and 1:6 pattern that characterized the token-based system for 
counting most discrete objects (Rudman, 2007). Zero was at most a blank space that would, 
much later, inspire a sign for a blank space before ultimately becoming a number itself (Rotman, 
1987). One was probably not a number, since even for the later Greeks it was the unity, a 
metaphysical notion that would not be revisited in the Western tradition until the Renaissance 
(Klein, 1992). And the operations that could be used with Mesopotamian numbers differed too 
(discussed below). 
 Writing had another crucial effect: It provided the ability to write non-numerical 
language, which was used to describe arithmetical operations. This need not have happened, as 
writing for numbers and writing for non-numerical language are dissociable (i.e., while many 
systems develop both, some systems develop only one or the other) (Chrisomalis, 2010). 
Interestingly, in a system of writing that used signs for entire words and phrases, Mesopotamian 
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arithmetical operations were conveyed not by symbols comparable to those of modern arithmetic 
(e.g., +, –) but by non-numerical descriptions of actions. Further, these narratives did not 
describe the same unified concepts that would ultimately emerge in the Western mathematical 
tradition. Mesopotamians had two types of addition and two subtractions (differentiated by 
whether or not the inputs could still be distinguished once the calculation was performed), 
several types of multiplication (one of which, multiplication by reciprocal, was analogous to 
division), and two bisections (differentiated by whether the half produced was “natural” or not) 
(Høyrup, 2002). The involvement of writing for non-numerical language and the lack of unified 
arithmetic concepts suggest two things. First, it cannot be coincidental that the ancient societies 
that invented writing—Mesopotamia, Egypt, China, and Mesoamerica—also developed 
mathematics. Not only was there similar pressure to manage social complexity through 
bureaucratic means, the ability to describe in writing supported the explication of arithmetical 
operations and development of more complex calculations (i.e., ones carried out to further 
places) and algorithms (longer sequences of operations). Second, it suggests that explicit 
operations, like initial realizations of accumulation, removing, and grouping, depend on the 
material forms used. This makes operations culturally constructed through interactions with 
material forms, just as numbers and relations are. 
 

3.6 Beyond Numbers: Semasiographic Notations for Operations 
 The Western mathematical tradition eventually realized not just unified concepts for 
addition and subtraction but non-glottographic notations for them (e.g., + instead of plus, add, 
you put together, or combine) (Neal, 2002; Schulte, 2015). Non-glottographic notations for 
numbers and operations give mathematical equations a conceptual and physical manipulability 
(Landy, 2010; Landy & Goldstone, 2007), concision, and ability to represent relations of 
spatiality and transformational invariancy (Larkin & Simon, 1987; Sfard & Linchevski, 1994) 
with little counterpart in written non-numerical language (where the closest parallels may be 
things like crossword puzzles and anagrams). In Mesopotamia, non-glottographic signs for 
numbers meant that the phonetic values of Sumerian number-words were unrecorded for more 
than a thousand years after the availability of writing (and only then to help Semitic-speaking 
scribes learn the Sumerian number-words; Edzard, 1980; Pettinato, 1981). In the history of 
mathematics, the lack of non-glottographic signs and the concomitant necessity to use 
glottographic language “slowed” conceptual progress in algebra “for centuries,” a circumstance 
that directly links conceptual development with representation that is more material and less 
linguistic (Sfard, 1991, p. 29). In contemporary mathematics, the non-glottographic sufficiency 
of both numbers and symbols has led some to question the role of language in mathematics 
altogether, inspiring movement to incorporate diagrams and pictures as a logical continuation of 
the historic transition from (glottographic) words to (non-glottographic) signs (Silver, 2017). 
(Admittedly, mathematicians have also proposed excluding numbers, on the premise that 
ontological determinations of what numbers are need not detain investigations of their structural 
relations and properties; Hellman, 1989.) Given the contiguity between numerical signs and 
other material representational forms, this suggests that the interaction between perceptual 
modalities (e.g., quantity, spatiality) and material forms may comprise a distinct pathway to 
numerical intuitions and insights, one that interacts with and complements but is separate from 
the access provided by language. 
