134 research outputs found

    Study on high reliability multicast communication with link adaptation for multiple-access wireless networks

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č2849ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć›œéš›æƒ…ć ±é€šäżĄć­Š) ; 授䞎ćčŽæœˆæ—„:2009/3/15 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新506

    Video QoS/QoE over IEEE802.11n/ac: A Contemporary Survey

    Get PDF
    The demand for video applications over wireless networks has tremendously increased, and IEEE 802.11 standards have provided higher support for video transmission. However, providing Quality of Service (QoS) and Quality of Experience (QoE) for video over WLAN is still a challenge due to the error sensitivity of compressed video and dynamic channels. This thesis presents a contemporary survey study on video QoS/QoE over WLAN issues and solutions. The objective of the study is to provide an overview of the issues by conducting a background study on the video codecs and their features and characteristics, followed by studying QoS and QoE support in IEEE 802.11 standards. Since IEEE 802.11n is the current standard that is mostly deployed worldwide and IEEE 802.11ac is the upcoming standard, this survey study aims to investigate the most recent video QoS/QoE solutions based on these two standards. The solutions are divided into two broad categories, academic solutions, and vendor solutions. Academic solutions are mostly based on three main layers, namely Application, Media Access Control (MAC) and Physical (PHY) which are further divided into two major categories, single-layer solutions, and cross-layer solutions. Single-layer solutions are those which focus on a single layer to enhance the video transmission performance over WLAN. Cross-layer solutions involve two or more layers to provide a single QoS solution for video over WLAN. This thesis has also presented and technically analyzed QoS solutions by three popular vendors. This thesis concludes that single-layer solutions are not directly related to video QoS/QoE, and cross-layer solutions are performing better than single-layer solutions, but they are much more complicated and not easy to be implemented. Most vendors rely on their network infrastructure to provide QoS for multimedia applications. They have their techniques and mechanisms, but the concept of providing QoS/QoE for video is almost the same because they are using the same standards and rely on Wi-Fi Multimedia (WMM) to provide QoS

