1,422 research outputs found

    BioTouchPass: Handwritten Passwords for Touchscreen Biometrics

    Full text link
    This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibleThis work enhances traditional authentication systems based on Personal Identification Numbers (PIN) and One- Time Passwords (OTP) through the incorporation of biometric information as a second level of user authentication. In our proposed approach, users draw each digit of the password on the touchscreen of the device instead of typing them as usual. A complete analysis of our proposed biometric system is carried out regarding the discriminative power of each handwritten digit and the robustness when increasing the length of the password and the number of enrolment samples. The new e-BioDigit database, which comprises on-line handwritten digits from 0 to 9, has been acquired using the finger as input on a mobile device. This database is used in the experiments reported in this work and it is available together with benchmark results in GitHub1. Finally, we discuss specific details for the deployment of our proposed approach on current PIN and OTP systems, achieving results with Equal Error Rates (EERs) ca. 4.0% when the attacker knows the password. These results encourage the deployment of our proposed approach in comparison to traditional PIN and OTP systems where the attack would have 100% success rate under the same impostor scenarioThis work has been supported by projects: BIBECA (MINECO), Bio-Guard (Ayudas Fundación BBVA a Equipos de Investigación Científica 2017) and by UAM-CecaBank. Ruben Tolosana is supported by a FPU Fellowship from Spanish MEC

    Ray's Scheme: Graphical Password Based Hybrid Authentication System for Smart Hand Held Devices

    Get PDF
    Passwords provide security mechanism for authentication and protection services against unwanted access to resources. One promising alternatives of textual passwords is a graphical based password. According to human psychology, human can easily remember pictures. In this paper, I have proposed a new hybrid graphical password based system. The system is a combination of recognition and pure recall based techniques and that offers many advantages over the existing systems and may be more convenient for the user. My approach is resistant to shoulder surfing attack and many other attacks on graphical passwords. This scheme is proposed for smart hand held devices (like smart phones i.e. PDAs, ipod, iphone, etc) which are more handy and convenient to use than traditional desktop computer systems. Keywords: smart phones, graphical passwords, authentication, network securit

    Haptics and the Biometric Authentication Challenge

    Get PDF

    A Design and Analysis of Graphical Password

    Get PDF
    The most common computer authentication method is to use alphanumerical usernames and passwords. This method has been shown to have significant drawbacks. For example, users tend to pick passwords that can be easily guessed. On the other hand, if a password is hard to guess, then it is often hard to remember. To address this problem, some researchers have developed authentication methods that use pictures as passwords. In this paper, I conduct a comprehensive survey of the existing graphical password techniques. I classify these techniques into two categories: recognition-based and recall-based approaches. I discuss the strengths and limitations of each method and point out the future research directions in this area. I also developed three new techniques against the common problem exists in the present graphical password techniques. In this thesis, the scheme of each new technique will be proposed; the advantages of each technique will be discussed; and the future work will be anticipated

    Exploiting behavioral biometrics for user security enhancements

    Get PDF
    As online business has been very popular in the past decade, the tasks of providing user authentication and verification have become more important than before to protect user sensitive information from malicious hands. The most common approach to user authentication and verification is the use of password. However, the dilemma users facing in traditional passwords becomes more and more evident: users tend to choose easy-to-remember passwords, which are often weak passwords that are easy to crack. Meanwhile, behavioral biometrics have promising potentials in meeting both security and usability demands, since they authenticate users by who you are , instead of what you have . In this dissertation, we first develop two such user verification applications based on behavioral biometrics: the first one is via mouse movements, and the second via tapping behaviors on smartphones; then we focus on modeling user web browsing behaviors by Fitts\u27 Law.;Specifically, we develop a user verification system by exploiting the uniqueness of people\u27s mouse movements. The key feature of our system lies in using much more fine-grained (point-by-point) angle-based metrics of mouse movements for user verification. These new metrics are relatively unique from person to person and independent of the computing platform. We conduct a series of experiments to show that the proposed system can verify a user in an accurate and timely manner, and induced system overhead is minor. Similar to mouse movements, the tapping behaviors of smartphone users on touchscreen also vary from person to person. We propose a non-intrusive user verification mechanism to substantiate whether an authenticating user is the true owner of the smartphone or an impostor who happens to know the passcode. The effectiveness of the proposed approach is validated through real experiments. to further understand user pointing behaviors, we attempt to stress-test Fitts\u27 law in the wild , namely, under natural web browsing environments, instead of restricted laboratory settings in previous studies. Our analysis shows that, while the averaged pointing times follow Fitts\u27 law very well, there is considerable deviations from Fitts\u27 law. We observe that, in natural browsing, a fast movement has a different error model from the other two movements. Therefore, a complete profiling on user pointing performance should be done in more details, for example, constructing different error models for slow and fast movements. as future works, we plan to exploit multiple-finger tappings for smartphone user verification, and evaluate user privacy issues in Amazon wish list
    • …
    corecore