62 research outputs found

    Risk based resilient network design

    Get PDF
    This paper presents a risk-based approach to resilient network design. The basic design problem considered is that given a working network and a fixed budget, how best to allocate the budget for deploying a survivability technique in different parts of the network based on managing the risk. The term risk measures two related quantities: the likelihood of failure or attack, and the amount of damage caused by the failure or attack. Various designs with different risk-based design objectives are considered, for example, minimizing the expected damage, minimizing the maximum damage, and minimizing a measure of the variability of damage that could occur in the network. A design methodology for the proposed risk-based survivable network design approach is presented within an optimization model framework. Numerical results and analysis illustrating the different risk based designs and the tradeoffs among the schemes are presented. © 2011 Springer Science+Business Media, LLC

    p-Cycle Based Protection in WDM Mesh Networks

    Get PDF
    Abstract p-Cycle Based Protection in WDM Mesh Networks Honghui Li, Ph.D. Concordia University, 2012 WDM techniques enable single fiber to carry huge amount of data. However, optical WDM networks are prone to failures, and therefore survivability is a very important requirement in the design of optical networks. In the context of network survivability, p-cycle based schemes attracted extensive research interests as they well balance the recovery speed and the capacity efficiency. Towards the design of p-cycle based survivableWDM mesh networks, some issues still need to be addressed. The conventional p-cycle design models and solution methods suffers from scalability issues. Besides, most studies on the design of p-cycle based schemes only cope with single link failures without any concern about single node failures. Moreover, loop backs may exist in the recovery paths along p-cycles, which lead to unnecessary stretching of the recovery path lengths. This thesis investigates the scalable and efficient design of segment p-cycles against single link failures. The optimization models and their solutions rely on large-scale optimization techniques, namely, Column Generation (CG) modeling and solution, where segment pcycle candidates are dynamically generated during the optimization process. To ensure full node protection in the context of link p-cycles, we propose an efficient protection scheme, called node p-cycles, and develop a scalable optimization design model. It is shown that, depending on the network topology, node p-cycles sometimes outperform path p-cycles in iii terms of capacity efficiency. Also, an enhanced segment p-cycle scheme is proposed, entitled segment Np-cycles, for full link and node protection. Again, the CG-based optimization models are developed for the design of segment Np-cycles. Two objectives are considered, minimizing the spare capacity usage and minimizing the CAPEX cost. It is shown that segment Np-cycles can ensure full node protection with marginal extra cost in comparison with segment p-cycles for link protection. Segment Np-cycles provide faster recovery speed than path p-cycles although they are slightly more costly than path p-cycles. Furthermore, we propose the shortcut p-cycle scheme, i.e., p-cycles free of loop backs for full node and link protection, in addition to shortcuts in the protection paths. A CG-based optimization model for the design of shortcut p-cycles is formulated as well. It is shown that, for full node protection, shortcut p-cycles have advantages over path p-cycles with respect to capacity efficiency and recovery speed. We have studied a whole sequence of protection schemes from link p-cycles to path p-cycles, and concluded that the best compromise is the segment Np-cycle scheme for full node protection with respect to capacity efficiency and recovery time. Therefore, this thesis offers to network operators several interesting alternatives to path p-cycles in the design of survivable WDM mesh networks against any single link/node failures

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Scalable Column Generation Models and Algorithms for Optical Network Planning Problems

    Get PDF
    Column Generation Method has been proved to be a powerful tool to model and solve large scale optimization problems in various practical domains such as operation management, logistics and computer design. Such a decomposition approach has been also applied in telecommunication for several classes of classical network design and planning problems with a great success. In this thesis, we confirm that Column Generation Methodology is also a powerful tool in solving several contemporary network design problems that come from a rising worldwide demand of heavy traffic (100Gbps, 400Gbps, and 1Tbps) with emphasis on cost-effective and resilient networks. Such problems are very challenging in terms of complexity as well as solution quality. Research in this thesis attacks four challenging design problems in optical networks: design of p-cycles subject to wavelength continuity, design of dependent and independent p-cycles against multiple failures, design of survivable virtual topologies against multiple failures, design of a multirate optical network architecture. For each design problem, we develop a new mathematical models based on Column Generation Decomposition scheme. Numerical results show that Column Generation methodology is the right choice to deal with hard network design problems since it allows us to efficiently solve large scale network instances which have been puzzles for the current state of art. Additionally, the thesis reveals the great flexibility of Column Generation in formulating design problems that have quite different natures as well as requirements. Obtained results in this thesis show that, firstly, the design of p-cycles should be under a wavelength continuity assumption in order to save the converter cost since the difference between the capacity requirement under wavelength conversion vs. under wavelength continuity is insignificant. Secondly, such results which come from our new general design model for failure dependent p-cycles prove the fact that failure dependent p-cycles save significantly spare capacity than failure independent p-cycles. Thirdly, large instances can be quasi-optimally solved in case of survivable topology designs thanks to our new path-formulation model with online generation of augmenting paths. Lastly, the importance of high capacity devices such as 100Gbps transceiver and the impact of the restriction on number of regeneration sites to the provisioning cost of multirate WDM networks are revealed through our new hierarchical Column Generation model