    Reliable Multicast transport of the video over the WiFi network

    Get PDF
    Le transport multicast est une solution efficace pour envoyer le mĂȘme contenu Ă  plusieurs rĂ©cepteurs en mĂȘme temps. Ce mode est principalement utilisĂ© pour fournir des flux multimĂ©dia en temps rĂ©el. Cependant, le multicast classique de l IEEE 802.11 n'utilise aucun mĂ©canisme d acquittement. Ainsi, l Ă©chec de rĂ©ception implique la perte dĂ©finitive du paquet. Cela limite la fiabilitĂ© du transport multicast et impact la qualitĂ© des applications vidĂ©o. Pour rĂ©soudre ce problĂšme, 802.11v et 802.11aa sont dĂ©finis rĂ©cemment. Le premier amendement propose Direct Multicast Service (DMS). D'autre part, le 802.11aa introduit GroupCast with Retries (GCR). GCR dĂ©finit deux nouvelles politiques de retransmission : Block Ack (BACK) et Unsolicited Retry (UR).Dans cette thĂšse, nous Ă©valuons et comparons les performances de 802.11v/aa. Nos rĂ©sultats montrent que tous les nouveaux protocoles multicast gĂ©nĂšrent un overhead de transmission important. En outre, DMS a une scalabilitĂ© trĂšs limitĂ©e, et GCR-BACK n'est pas appropriĂ© pour des grands groupes multicast. D autre part, nous montrons que DMS et GCR-BACK gĂ©nĂšrent des latences de transmission importantes lorsque le nombre de rĂ©cepteurs augmente. Par ailleurs, nous Ă©tudions les facteurs de pertes dans les rĂ©seaux sans fil. Nous montrons que l'indisponibilitĂ© du rĂ©cepteur peut ĂȘtre la cause principale des pertes importantes et de leur nature en rafales. En particulier, nos rĂ©sultats montrent que la surcharge du processeur peut provoquer un taux de perte de 100%, et que le pourcentage de livraison peut ĂȘtre limitĂ© Ă  35% lorsque la carte 802.11 est en mode d Ă©conomie d'Ă©nergie.Pour Ă©viter les collisions et amĂ©liorer la fiabilitĂ© du transport multicast, nous dĂ©finissons le mĂ©canisme Busy Symbol (BS). Nos rĂ©sultats montrent que BS Ă©vite les collisions et assure un taux de succĂšs de transmission trĂšs important. Afin d'amĂ©liorer davantage la fiabilitĂ© du trafic multicast, nous dĂ©finissons un nouveau protocole multicast, appelĂ© Block Negative Acknowledgement (BNAK). Ce protocole opĂšre comme suit. L AP envoi un bloc de paquets suivi par un Block NAK Request (BNR). Le BNR permet aux membres de dĂ©tecter les donnĂ©es manquantes et d envoyer une demande de retransmission, c.Ă .d. un Block NAK Response (BNAK). Un BNAK est transmis en utilisant la procĂ©dure classique d accĂšs au canal afin d'Ă©viter toute collision avec d'autres paquets. En plus, cette demande est acquittĂ©e. Sous l'hypothĂšse que 1) le rĂ©cepteur est situĂ© dans la zone de couverture du dĂ©bit de transmission utilisĂ©, 2) les collisions sont Ă©vitĂ©es et 3) le terminal a la bonne configuration, trĂšs peu de demandes de retransmission sont envoyĂ©es, et la bande passante est prĂ©servĂ©e. Nos rĂ©sultats montrent que BNAK a une trĂšs grande scalabilitĂ© et gĂ©nĂšre des dĂ©lais trĂšs limitĂ©s. En outre, nous dĂ©finissons un algorithme d'adaptation de dĂ©bit pour BNAK. Nous montrons que le bon dĂ©bit de transmission est sĂ©lectionnĂ© moyennant un overhead trĂšs rĂ©duit de moins de 1%. En plus, la conception de notre protocole supporte la diffusion scalable de lavvidĂ©o. Cette caractĂ©ristique vise Ă  rĂ©soudre la problĂ©matique de la fluctuation de la bande passante, et Ă  prendre en considĂ©ration l'hĂ©tĂ©rogĂ©nĂ©itĂ© des rĂ©cepteurs dans un rĂ©seau sans fil.The multicast transport is an efficient solution to deliver the same content to many receivers at the same time. This mode is mainly used to deliver real-time video streams. However, the conventional multicast transmissions of IEEE 802.11 do not use any feedback policy. Therefore missing packets are definitely lost. This limits the reliability of the multicast transport and impacts the quality of the video applications. To resolve this issue, the IEEE 802.11v/aa amendments have been defined recently. The former proposes the Direct Multicast Service (DMS). On the other hand, 802.11aa introduces Groupcast with Retries (GCR) service. GCR defines two retry policies: Block Ack (BACK) and Unsolicited Retry (UR).In this thesis we evaluate and compare the performance of 802.11v/aa. Our simulation results show that all the defined policies incur an important overhead. Besides, DMS has a very limited scalability, and GCR-BACK is not appropriate for large multicast groups. We show that both DMS and GCR-BACK incur important transmission latencies when the number of the multicast receivers increases. Furthermore, we investigate the loss factors in wireless networks. We show that the device unavailability may be the principal cause of the important packet losses and their bursty nature. Particularly, our results show that the CPU overload may incur a loss rate of 100%, and that the delivery ratio may be limited to 35% when the device is in the power save mode.To avoid the collisions and to enhance the reliability of the multicast transmissions, we define the Busy Symbol (BS) mechanism. Our results show that BS prevents all the collisions and ensures a very high delivery ratio for the multicast packets. To further enhance the reliability of this traffic, we define the Block Negative Acknowledgement (BNAK) retry policy. Using our protocol, the AP transmits a block of multicast packets followed by a Block NAK Request (BNR). Upon reception of a BNR, a multicast member generates a Block NAK Response (BNAK) only if it missed some packets. A BNAK is transmitted after channel contention in order to avoid any eventual collision with other feedbacks, and is acknowledged. Under the assumption that 1) the receiver is located within the coverage area of the used data rate, 2) the collisions are avoided and 3) the terminal has the required configuration, few feedbacks are generated and the bandwidth is saved. Our results show that BNAK has a very high scalability and incurs very low delays. Furthermore, we define a rate adaptation scheme for BNAK. We show that the appropriate rate is selected on the expense of a very limited overhead of less than 1%. Besides, the conception of our protocol is defined to support the scalable video streaming. This capability intends to resolve the bandwidth fluctuation issue and to consider the device heterogeneity of the group members.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeoŸ between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel oŸers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    Scalable and rate adaptive wireless multimedia multicast

