52,542 research outputs found

    An Analysis of Rigid Image Alignment Computer Vision Algorithms

    Get PDF
    Computer vision is a field of computer science that includes methods for acquiring, processing, and analyzing images. Image registration is one of the methods used in the computer vision field to transform different sets of data into one coordinate system to align images. Registration is important in order to be able to compare or integrate the data obtained from multiple measurements. Rigid image alignment is a type of image registration technique used to align two two-dimensional images into a common coordinate system based on two transformation parameters, translation and rotation. Before any comparative studies can be performed on two images acquired at different times, it is crucial to align the two images for correct processing later on. In our research study, we are analyzing the accuracy of registering images using two rigid image alignment algorithms, namely the Principal Axes algorithm and the Fast Fourier Transform (FFT) based phase correlation algorithm. The software for registering images using these two methods is written in MATLAB R2011a. We also compared our results with alignments achieved for the same images using an existing Statistical Parametric Mapping (SPM8) package for registration. Image registration algorithms have been used in many applications and accordingly, algorithms are adopted to suit a particular application. Images used for registration can be derived from different capturing devices like camera, scanner, satellite sensors, etc. Our registration software is based on work with images acquired from a Magnetic Resonance Imaging (MRI) scanner and especially for images taken of a quality assurance (QA) phantom. A QA phantom is used to test the quality of images acquired by measuring different QA parameters on images acquired over a period of time. Images acquired from the MRI scanner at different times are geometrically transformed by rotation and translation. In practice, the maximum angle by which the phantom will get rotated at different times due to varying positioning in the scanner will not be greater than 50 degrees and the maximum displacement will always be less than 50 pixels based on our experience while scanning. By comparing future phantom images with the first image in the series, we can perform a series of Quality Assurance steps to measure any degradation in the MRI device. The QA results can then be used to apply inverse transformations to new customer images to improve their quality. The first step in the QA process is image registration, which is the topic of this thesis. To test the implementations, we rotated and translated known images then we applied the two algorithms and compared the results to the known translation and rotation values. Our analysis shows that the Principal Axes method could successfully register 17 of the 22 non-aligned test images, the FFT method registered 21 test images successfully whereas SPM8 with default settings showed correct alignments for only 9 images in our case study as per our requirement. The Principal Axes algorithm performed better image alignment when the two images were displaced by a larger distance, and the FFT based algorithm performed better for larger rotation angle differences among images. Hence, we conclude that our algorithms have the potential for inclusion in the new QA process

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    A comparative evaluation of 3 different free-form deformable image registration and contour propagation methods for head and neck MRI : the case of parotid changes radiotherapy

    Get PDF
    Purpose: To validate and compare the deformable image registration and parotid contour propagation process for head and neck magnetic resonance imaging in patients treated with radiotherapy using 3 different approachesthe commercial MIM, the open-source Elastix software, and an optimized version of it. Materials and Methods: Twelve patients with head and neck cancer previously treated with radiotherapy were considered. Deformable image registration and parotid contour propagation were evaluated by considering the magnetic resonance images acquired before and after the end of the treatment. Deformable image registration, based on free-form deformation method, and contour propagation available on MIM were compared to Elastix. Two different contour propagation approaches were implemented for Elastix software, a conventional one (DIR_Trx) and an optimized homemade version, based on mesh deformation (DIR_Mesh). The accuracy of these 3 approaches was estimated by comparing propagated to manual contours in terms of average symmetric distance, maximum symmetric distance, Dice similarity coefficient, sensitivity, and inclusiveness. Results: A good agreement was generally found between the manual contours and the propagated ones, without differences among the 3 methods; in few critical cases with complex deformations, DIR_Mesh proved to be more accurate, having the lowest values of average symmetric distance and maximum symmetric distance and the highest value of Dice similarity coefficient, although nonsignificant. The average propagation errors with respect to the reference contours are lower than the voxel diagonal (2 mm), and Dice similarity coefficient is around 0.8 for all 3 methods. Conclusion: The 3 free-form deformation approaches were not significantly different in terms of deformable image registration accuracy and can be safely adopted for the registration and parotid contour propagation during radiotherapy on magnetic resonance imaging. More optimized approaches (as DIR_Mesh) could be preferable for critical deformations

    Mesh-to-raster based non-rigid registration of multi-modal images

    Full text link
    Region of interest (ROI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from CAT scanners as pixel or voxel data. Previously, we presented a 2D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster (M2R) framework to register ROIs in multi-modal images; (ii) a 3D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2D using ground truth provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem where the objective consists of a data term, which involves the signed distance function of the ROI from the reference image, and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The ROI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit (ITK) and Elastix

    Numerical methods for coupled reconstruction and registration in digital breast tomosynthesis.

    Get PDF
    Digital Breast Tomosynthesis (DBT) provides an insight into the fine details of normal fibroglandular tissues and abnormal lesions by reconstructing a pseudo-3D image of the breast. In this respect, DBT overcomes a major limitation of conventional X-ray mam- mography by reducing the confounding effects caused by the superposition of breast tissue. In a breast cancer screening or diagnostic context, a radiologist is interested in detecting change, which might be indicative of malignant disease. To help automate this task image registration is required to establish spatial correspondence between time points. Typically, images, such as MRI or CT, are first reconstructed and then registered. This approach can be effective if reconstructing using a complete set of data. However, for ill-posed, limited-angle problems such as DBT, estimating the deformation is com- plicated by the significant artefacts associated with the reconstruction, leading to severe inaccuracies in the registration. This paper presents a mathematical framework, which couples the two tasks and jointly estimates both image intensities and the parameters of a transformation. Under this framework, we compare an iterative method and a simultaneous method, both of which tackle the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their registration. We evaluate our methods using various computational digital phantoms, uncom- pressed breast MR images, and in-vivo DBT simulations. Firstly, we compare both iter- ative and simultaneous methods to the conventional, sequential method using an affine transformation model. We show that jointly estimating image intensities and parametric transformations gives superior results with respect to reconstruction fidelity and regis- tration accuracy. Also, we incorporate a non-rigid B-spline transformation model into our simultaneous method. The results demonstrate a visually plausible recovery of the deformation with preservation of the reconstruction fidelity
    • …
    corecore