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4.0 Materiality and Language: Interacting and Complementary but Likely Distinct 
 Both materiality and language are critical to numeracy, the ability to reason with 
numbers. In original contexts, materiality is the first, if not primary, means of access, since 
numbers start as the perceptual experience of quantity instantiated by material forms; made 
tangible through the use of material forms; and expressed through iconic and indexical use of 
material forms and language. Numbers depend on materiality to an extent that language does not: 
A society can have an oral tradition for millennia, but no society known has numbers without 
one or more material forms to represent them (broadly construed to include everything from 
distributed objects, fingers, devices, and notations). If language is a secondary, “slow and 
hesitant” route for numerical elaboration (Sfard & Linchevski, 1994, p. 198), it undoubtedly 
enables numbers to be communicated, developmentally acquired, learned, and applied in social 
contexts in ways far beyond those possible with only non-linguistic means (Barner, 2012; 
Ferrari, 2003; Rittle-Johnson, Siegler, & Alibali, 2003). If it is “almost universally accepted ... 
that at best language has only a secondary function with regards to the development of 
mathematical concepts, [and] mathematical and arithmetical thinking in particular is based on the 
active interaction with concrete [i.e., physical] objects... [nonetheless] there can be no doubt that 
the verbal communication of mathematical information becomes more and more important as the 
learning process progresses” (Damerow, 2010, pp. 150–151). 
 As means of accessing numerical cognition, materiality and language can be 
distinguished in terms of their cross-cultural prevalence, ease of acquisition, severability, and 
universal characteristics. While all human societies have language, not all societies have 
numbers (Everett, 2005), something that can reasonably be attributed to differences in social 
needs for numbers (Epps, Bowerin, Hansen, Hill, & Zentz, 2012), as well as behaviors with 
material forms. Acquisitional difficulty is the difference between learning Roman numerals and 
Latin, severability the fact that the latter is not a factor in the former, and vice versa. The 
universals of numerical language differs from those of non-numerical language, and spoken 
numbers differ from written ones (Chrisomalis, 2010; Comrie, 1989; Greenberg, 1978). 
Numeracy also involves specific neural reorganizations gained through enculturation and 
practice, similar to learning to read and write (Carreiras et al., 2009; de Cruz, 2012; Tang et al., 
2006; Zamarian, Ischebeck, & Delazer, 2009).  
 As cognitive processes, numeracy and language demonstrate double-dissociation 
(Amalric & Dehaene, 2016; Ardila & Rosselli, 2002; Brannon, 2005; Carreiras, Monahan, 
Lizarazu, Duñabeitia, & Molinaro, 2015; Hannagan, Amedi, Cohen, Dehaene-Lambertz, & 
Dehaene, 2015; Monti, Parsons, & Osherson, 2012; Park, Chiang, Brannon, & Woldorff, 2014; 
Varley, Klessinger, Romanowski, & Siegal, 2005), establishing independence of form and 
function. The neurological basis for double-dissociation has been well established. Language 
preferentially involves Broca’s and Wernicke’s areas in the frontal and temporal lobes, while 
numeracy, numbers, and numerosity are associated with parietal activity (Amalric & Dehaene, 
2016; Fias, Lammertyn, Caessens, & Orban, 2007; Orban et al., 2006), finger gnosia (Penner-
Wilger et al., 2007; Reeve & Humberstone, 2011), and motor-movement planning (Brooks, 
Barner, Frank, & Goldin-Meadow, 2014; Frank & Barner, 2012). Non-numerical language also 
involves, as numerical words do not, the storage of about 10,000 specifiable words in long-term 
memory (the mental lexicon), and language and numbers link to different higher-order cognitive 
domains (Carreiras et al., 2015). Brains enculturated in different cultural systems for numbers 
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appear to process identical material stimuli differently, something that cannot be explained fully 
by language (Tang et al., 2006). 