    Get PDF
    The methods that are described in this work enable highly efficient audio-visual streaming over wireless digital communication systems to an arbitrary number of receivers. In the focus of this thesis is thus point-to-multipoint transmission at constrained end-to-end delay. A fundamental difference as compared to point-to-point connections between exactly two communicating sending and receiving stations is in conveying information about successful or unsuccessful packet reception at the receiver side. The information to be transmitted is available at the sender, whereas the information about successful reception is only available to the receiver. Therefore, feedback about reception from the receiver to the sender is necessary. This information may be used for simple packet repetition in case of error, or adaptation of the bit rate of transmission to the momentary bit rate capacity of the channel, or both. This work focuses on the single transmission (including retransmissions) of data from one source to multiple destinations at the same time. A comparison with multi-receiver sequentially redundant transmission systems (simulcast MIMO) is made. With respect to feedback, this work considers time division multiple access systems, in which a single channel is used for data transmission and feedback. Therefore, the amount of time that can be spent for transmitting feedback is limited. An increase in time used for feedback transmissions from potentially many receivers results in a decrease in residual time which is usable for data transmission. This has direct impact on data throughput and hence, the quality of service. In the literature, an approach to reduce feedback overhead which is based on simultaneous feedback exists. In the scope of this work, simultaneous feedback implies equal carrier frequency, bandwidth and signal shape, in this case orthogonal frequency-division multiplex signals, during the event of the herein termed feedback aggregation in time. For this scheme, a constant amount of time is spent for feedback, independent of the number of receivers giving feedback about reception. Therefore, also data throughput remains independent of the number of receivers. This property of audio-visual digital transmission is taken for granted for statically configured, single purpose systems, such as terrestrial television. In the scope of this work are, however, multi-user and multi-purpose digital communication networks. Wireless LANs are a well-known example and are covered in detail herein. In suchlike systems, it is of great importance to remain independent of the number of receivers, as otherwise the service of ubiquitous digital connectivity is at the risk of being degraded. In this regard, the thesis at hand elaborates at what bit rates audio-visual transmission to multiple receivers may take place in conjunction with feedback aggregation. It is shown that the scheme achieves a multi-user throughput gain when used in conjunction with adaptivity of the bit rate to the channel. An assumption is the use of an ideal overlay packet erasure correcting code in this case. Furthermore, for delay constrained transmission, such as in so-called live television, throughput bit rates are examined. Applications have to be tolerant to a certain level of residual error in case of delay constrained transmission. Improvement of the rate adaptation algorithm is shown to increase throughput while residual error rates are decreased. Finally, with a consumer hardware prototype for digital live-TV re-distribution in the local wireless network, most of the mechanisms as described herein can be demonstrated.Die in vorliegender Arbeit aufgezeigten Methoden der paketbasierten drahtlosen digitalen Kommunikation ermöglichen es, Fernsehinhalte, aber auch audio-visuelle Datenströme im Allgemeinen, bei hoher Effizienz an beliebig große