87 research outputs found

    Evaluation of 5G Modulation Candidates WCP-COQAM, GFDM-OQAM, and FBMC-OQAM in Low-Band Highly Dispersive Wireless Channels

    Get PDF
    We analyse some of the candidates for modulations for 5G: FBMC-OQAM, GFDM-OQAM, and WCP-COQAM. Unlike most of the related bibliographies, which are oriented to mobile communications, our research is focused on 5G in cognitive radio based industrial wireless communications. According to the ultrareliability and low-latency requirements of industrial communications, we simulate the aforementioned modulations in low-band transmissions (carrier frequencies below 6GHz and a bandwidth narrower than 100MHz) through large indoor spaces and severe multipath channels that emulate industrial halls. Moreover, we give detailed information aboutWCP-COQAMand how the windowing affects the protection againstmultipath effect and reduces spectral efficiency compared to GFDM-OQAM.We also compare the aforementioned filtered multicarrier techniques and OFDM in terms of robustness against multipath channels, power spectral density, and spectral efficiency. Based on these results, we aim at providing an approximate idea about the suitability of 5G MCM candidates for industrial wireless communications based on CR

    Waveform Design for 5G and Beyond

    Get PDF
    5G is envisioned to improve major key performance indicators (KPIs), such as peak data rate, spectral efficiency, power consumption, complexity, connection density, latency, and mobility. This chapter aims to provide a complete picture of the ongoing 5G waveform discussions and overviews the major candidates. It provides a brief description of the waveform and reveals the 5G use cases and waveform design requirements. The chapter presents the main features of cyclic prefix-orthogonal frequency-division multiplexing (CP-OFDM) that is deployed in 4G LTE systems. CP-OFDM is the baseline of the 5G waveform discussions since the performance of a new waveform is usually compared with it. The chapter examines the essential characteristics of the major waveform candidates along with the related advantages and disadvantages. It summarizes and compares the key features of different waveforms.Comment: 22 pages, 21 figures, 2 tables; accepted version (The URL for the final version: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119333142.ch2

    Low-complexity interference variance estimation methods for coded multicarrier systems: application to SFN

    Get PDF
    For single-frequency network (SFN) transmission, the echoes coming from different transmitters are superimposed at the reception, giving rise to a frequency selective channel. Although multicarrier modulations lower the dispersion, the demodulated signal is sensitive to be degraded by inter-symbol interference (ISI) and inter-carrier interference (ICI). In view of this, we use channel coding in conjunction either with filter bank multicarrier (FBMC) modulation or with orthogonal frequency division multiplexing (OFDM). To deal with the loss of orthogonality, we have devised an interference-aware receiver that carries out a soft detection under the assumption that the residual interference plus noise (IN) term is Gaussian-distributed. To keep the complexity low, we propose to estimate the variance of the IN term by resorting to data-aided algorithms. Experimental results show that regardless of the method, FBMC provides a slightly better performance in terms of coded bit error rate than OFDM, while the spectral efficiency is increased when FBMC is considered.Peer ReviewedPostprint (published version

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Performance Evaluation of MIMO-OFDM/OQAM in Time-Varying Underwater Acoustic Channels

    Get PDF

    Evaluation Of Multicarrier Air Interfaces In The Presence Of Interference For L-Band And C-Band Air-Ground Communications

    Get PDF
    The use of aeronautical vehicles and systems is continuously growing, and this means current aeronautical communication systems, particularly those operating in the very high frequency (VHF) aviation band, will suffer from severe congestion in some regions of the world. For example, it is estimated that air-to-ground (AG) communication traffic density will at least double by 2035 over that in 2012, based on the most-likely growth scenario for Europe. This traffic growth (worldwide) has led civil aviation authorities such as the FAA in the USA, and EuroControl in Europe, to jointly explore development of future communication infrastructures (FCI). According to international aviation systems policies, both current and future AG communication systems will be deployed in L-band (960-1164 MHz), and possibly in C-band (5030-5091 GHz) because of the favorable AG radio propagation characteristics in these bands. During the same time period as the FCI studies, the use of multicarrier communication technologies has become very mature for terrestrial communication systems, but for AG systems it is still being studied and tested. Aiming toward future demands, EuroControl and FAA sponsored work to define several new candidate AG radio systems with high data rate and high reliability. Dominant among these is now an L-Band Digital Aeronautical Communication Systems (L-DACS): L-DACS1. L-DACS1 is a multicarrier communication system based on the popular orthogonal frequency division multiplexing (OFDM) modulation technique. For airport surface area communication systems used in C-band, EuroControl and FAA also proposed another OFDM communication system based on the IEEE 802.16e standard, termed aeronautical mobile airport communication system (AeroMACS). This system has been proposed to provide the growing need of communication traffic in airport environments. In this dissertation, first we review existing and proposed aviation communication systems in VHF-band, L-band and C-band. We then focus our study on the use of multicarrier techniques in these aviation bands. We compare the popular and dominant multicarrier technique OFDM (which is used in cellular networks such long-term evolution (LTE) and wireless local area networks such as Wi-Fi) with the filterbank multicarrier (FBMC) technique. As far as we are aware, we are the first to propose and evaluate FBMC for aviation communication systems. We show, using analysis and computer simulations, along with measurement based (NASA) air-ground and airport surface channel models, that FBMC offers advantages in performance over the OFDM schemes. Via use of sharp filters in the frequency domain, FBMC reduces out of band interference. Specifically, it is more robust to high-power distance measurement equipment (DME) interference, and via replacement of guard bands with data-bearing subcarriers, FBMC can offer higher throughput than the contending L-DACS1 scheme, by up to 23%. Similar advantages over AeroMACS pertain in the airport surface channel. Our FBMC bit error ratio performance is comparable to that of the OFDM schemes, and is even better for our “spectrally-shaped” version of FBMC. For these improvements, FBMC requires a modest complexity increase. Our final contribution in this dissertation is the presentation of spectrally shaped FBMC (SS-FBMC). This idea allocates unequal power to subcarriers to contend with non-white noise or non-white interference. Our adaptive algorithm selects a minimum number of guard subcarriers and then allocates power accordingly to remaining subcarriers based on a “water-filling-like” approach. We are the first to propose such a cognitive radio technique with FBMC for aviation applications. Results show that SSFBMC improves over FBMC in both performance and throughput
    • …
    corecore