56,035 research outputs found

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Uplink capacity of a variable density cellular system with multicell processing

    Get PDF
    In this work we investigate the information theoretic capacity of the uplink of a cellular system. Assuming centralised processing for all base stations, we consider a power-law path loss model along with variable cell size (variable density of Base Stations) and we formulate an average path-loss approximation. Considering a realistic Rician flat fading environment, the analytical result for the per-cell capacity is derived for a large number of users distributed over each cell. We extend this general approach to model the uplink of sectorized cellular system. To this end, we assume that the user terminals are served by perfectly directional receiver antennas, dividing the cell coverage area into perfectly non-interfering sectors. We show how the capacity is increased (due to degrees of freedom gain) in comparison to the single receiving antenna system and we investigate the asymptotic behaviour when the number of sectors grows large. We further extend the analysis to find the capacity when the multiple antennas used for each Base Station are omnidirectional and uncorrelated (power gain on top of degrees of freedom gain). We validate the numerical solutions with Monte Carlo simulations for random fading realizations and we interpret the results for the real-world systems

    Cellular system information capacity change at higher frequencies due to propagation loss and system parameters

    Get PDF
    In this paper, mathematical analysis supported by computer simulation is used to study cellular system information capacity change due to propagation loss and system parameters (such as path loss exponent, shadowing and antenna height) at microwave carrier frequencies greater than 2 GHz and smaller cell size radius. An improved co-channel interference model, which includes the second tier co-channel interfering cells is used for the analysis. The system performance is measured in terms of the uplink information capacity of a time-division multiple access (TDMA) based cellular wireless system. The analysis and simulation results show that the second tier co-channel interfering cells become active at higher microwave carrier frequencies and smaller cell size radius. The results show that for both distance-dependent: path loss, shadowing and effective road height the uplink information capacity of the cellular wireless system decreases as carrier frequency increases and cell size radius R decreases. For example at a carrier frequency fc = 15.75 GHz, basic path loss exponent α = 2 and cell size radius R = 100, 500 and 1000m the decrease in information capacity was 20, 5.29 and 2.68%

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Federal Asbestos Legislation: The Winners Are ...

    Get PDF
    Under the guise of providing aid to victims of asbestos-related illnesses, a small group of companies has lobbied for and won relief from their liability worth tens of billions of dollars in the Senate's asbestos trust fund bill, according to this Public Citizen report.Their success in protecting their corporate interests, however, will sharply reduce the funds under the legislation that will be available to asbestos victims, the report finds. Meanwhile, some of the nation's largest financial investment firms have spent millions of dollars in lobbying and campaign contributions to position themselves to score big rewards should the legislation pass.The big winners in the legislation, S. 852, include a handful of Fortune 500 companies -- Dow Chemical, Ford, General Electric, General Motors, Honeywell, Pfizer and Viacom -- and at least 10 asbestos makers that have filed for bankruptcy.Public Citizen found an intense Capitol Hill lobbying campaign on behalf of the Fortune 500 companies to win the financial concession was spearheaded by a relatively unknown entity called the Asbestos Study Group (ASG), which refuses to make its full membership list public
    corecore