Gruppen von EmpfĂ€ngern zu verteilen. Im Fokus dieser Arbeit steht damit die Punkt- zu MehrpunktĂŒbertragung bei begrenzter Ende-zu-Ende Verzögerung. Ein grundlegender Unterschied zur Punkt-zu-Punkt Verbindung zwischen genau zwei miteinander kommunizierenden Sender- und EmpfĂ€ngerstationen liegt in der Übermittlung der Information ĂŒber erfolgreichen oder nicht erfolgreichen Paketempfang auf Seite der EmpfĂ€nger. Da die zu ĂŒbertragende Information am Sender vorliegt, die Information ĂŒber den Erfolg der Übertragung jedoch ausschließlich beim jeweiligen EmpfĂ€nger, muss eine Erfolgsmeldung auf dem RĂŒckweg von EmpfĂ€nger zu Sender erfolgen. Diese Information wird dann zum Beispiel zur einfachen Paketwiederholung im nicht erfolgreichen Fall genutzt, oder aber um die Übertragungsrate an die KapazitĂ€t des Kanals anzupassen, oder beides. GrundsĂ€tzlich beschĂ€ftigt sich diese Arbeit mit der einmaligen, gleichzeitigen Übertragung von Information (einschließlich Wiederholungen) an mehrere EmpfĂ€nger, wobei ein Vergleich zu an mehrere EmpfĂ€nger sequentiell redundant ĂŒbertragenden Systemen (Simulcast MIMO) angestellt wird. In dieser Arbeit ist die Betrachtung bezĂŒglich eines RĂŒckkanals auf Zeitduplexsysteme beschrĂ€nkt. In diesen Systemen wird der Kanal fĂŒr Hin- und RĂŒckweg zeitlich orthogonalisiert. Damit steht fĂŒr die Übermittlung der Erfolgsmeldung eine beschrĂ€nkte Zeitdauer zur VerfĂŒgung. Je mehr an Kanalzugriffszeit fĂŒr die Erfolgsmeldungen der potentiell vielen EmpfĂ€nger verbraucht wird, desto geringer wird die Restzeit, in der dann entsprechend weniger audio-visuelle Nutzdaten ĂŒbertragbar sind, was sich direkt auf die DienstqualitĂ€t auswirkt. Ein in der Literatur weniger ausfĂŒhrlich betrachteter Ansatz ist die gleichzeitige Übertragung von RĂŒckmeldungen mehrerer Teilnehmer auf gleicher Frequenz und bei identischer Bandbreite, sowie unter Nutzung gleichartiger Signale (hier: orthogonale Frequenzmultiplexsignalformung). Das Schema wird in dieser Arbeit daher als zeitliche Aggregation von RĂŒckmeldungen, engl. feedback aggregation, bezeichnet. Dabei wird, unabhĂ€ngig von der Anzahl der EmpfĂ€nger, eine konstante Zeitdauer fĂŒr RĂŒckmeldungen genutzt, womit auch der Datendurchsatz durch zusĂ€tzliche EmpfĂ€nger nicht notwendigerweise sinkt. Diese Eigenschaft ist aus statisch konfigurierten und fĂŒr einen einzigen Zweck konzipierten Systemen, wie z. B. der terrestrischen FernsehĂŒbertragung, bekannt. In dieser Arbeit werden im Gegensatz dazu jedoch am Beispiel von WLAN Mehrzweck- und Mehrbenutzersysteme betrachtet. Es handelt sich in derartigen Systemen zur digitalen DatenĂŒbertragung dabei um einen entscheidenden Vorteil, unabhĂ€ngig von der EmpfĂ€ngeranzahl zu bleiben, da es sonst unweigerlich zu EinschrĂ€nkungen in der GĂŒte der angebotenen Dienstleistung der allgegenwĂ€rtigen digitalen Vernetzung kommen muss. Vorliegende Arbeit zeigt in diesem Zusammenhang auf, welche Datenraten unter Benutzung von feedback aggregation in der Verteilung an mehrere EmpfĂ€nger und in verschiedenen Szenarien zu erreichen sind. Hierbei zeigt sich, dass das Schema im Zusammenspiel mit einer Adaption der Datenrate an den Übertragungskanal inhĂ€rent einen Datenratengewinn durch Mehrbenutzerempfang zu erzielen vermag, wenn ein ĂŒberlagerter idealer Paketauslöschungsschutz-Code angenommen wird. Des weiteren wird bei der Übertragung mit zeitlich begrenzter AusfĂŒhrungsdauer, z. B. dem sogenannten Live-Fernsehen, aufgezeigt, wie sich die erreichbare Datenrate reduziert und welche Restfehlertoleranz an die Übertragung gestellt werden muss. Hierbei wird ebenso aufgezeigt, wie sich durch Verbesserung der Ratenadaption erstere erhöhen und zweitere verringern lĂ€sst. An einem auf handelsĂŒblichen Computer-Systemen realisiertem Prototypen zur Live-FernsehĂŒbertragung können die hierin beschriebenen Mechanismen zu großen Teilen gezeigt werden