 In today’s writing systems, there are significant overlaps between numerical and non-
numerical signs: Both involve training effects in the brain (though subtle differences have also 
been documented; Grotheer, Ambrus, & Kovács, 2016), and written forms are to some extent 
substitutable (Carreiras, Duñabeitia, & Perea, 2007). The extent to which such effects are related 
to writing system qualities (e.g., significant elaboration, alphabetic sign–sound mapping, 
symbolic numerals) is unknown. If they have become more similar over time, in original writing 
systems, differences between the two are clear: Numerical representations instantiate quantity, 
are unambiguous regarding the quantity they mean, and remain semantically meaningful without 
phonetic specification, qualities that conserve written forms across time and transmission; non-
numerical representations symbolize meaning, are relatively ambiguous in what word they 
intend, and reduce ambiguity by incorporating phonetic specification, qualities that radically 
change written forms and sign–sound mapping. 
 At higher-order levels of syntactic representation, numbers and language share 
fundamental similarities (e.g., both use fixed sets of rules that govern whether statements are 
well formed or transfer properties like truth between statements). These similarities have been 
used to argue that numbers represent a subset of language (“the human number faculty [is] 
essentially an ‘abstraction’ from human language, preserving the mechanism of discrete infinity 
and eliminating the other special features of language”; Chomsky, 1988, p. 169) or that both are 
informed by an underlying computational capacity responsible for properties like generativity 
(Chomsky, 2004). For language, it is claimed that discrete infinity, or at least its core 
computational capacity (merge or recursion), arose once, fully formed (Bolhuis, Tattersall, 
Chomsky, & Berwick, 2014; Hauser, Chomsky, & Fitch, 2002). This is difficult to reconcile with 
the observation that the particulates (i.e., finite, discrete units) involved in numerical generativity 
(e.g., numbers, relations, and operations) have emerged independently and become elaborated 
slowly through cultural acretion. Further, unlike those of language (Studdert-Kennedy, 2005), 
numerical particulates are meaningful in and of themselves. Cross-cultural tendencies for 
cognitive structure also manifest in domains other than numbers and language (e.g., reflexivity, 
symmetry, and transitivity characterize relations in kinship systems; Gilsdorf, 2012). This makes 
it unclear whether and to what extent cognitive structure is a single capability that fundamentally 
underlies and informs multiple domains (Chomsky, 2004), one or more domain-specific 
capabilities that influence other domains (Chomsky, 1988), properties that emerge through 
interaction between domains (Bybee, 2010), or some complex combination of all these 
possibilities. 
 For the purposes of the present discussion, it suffices to observe that language may be 
one of two highly interdependent means of accessing numerical cognition, and that it 
complements, explicates, and expresses insights gained through manuovisual interactions with 
materiality (Clark, 2006; Roepstorff, 2008). Interact with materiality enough, and it will occasion 
opportunities to name things and talk about them (i.e., lexical names for subitizable quantities); 
interact even more, and those names may become grammaticalized (i.e., grammatical number); 
interact further with higher (non-subitizable) quantities, and those names will become lexicalized 
(i.e., as rules for naming higher quantities). Simply, grammaticalization and lexicalization 
presuppose frequency of use (Bybee, 2010; Cacoullos & Walker, 2011; Heine, 2003) that in 
numbers reflects specific social conditions (e.g., requirements for numbers to manage affairs 
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within and between groups that increase with demographic factors like group size and contact). 
Grammaticalization and lexicalization not only imply something about the social need for 
numbers, they also show the influence of materiality on language (e.g., the association of lexical 
rules with the procedural system implies the involvement of motor movements [Ullman et al., 
1997]; productive cycles of ten, five, and twenty suggest the use of the hands and feet as material 
forms for counting), making language a potential source of evidence for the material history of 
numbers. 