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Survivability stategies in all optical networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.Thesis (M.Sc.)-University of KwaZulu-Natal, 2006.Recent advances in fiber optics technology have enabled extremely high-speed transport of different forms of data, on multiple wavelengths of an optical fiber, using Dense Wavelength Division Multiplexing (DWDM). It has now become possible to deploy high-speed, multi-service networks using DWDM technology. As the amount of traffic carried has increased, any single failure can be catastrophic. Survivability becomes indispensable in such networks. Therefore, it is imperative to design networks that can quickly and efficiently recover from failures. Most research to date in survivable optical network design and operation focuses on single link failures, however, the occurrence of multiple-link failures are not uncommon in networks today. Multi-link failure scenarios can arise out of two common situations. First, an arbitrary link may fail in the network, and before that link can be repaired, another link fails, thus creating a multi-link failure sequence. Secondly, it might happen in practice that two distinct physical links may be routed via the same common duct or physical channel. A failure at that shared physical location creates a logical multiple-link failure. In this dissertation, we conduct an intensive study of mechanisms for achieving survivability in optical networks. From the many mechanisms presented in the literature the focus of this work was on protection as a mechanism of survivability. In particular four protection schemes were simulated and their results analyzed to ascertain which protection scheme achieves the best survivability in terms of number of wavelengths recovered for a specific failure scenario. A model network was chosen and the protection schemes were evaluated for both single and multiple link and node failures. As an indicator of the performance of these protection schemes over a period of time average service availability and average loss in traffic for each protection scheme was also simulated. Further simulations were conducted to observe the percentage link and node utilization of each scheme hence allowing us to determine the strain each protection scheme places on network resources when traffic in the network increases. Finally based on these simulation results, recommendations of which protection scheme and under what failure conditions they should be used are made.Recent advances in fiber optics technology have enabled extremely high-speed transpor

    Optimization of p-cycle protection schemes in optical networks

    Full text link
    La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.Network survivability is a very interesting area of technical study and a critical concern in network design. As more and more data are carried over communication networks, a single outage can disrupt millions of users and result in millions of dollars of lost revenue. Survivability techniques involve providing some redundant capacity within the network and automatically rerouting traffic around the failure using this redundant capacity. This thesis concerns the design of survivable optical networks using p-cycle based schemes, more particularly, path-protecting p-cycles, in link failure scenarios. Our study focuses on the placement of p-cycle protection structures assuming that the working routes for the set of connection requests are defined a priori. Most existing work carried out on p-cycles concerns heuristic algorithms or methods suffering from critical lack of scalability. Thus, the objective of this thesis is twofold: on the one hand, to propose scalable models and solution methods enabling to approach larger problem instances and on the other hand, to produce optimal or near optimal solutions with mathematically proven optimality gaps. For this, we rely on the column generation technique which is suitable to solve large scale linear programming problems. Here, column generation is used as an intelligent way of implicitly enumerating promising cycles to be part of p-cycle designs. At first, we propose mathematical formulations for the master and the pricing problems as well as the first column generation algorithm for the design of survivable networks based on path-protecting p-cycles. The resulting algorithm obtains better solutions within reasonable running time in comparison with existing methods. Then, a much more compact formulation of the pricing problem is obtained. In addition, we also propose a new hierarchical decomposition method which greatly improves the efficiency of the whole algorithm and allows us to solve larger problem instances. As for integer solutions, two heuristic approaches are proposed to obtain good solutions. Next, we dedicate our attention to a systematic comparison of p-cycles and classical shared protection schemes. We perform an accurate comparison by using a unified column generation framework to find provably good results. Afterwards, our study concerns an empirical evaluation of directed and undirected link- and path-protecting p-cycles under asymmetric traffic scenarios. We show how much additional protection cost results from employing bidirectional systems in such scenarios. Finally, we investigate a column generation formulation for the design of p-cycle networks under availability requirements and obtain the first lower bounds for the problem