    Error and Congestion Resilient Video Streaming over Broadband Wireless

    Get PDF
    In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine

    A wireless multicast delivery architecture for mobile terminals

    Get PDF
    Content delivery over the Internet to a large number of mobile users offers interesting business opportunities for content providers, intermediaries, and access network operators. A user could receive, for example, music or a digital newspaper directly to a mobile device over wireless networks. Currently, content delivery over the Internet is held back by a number of reasons. Existing network technologies, such as GPRS, have a very limited capacity to transfer large files, such as those required for good-quality pictures in a newspaper. Another problem is security. Content received over the Internet is very vulnerable to being forged. A user who cannot be certain about the source and consistency of the received stock quotes is unlikely to pay for the information. Furthermore, content providers are unwilling to distribute their valuable information over the Internet due to their fear of copyright infringements. Traditionally, content has been considered consumed as soon as it has been downloaded. Content providers have been keen on preventing their content from being transferred over peer-to-peer networks because they consider the delivery itself to be a copyright infringement. In this dissertation, content delivery is separated from content consumption by encrypting the content before delivery. When the users wishes to consume the content, a license which includes the decryption key is provided. The architecture allows content to be delivered to users' devices even before the user commits to consume the content. The user can choose to receive content whenever downloading it is the most convenient and affordable. Thus, the content providers are able to maintain control over the use of their information even after the data has been transferred to the users' terminals. In addition, content received by users can be strongly source authenticated. The architecture allows secure, efficient and reliable delivery of content to a large group of receivers. The architecture does not commit itself to any specific delivery technique, and the content can be delivered using any delivery technique including multicast, broadcast, unicast, and peer-to-peer. This dissertation focuses mostly on multicast as the delivery technique. The efficiency of the multicast delivery over unreliable heterogenous wireless access networks is thoroughly analyzed. Mobile terminals can seamlessly switch between access points and access technologies while continuing to receive data reliably from the network. The multicast delivery uses adaptive error correction and retransmissions to deliver the content as efficiently as possible to a very large number of receivers. The simulations show, that the vast majority of receivers are able to receive the content reliably with a small delay even when the radio network suffers from high packet loss probability. Although the architecture is designed to deliver content to mobile terminals, it is also suitable for delivering content to terminals with fixed Internet connectivity.Digitaalisen sisÀllön siirtÀminen liikkuville kÀyttÀjille Internetin yli tarjoaa uusia liiketoimintamahdollisuuksia niin sisÀllöntuottajille, vÀlittÀjille kuin verkko-operaattoreille. Teknikkaa voidaan kÀyttÀÀ esimerkiksi musiikin tai sÀhköisten lehtien vÀlittÀmiseen kÀyttÀjille langattoman verkon kautta. SisÀllön vÀlittÀmistÀ Internetin kautta hankaloittaa yhÀ usea seikka. Nykyisin laajassa kÀytössÀ olevat verkkotekniikat, kuten GPRS, ovat liian hitaita siirtÀmÀÀn hyvin suuria tiedostoja suurelle mÀÀrÀllÀ vastaanottajia. LisÀksi vÀÀrennetyn tiedon vÀlittÀminen Internetin kautta on erittÀin helppoa. SisÀltö, jonka aitoudesta ja alkuperÀstÀ ei ole varmuutta, on usein arvotonta kÀyttÀjÀlle. SisÀllöntuottajat puolestaan ovat haluttomia kÀyttÀmÀÀn sisÀltönsÀ levittÀmiseen InternetiÀ mikÀli digitaalisesti levitettÀvÀn sisÀllön kopioiminen ja oikeudeton kuluttaminen on liian helppoa. Perinteisesti sisÀltö ajatellaankin kulutetuksi jo sillÀ hetkellÀ, kun se on siirretty kÀyttÀjÀn laitteeseen. Sen vuoksi sisÀllön tuottajat ovatkin kÀyttÀneet paljon resursejaan estÀÀkseen sisÀltönsÀ vÀlittÀmisen vertaisverkoissa, koska jo pelkkÀÀ sisÀllön siirtÀmistÀ pidetÀÀn tekijÀnoikeusrikkomuksena. TÀssÀ työssÀ erotetaan sisÀllön siirtÀminen sisÀllön kuluttamisesta suojaamalla sisÀltö salauksella ennen sen siirtÀmistÀ kÀyttÀjille ja sallimalla vapaa salatun sisÀllön jakelu. Arkkitehtuuri mahdollistaa sisÀllön siirtÀmisen kÀyttÀjien laitteille silloin kun sisÀllön siirtÀminen on edullisinta ja tehokkainta. Vasta kÀyttÀjÀn halutessa kuluttaa aiemmin lataamaansa sisÀltöÀ, tarkistetaan oikeis sisÀllön kÀyttöön. Arkkitehtuuri mahdollistaa myös ladatun sisÀllön alkuperÀn ja eheyden vahvan tarkistamisen. Arkkitehtuuri mahdollistaa turvallisen, tehokkaan ja luotettavan sisÀllön siirtÀmisen suurelle mÀÀrÀlle vastaanottajia. Arkkitehtuuri ei pakota sisÀllön jakelua kÀyttÀmÀÀn mitÀÀn tiettyÀ siirtomenetelmÀÀ vaan sisÀltö voidaan siirtÀÀ kÀyttÀen esimerkiksi ryhmÀlÀhetystÀ (multicast), joukkolÀhetystÀ (broadcast), tÀsmÀlÀhetystÀ (unicast) tai vertaisverkkoja (peer-to-peer). TÀssÀ työssÀ on keskitytty analysoimaan ryhmÀlÀhetyksen soveltuvuutta tiedon siirtomenetelmÀnÀ. RyhmÀlÀhetysmenetelmÀn tehokkuutta on analysoitu siirrettÀessÀ sisÀltöÀ heterogeenisen langattoman liityntÀverkon yli. Liikkuvat pÀÀtelaitteet voivat siirtyÀ saumattomasti liityntÀverkosta toiseen samalla kun ne vastaanottavat sisÀltöÀ. RyhmÀlÀhetys hyödyntÀÀ adaptiivista virheenkorjausta ja uudelleenlÀhetyksiÀ siirtÀÀkseen sisÀllönmahdollisimman tehokkaasti suurelle joukolle vastaanottajia. Simulaatiot osoittavat, ettÀ erittÀin suuri osa vastaanottajista saa sisÀllön luotettavasti ja pienellÀ viiveellÀ vaikka liityntÀverkossa pakettien virhetodennÀköisyys olisi suuri. Arkkitehtuuri on suunniteltu siirtÀmÀÀn sisÀltöÀ liikkuville laitteille, mutta sitÀ voidaan kÀyttÀÀ yhtÀ hyvin myös kiinteÀÀn verkkoon liitettyjen laitteiden kanssa.reviewe