 Two cases will be used to illustrate how materiality and language interact in the cognitive 
system for numbers. The first involves Oksapmin numbers, where both material form (the body) 
and language are ordinal sequences (Saxe, 2012) that share qualities like sequential order and not 
being particularly manipulable (Overmann, 2016b). For the material form, body positions cannot 
be rearranged the way a group of pebbles can, while for language, words lack the cardinality and 
ordinality that materiality has. Words also lack the magnitude that yields numerical order (it is of 
course possible to count words or order them by increasing length, but this is not, in general, how 
they are most meaningful). Non-contrastive forms are reinforcing and predicted to yield a system 
characterized by stability over time, especially for small, relatively isolated groups (i.e., who are 
less likely to develop numbers in response to internal needs or encounter external number 
systems). The second case is that of Chinese and English numbers. In Chinese, both spoken and 
written numbers are perfectly regular and identical in their structure. English arguably uses the 
same numerals, which are also regular and decimally structured. However, English spoken 
numbers are atomic from one to ten, irregular from eleven to nineteen, and fairly regular above 
twenty. Chinese spoken numbers reinforce the linear structure of the written numerals, a quality 
thought to at least partly explain why Chinese speakers perform better at mathematical tasks than 
English speakers (Cantlon & Brannon, 2007). The latter example shows that contrasting material 
and linguistic forms is not invariably beneficial (Overmann, 2017b). 
 Language and materiality influence one another in other ways. Number-words may 
reinforce material linearity. Linguistic signs are temporally ordered as a function of producing 
the sounds of speech. Temporally sequential number-words might reinforce the linear ordering 
influenced by material forms like fingers and tallies. Numerical language, in turn, is influenced 
by the material forms used for counting. Lexical forms for small (subitizable) numbers emerge 
first across number systems, giving them the greatest potential for irregularity: When small 
numbers are named, the number system has little material or linguistic structuring; they are the 
most frequently used number-words (Davies & Gardner, 2013; Kilgarriff et al., 2014; Xiao & 
McEnery, 2004), subjecting them to memorization effectsxiii; and they have the greatest 
longevity, increasing their exposure to processes of linguistic change. In comparison, higher 
numbers emerge through the use of material forms, increasing the likelihood their names will be 
influenced by material structure (e.g., as decimalization reflects finger-counting). The emergence 
of a numerical lexicon “merely reflects the development of more efficient, extralinguistic 
techniques” (Damerow, 2010, p. 212). Thus, as lexical rules for number-words incorporate 
material influence on production, their cross-linguistic variability reflects the use of different 
material forms and combinatorial choices across social groups. 
 

5.0 Potential Implications for Numerical Research 
 In answering the question “What does it take to move from quantical cognition to 
numerical cognition, and how do these two forms relate to each other?” (Núñez, 2017, p. 421), 
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materiality should be considered. The material forms used to represent and manipulate numbers 
inform their content, organization, structure, and elaboration. This role may help explain, at least 
in part, the historical (and prehistorical) development of counting sequences and more elaborated 
forms such as arithmetic and mathematics from the perceptual experience of quantity. Material 
forms also have the potential to influence psychological, behavioral, and linguistic aspects of 
numerical cognition, a role that currently appears underappreciated and underexplored. 
Recognizing materiality as a part of the cognitive system for numbers has the potential to 
illuminate conceptual differences between cultural number constructs. In turn, cross-cultural 
numerical differences related to material form(s) may challenge aspects of current numerical 
research. This article concludes with the suggestion that materiality has a role in numerical 
cognition research, as illustrated by the questions that follow: 

• When psychological reactions are compared in participants enculturated into differently 
elaborated number systems (e.g., systems with highly elaborated relations and operations 
distributed over multiple material forms compared to systems without relations, 
operations, or material distribution), does a monolithic notion of number suffice, or do 
elaborational differences have the potential to affect the constructs being measured? Are 
the effects of elaborational differences, if any, symmetrical? They might be predicted to 
affect participants enculturated into highly elaborated number systems differently than 
those enculturated into less elaborated number systems: The former may involve subsets 
of established concepts (i.e., more intuitive in having a conceptual basis), the latter 
concepts that are unknown or which significantly differ (i.e., having no or little 
conceptual basis). 

