1,312 research outputs found

    A Comparative Study of Some Pseudorandom Number Generators

    Full text link
    We present results of an extensive test program of a group of pseudorandom number generators which are commonly used in the applications of physics, in particular in Monte Carlo simulations. The generators include public domain programs, manufacturer installed routines and a random number sequence produced from physical noise. We start by traditional statistical tests, followed by detailed bit level and visual tests. The computational speed of various algorithms is also scrutinized. Our results allow direct comparisons between the properties of different generators, as well as an assessment of the efficiency of the various test methods. This information provides the best available criterion to choose the best possible generator for a given problem. However, in light of recent problems reported with some of these generators, we also discuss the importance of developing more refined physical tests to find possible correlations not revealed by the present test methods.Comment: University of Helsinki preprint HU-TFT-93-22 (minor changes in Tables 2 and 7, and in the text, correspondingly

    Analysis of Random Number Generators Using Monte Carlo Simulation

    Get PDF
    Revisions are almost entirely in the introduction and conclusion. Results are unchanged, however the comments and recommendations on different generators were changed, and more references were added.Comment: Email: [email protected] 16 pages, Latex with 1 postscript figure. NPAC technical report SCCS-52

    Recent Trends in Image Encryption: A Review

    Get PDF
    Security of multimedia data is gaining acceptance owing to the growth and acceptability of images in various applications and in telecommunication. Encryption is one of the ways to ensure high security of images as they are used in many fields such as in secure medical imaging services, military intelligence, internet and intranet communication, e-banking etc. These images are stored or transmitted through a network; hence the security of such image data is important. In this work, recently developed encryption techniques are studied and analyzed to promote further development of more encryption methods to ensure additional security and versatility. All the techniques reviewed came into existence within the last five years (2011-2015) and are found to be useful for the present day encryption applications. Each technique is unique in its own way, which might be suitable for different applications. As time goes on, new encryption techniques are evolving. Hence, fast and secure conventional encryption techniques will always be needed in applications requiring high rate of security

    Randomness Quality of CI Chaotic Generators: Applications to Internet Security

    Full text link
    Due to the rapid development of the Internet in recent years, the need to find new tools to reinforce trust and security through the Internet has became a major concern. The discovery of new pseudo-random number generators with a strong level of security is thus becoming a hot topic, because numerous cryptosystems and data hiding schemes are directly dependent on the quality of these generators. At the conference Internet`09, we have described a generator based on chaotic iterations, which behaves chaotically as defined by Devaney. In this paper, the proposal is to improve the speed and the security of this generator, to make its use more relevant in the Internet security context. To do so, a comparative study between various generators is carried out and statistical results are given. Finally, an application in the information hiding framework is presented, to give an illustrative example of the use of such a generator in the Internet security field.Comment: 6 pages,6 figures, In INTERNET'2010. The 2nd Int. Conf. on Evolving Internet, Valencia, Spain, pages 125-130, September 2010. IEEE Computer Society Press Note: Best Paper awar

    Optical quantum random number generators: a comparative study

    Get PDF
    Quantum random number generators give the opportunity to, in theory, obtain completely unpredictable numbers only perturbed by the noise in the measurement. The obtained data can be digitalized and processed so that it gives as a result a uniform sequence of binary random numbers without any relation with the classical noise in the system. In this work we analyze the performance of optical QRNGs with three different arrangements: a homodyne detector measuring vacuum fluctuations, a homodyne detector measuring amplified spontaneous emission from an EDFA and a spontaneous emission phase noise-based generator. The raw data from the experiments is processed using a Toeplitz extractor, giving as a result sequences of binary numbers capable of passing the NIST Statistical Test Suite.Universidade de Vigo/CISU
    corecore