    Optimum hybrid error correction scheme under strict delay constraints

    Get PDF
    In packet-based wireless networks, media-based services often require a multicast-enabled transport that guarantees quasi error free transmission under strict delay constraints. Furthermore, both multicast and delay constraints deeply influence the architecture of erasure error recovery (EER). Therefore, we propose a general architecture of EER and study its optimization in this thesis. The architecture integrates overall existing important EER techniques: Automatic Repeat Request, Forward Error Correction and Hybrid ARQ techniques. Each of these EER techniques can be viewed as a special case of Hybrid Error Correction (HEC) schemes. Since the Gilbert-Elliott (GE) erasure error model has been proven to be valid for a wide range of packet based wireless networks, in this thesis, we present the general architecture and its optimization based on the GE channel model. The optimization target is to satisfy a certain target packet loss level under strict delay constraints efficiently. Through the optimization for a given real-time multicast scenario, the total needed redundancy information can be minimized by choosing the best HEC scheme automatically among the entire schemes included in the architecture. As a result, the performance of the optimum HEC scheme can approach the Shannon limit as closely as possible dynamically according to current channel state information.In Paket-basierten drahtlosen Netzwerken benötigen Medien-basierte Dienste oft Multicast-fĂ€higen Transport, der quasi-fehlerfreie Übertragung unter strikten Zeitgrenzen garantiert. Außerdem beeinflussen sowohl Multicast als auch Zeitbegrenzungen stark die Architektur von Auslöschungs-Fehlerschutz (Erasure Error Recovery, EER). Daher stellen wir eine allgemeine Architektur der EER vor und untersuchen ihre Optimierung in dieser Arbeit. Die Architektur integriert alle wichtigen EER-Techniken: Automatic Repeat Request, Forward Error Correction und Hybrid ARQ. Jede dieser EER-Techniken kann als Spezialfall der Hybrid Error Correction (HEC) angesehen werden. Da das Gilbert-Elliot (GE) Auslöschungs-Fehler-Modell fĂŒr einen weiten Bereich von Paket-basierten drahtlosen Netzwerken als gĂŒltig erwiesen wurde, prĂ€sentieren wir in dieser Arbeit die allgemeine Architektur und deren Optimierung basierend auf dem GE Kanalmodell. Zweck der Optimierung ist es, eine gewisse Ziel-Paketfehlerrate unter strikten Zeitgrenzen effizient zu erreichen. Durch die Optimierung fĂŒr ein gegebenes Echtzeit-Mutlicast-Szenario kann die insgesamt benötigte Redundanz-Information minimiert werden. Dies erfolgt durch automatische Auswahl des optimalen HEC Schemas unter all den Schemata, die in die Architektur integriert sind. Das optimale HEC-Schema kann die Shannon Grenze so nahe wie möglich, dynamisch, entsprechend dem derzeitigen Kanalzustand, erreichen
    • 

    corecore