9,667 research outputs found

    Supercomputer implementation of finite element algorithms for high speed compressible flows

    Get PDF
    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    CFD modelling of wind turbine airfoil aerodynamics

    Get PDF
    This paper reports the first findings of an ongoing research programme on wind turbine computational aerodynamics at the University of Glasgow. Several modeling aspects of wind turbine airfoil aerodynamics based on the solution of the Reynoldsaveraged Navier-Stokes (RANS) equations are addressed. One of these is the effect of an a priori method for structured grid adaptation aimed at improving the wake resolution. Presented results emphasize that the proposed adaptation strategy greatly improves the wake resolution in the far-field, whereas the wake is completely diffused by the non-adapted grid with the same number and distribution of grid nodes. A grid refinement analysis carried out with the adapted grid shows that the improvements of flow resolution thus achieved are of a smaller magnitude with respect to those accomplished by adapting the grid keeping constant the number of nodes. The proposed adaptation approach can be easily included in the structured generation process of both commercial and in-house structured mesh generators systems. The study also aims at quantifying the solution inaccuracy arising from not modeling the laminar-to-turbulent transition. It is found that the drag forces obtained by considering the flow as transitional or fully turbulent may differ by 50 %. The impact of various turbulence models on the predicted aerodynamic forces is also analyzed. All these issues are investigated using a special-purpose hyperbolic grid generator and a multi-block structured finitevolume RANS code. The numerical experiments consider the flow field past a wind turbine airfoil for which an exhaustive campaign of steady and unsteady experimental measurements was conducted. The predictive capabilities of the CFD solver are validated by comparing experimental data and numerical predictions for selected flow regimes. The incompressible analysis and design code XFOIL is also used to support the findings of the comparative analysis of numerical RANS-based results and experimental data

    Universality and intermittency in relativistic turbulent flows of a hot plasma

    Full text link
    With the aim of determining the statistical properties of relativistic turbulence and unveiling novel and non-classical features, we resent the results of direct numerical simulations of driven turbulence in an ultrarelativistic hot plasma using high-order numerical schemes. We study the statistical properties of flows with average Mach number ranging from 0.4\sim 0.4 to 1.7\sim 1.7 and with average Lorentz factors up to 1.7\sim 1.7. We find that flow quantities, such as the energy density or the local Lorentz factor, show large spatial variance even in the subsonic case as compressibility is enhanced by relativistic effects. The velocity field is highly intermittent, but its power-spectrum is found to be in good agreement with the predictions of the classical theory of Kolmogorov. Overall, our results indicate that relativistic effects are able to significantly enhance the intermittency of the flow and affect the high-order statistics of the velocity field, while leaving unchanged the low-order statistics, which instead appear to be universal and in good agreement with the classical Kolmogorov theory. To the best of our knowledge, these are the most accurate simulations of driven relativistic turbulence to date.Comment: 5 pages, 4 figures. Minor changes to match the version accepted on ApJ

    Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    Get PDF
    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction

    Cumulative reports and publications through December 31, 1988

    Get PDF
    This document contains a complete list of ICASE Reports. Since ICASE Reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    Nonlinear Evolution of the Magnetohydrodynamic Rayleigh-Taylor Instability

    Full text link
    We study the nonlinear evolution of the magnetic Rayleigh-Taylor instability using three-dimensional MHD simulations. We consider the idealized case of two inviscid, perfectly conducting fluids of constant density separated by a contact discontinuity perpendicular to the effective gravity g, with a uniform magnetic field B parallel to the interface. Modes parallel to the field with wavelengths smaller than l_c = [B B/(d_h - d_l) g] are suppressed (where d_h and d_l are the densities of the heavy and light fluids respectively), whereas modes perpendicular to B are unaffected. We study strong fields with l_c varying between 0.01 and 0.36 of the horizontal extent of the computational domain. Even a weak field produces tension forces on small scales that are significant enough to reduce shear (as measured by the distribution of the amplitude of vorticity), which in turn reduces the mixing between fluids, and increases the rate at which bubbles and finger are displaced from the interface compared to the purely hydrodynamic case. For strong fields, the highly anisotropic nature of unstable modes produces ropes and filaments. However, at late time flow along field lines produces large scale bubbles. The kinetic and magnetic energies transverse to gravity remain in rough equipartition and increase as t^4 at early times. The growth deviates from this form once the magnetic energy in the vertical field becomes larger than the energy in the initial field. We comment on the implications of our results to Z-pinch experiments, and a variety of astrophysical systems.Comment: 25 pages, accepted by Physics of Fluids, online version of journal has high resolution figure

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs
    corecore