    Resource Management in Survivable Multi-Granular Optical Networks

    Get PDF
    The last decade witnessed a wild growth of the Internet traffic, promoted by bandwidth-hungry applications such as Youtube, P2P, and VoIP. This explosive increase is expected to proceed with an annual rate of 34% in the near future, which leads to a huge challenge to the Internet infrastructure. One foremost solution to this problem is advancing the optical networking and switching, by which abundant bandwidth can be provided in an energy-efficient manner. For instance, with Wavelength Division Multiplexing (WDM) technology, each fiber can carry a mass of wavelengths with bandwidth up to 100 Gbits/s or higher. To keep up with the traffic explosion, however, simply scaling the number of fibers and/or wavelengths per fiber results in the scalability issue in WDM networks. One major motivation of this dissertation is to address this issue in WDM networks with the idea of waveband switching (WBS). This work includes the author\u27s study on multiple aspects of waveband switching: how to address dynamic user demand, how to accommodate static user demand, and how to achieve a survivable WBS network. When combined together, the proposed approaches form a framework that enables an efficient WBS-based Internet in the near future or the middle term. As a long-term solution for the Internet backbone, the Spectrum Sliced Elastic Optical Path (SLICE) Networks recently attract significant interests. SLICE aims to provide abundant bandwidth by managing the spectrum resources as orthogonal sub-carriers, a finer granular than wavelengths of WDM networks. Another important component of this dissertation is the author\u27s timely study on this new frontier: particulary, how to efficiency accommodate the user demand in SLICE networks. We refer to the overall study as the resource management in multi-granular optical networks. In WBS networks, the multi-granularity includes the fiber, waveband, and wavelength. While in SLICE networks, the traffic granularity refers to the fiber, and the variety of the demand size (in terms of number of sub-carriers)

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Optimización metaheurística para la planificación de redes WDM

    Get PDF
    Las implementaciones actuales de las redes de telecomunicaciones no permiten soportar el incremento en la demanda de ancho de banda producido por el crecimiento del tráfico de datos en las últimas décadas. La aparición de la fibra óptica y el desarrollo de la tecnología de multiplexación por división de longitudes de onda (WDM) permite incrementar la capacidad de redes de telecomunicaciones existentes mientras se minimizan costes. En este trabajo se planifican redes ópticas WDM mediante la resolución de los problemas de Provisión y Conducción en redes WDM (Provisioning and Routing Problem) y de Supervivencia (Survivability Problem). El Problema de Conducción y Provisión consiste en incrementar a mínimo coste la capacidad de una red existente de tal forma que se satisfaga un conjunto de requerimientos de demanda. El problema de supervivencia consiste en garantizar el flujo del tráfico a través de una red en caso de fallo de alguno de los elementos de la misma. Además se resuelve el Problema de Provisión y Conducción en redes WDM con incertidumbre en las demandas. Para estos problemas se proponen modelos de programación lineal entera. Las metaheurísticas proporcionan un medio para resolver problemas de optimización complejos, como los que surgen al planificar redes de telecomunicaciones, obteniendo soluciones de alta calidad en un tiempo computacional razonable. Las metaheurísticas son estrategias que guían y modifican otras heurísticas para obtener soluciones más allá de las generadas usualmente en la búsqueda de optimalidad local. No garantizan que la mejor solución encontrada, cuando se satisfacen los criterios de parada, sea una solución óptima global del problema. Sin embargo, la experimentación de implementaciones metaheurísticas muestra que las estrategias de búsqueda embebidas en tales procedimientos son capaces de encontrar soluciones de alta calidad a problemas difíciles en industria, negocios y ciencia. Para la solución del problema de Provisión y Conducción en Redes WDM, se desarrolla un algoritmo metaheurístico híbrido que combina principalmente ideas de las metaheurísticas Búsqueda Dispersa (Scatter Search) y Búsqueda Mutiarranque (Multistart). Además añade una componente tabú en uno de los procedimiento del algoritmo. Se utiliza el modelo de programación lineal entera propuesto por otros autores y se propone un modelo de programación lineal entera alternativo que proporciona cotas superiores al problema, pero incluye un menor número de variables y restricciones, pudiendo ser resuelto de forma óptima para tamaños de red mayores. Los resultados obtenidos por el algoritmo metaheurístico diseñado se comparan con los obtenidos por un procedimiento basado en permutaciones de las demandas propuesto anteriormente por otros autores, y con los dos modelos de programación lineal entera usados. Se propone modelos de programación lineal entera para sobrevivir la red en caso de fallos en un único enlace. Se proponen modelos para los esquemas de protección de enlace compartido, de camino compartido con enlaces disjuntos, y de camino compartido sin enlaces disjuntos. Se propone un método de resolución metaheurístico que obtiene mejores costes globales que al resolver el problema en dos fases, es decir, al resolver el problema de servicio y a continuación el de supervivencia. Se proponen además modelos de programación entera para resolver el problema de provisión en redes WDM con incertidumbres en las demandas
    corecore