• In numerical representation, some information is represented materially (explicit), while 
other knowledge is added mentally or behaviorally (implicit); the proportion of explicit 
representation and implicit knowledge varies between number systems (Zhang & 
Norman, 1995). How do proportionality differences affect matters like acquisitional ease 
and mathematical task performance? What changes when numerical representations are 
viewed, instead of being touched and physically manipulated? 

• Beginning with the mathematicians of the ancient world, those who have taken 
mathematics to new heights have worked with number systems that have already become 
fairly elaborated. Today, even the simplest “mental” calculation draws upon embodied 
resources and the material prehistory of number: neural circuitry for motor-movement 
planning, concepts of numbers as entities with myriad relations, unified operational 
concepts, multiple representational forms. What happens to numerical prodigy and 
creative insight when a number system is relatively unelaborated? Are they underlying 
factors in number’s inception and early elaboration, new potentials that become 
actualized through exposure to more elaborated forms, or abilities that develop in 
conjunction with the co-evolution of cognition and culture?  

• What are the implications of qualities shared between numerical notations (signs for 
numerals and operations) and other material forms used to represent quantity: non-
glottographic, instantiation, unambiguous? 

• The influence of (external) material forms on numerical language in particular and 
numerical cognition more generally may have implications for the structural relations 
between these domains. Simply, to what extent can numbers be viewed as concepts 
originating in language, (1) when materiality demonstrably influences their content, 
structure, and organization; whether and how they are realized, explicated, visualized, 
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manipulated, and elaborated; and aspects of number-words like productive grouping; and 
(2) when material representations of number can be understood without language (as 
documented in the ethnographic literature) or with a different language (as in Roman 
numerals with English number-words and concepts)? Is the relation between material 
forms and language consistent across the entire range of forms used to represent and 
manipulate numbers (i.e., distributed exemplars to notations)? How do materiality and 
language influence and change when they interact? What are the effects of structural 
similarities and dissimilarities between the material form(s) and numerical language 
across and within cultural numerical systems? 

• What implications does non-glottographic representation have for the role of language in 
numerical cognition? Glottographic and non-glottographic forms may differentially 
involve phonetic recall. Is this related to the fact that most words for numbers are 
generated by means of lexical rules rather than stored in the mental lexicon (e.g., Ullman 
et al., 1997)? Does this differ for number-words stored in the mental lexicon? And to 
what degree is it feasible or desirable to remove language—in part or in toto—from 
numerical and mathematical representation and conceptualization? 
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Notes 
 

i If the need to add and subtract were indigenously developed (rather than posed through cultural contact), the 
cumbersomeness of strategies like double-enumeration would undoubtedly motivate change toward greater 
efficiency, informational accessibility, and reduced demand on working memory and attention. These qualities 
would likely be achieved by incorporating a new material form, one selected for what it shared with the previous 
system (e.g., the ability to increment and decrement ordinal sequences) and its ability to realize efficiency, etc. 
ii The use of distributed material forms has been documented in other emerging number systems: The Abipones were 
described as using “the [four] fingers of an emu” and a “skin spotted with five different colours” to represent four 
and five (Dobrizhoffer, 1822, p. 168). 
iii While many primates use tools, humans are unique in the degree to which they recruit, incorporate, and exploit 
material forms as a constitutive component of cognition. This ability is not identical to the term “symbolic 
reference,” which can have the connotation of something the human brain does internally in response to external 
stimuli (as distinct from being an emergent property of their interaction). 
iv The Mundurukú use words of one, two, three, and four syllables, respectively, for the corresponding numbers 
(Rooryck et al., 2017). 
v Numbers appear to have a strong somatic basis, as attested by productive grouping (numerical bases) (Comrie, 
2011; Hammarström, 2010; Lakoff & Núñez, 2000). Base 4 has been related to using the spaces between the fingers 
or omitting the thumb. Bases 8 and 32 might double base 4 (in the way base 10 uses both hands) or otherwise 
multiply it. Base 6 might involve the wrist in addition to the fingers, with base 12 formed by doubling. Alternatively, 
base 12 may be formed by using the segments of the fingers (Huylebrouck, 1997). Base 15 may use three hands 
instead of one (base 5) or two (base 10) hands, while base 20 may involve fingers and knuckles or both hands and 
feet (Comrie, 2011). Bases 24, 24, and 27, found in the body-counting systems of Papua New Guinea, use the hands 
and other parts of the body (Hammarström, 2010; Lean, 1992; Saxe, 2012). Base 60, used in Mesopotamia, appears 
to have been derived by combining a productive cycle of 10, which has an unambiguous anatomical basis, with a 
productive cycle of 6, which has a possible anatomical basis (Nissen et al., 1993; Rudman, 2007). 
vi The somatic basis of numbers is also attested by embodied vocabulary: nouns like digit that mean both finger and 
number (found in unrelated languages like English and the languages of the Brazilian Aimoré and the Hudson Bay 
Inuit; Conant, 1896; Richardson, 1916), verbs like count that mean finger (found in the Siberian languages Chukchi 
and Koryak; Antropova & Kuznetsova, 1956), and words for five, ten, and twenty related to fingers, hands, fists, 
toes, and men (Swetz, 2009). 
vii The angular gyrus has also been implicated in functions like higher-level cross-domain thinking (e.g., 
metaphorizing, often used to characterize numerical concepts), manipulation of numbers in verbal form, retrieval of 
arithmetic facts from memory, and mathematical competence (Dehaene, Piazza, Pinel, & Cohen, 2003; Grabner et 
al., 2007; Grabner, Ansari, et al., 2009; Grabner, Ischebeck, et al., 2009; Lakoff & Núñez, 2000; Ramachandran, 
2004). 
viii Despite their universality in counting, fingers are seemingly not a significant factor in developing arithmetical 
operations. Perhaps the embodied experience of quantity does not disappear when an extended finger is flexed in the 
same way it does when a pebble is removed from a pile, or the increased demand on working memory associated 
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with decrementing an ordinal sequence on a material form normally used to accumulate acts as disincentive (e.g., as 
in Oksapmin example). 
ix Body-counting is an exception: Yupno body-counting is learned and used by adult men (Wassmann & Dasen, 
1994). This restriction is plausibly related to the material form employed, as the body is cross-culturally associated 
with proscriptions that limit public touch and behavioral imitation. 
x Tokens were like modern currency in consisting of a unit, multiples of the unit, and fractions of a unit. Assessing 
an amount of multiple tokens would have similarly involved separating them into like units arranged in 
denomination order. This would not require lines (like those on a counting board), though informal organization 
would limit operational complexity (Nagl, 1918). 
xi While this discussion focuses on Mesopotamia (mainly as a matter of authorial familiarity), the mathematical 
traditions in Egypt, China, and Mesoamerica similarly involved fingers (e.g., decimal organization), one-
dimensional devices (knotted cords and tallies), two-dimensional devices (abaci), notations, tables of relations, and 
writing for non-numerical language (Ascher & Ascher, 1981; Chrisomalis, 2010; Houston, 2008; Ifrah, 1981; 
Martzloff, 1997; Ritter, 2000). The resultant notational systems demonstrate similar characteristics of dimensionality 
and bases (Zhang & Norman, 1995), qualities developed from precursor technologies and retained in a mix of 
material and mental/behavioral forms. 
xii A sign like 7 is semantically meaningful in a way that transcends language, at least in part because such signs 
inhabit organizational and structural patterns distinct from those of language. Though it designates the same 
quantity, seven adds phonetic information that ties it to English. 
xiii Words used frequently tend to be memorized, giving them an increased potential for irregularity in comparison 
with infrequently used words, which tend to be rule-based and thus regular (Bybee, 2010). This principle applies to 
lexical numbers, where names for small numbers tend to be significantly irregular (e.g., the numbers one through ten 
in English); slightly higher numbers may be somewhat irregular (as eleven through nineteen in English have some 
regularity of form without conforming to the rules for naming higher quantities); and much higher numbers become 
regular (as twenty and higher are fairly regular in English). 
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