405 research outputs found

    Location and resource management for quality of service provisioning in wireless/mobile networks

    Full text link
    Wireless communication has been seen unprecedented growth in recent years. As the wireless network migrates from 2G to 2.5G and 3G, more and more high-bandwidth services have to be provided to wireless users. However, existing radio resources are limited, thus quality-of-service (QoS) provisioning is extremely important for high performance networKing In this dissertation, we focus on two problems crucial for QoS provisioning in wireless networks. They are location and resource management. Our research is aimed to develop efficient location management and resource allocation techniques to provide qualitative services in the future generations of wireless/mobile networks. First, the hybrid location update method (HLU) is proposed based on both the moving distance and the moving direction of mobile terminals. The signaling cost for location management is analyzed using a 2D Markov walk model. The results of numerical studies for different mobility patterns show that the HLU scheme outperforms the methods employing either moving distance or moving direction. Next, a new dynamic location management scheme with personalized location areas is developed. It takes into account terminal\u27s mobility characteristics in different locations of the service area. The location area is designed for each individual mobile user such that the location management cost is minimized. The cost is calculated based on a continuous-time Markov chain. Simulation results acknowledge a lower cost of the proposed scheme compared to that of some known techniques. Our research on the resource management considers the dynamic allocation strategy in the integrated voice/data wireless networks. We propose two new channel de-allocation schemes, i.e., de-allocation for data packet (DASP) and de-allocation for both voice call and data packet (DASVP). We then combine the proposed de-allocation methods with channel re-allocation, and evaluate the performance of the schemes using an analytic model. The results indicate the necessity of adapting to QoS requirements on both voice call and data packet. Finally, a new QoS-based dynamic resource allocation scheme is proposed which differentiates the new and handoff voice calls. The scheme combines channel reservation, channel de-allocation/re-allocation for voice call and packet queue to adapt to QoS requirements by adjusting the number of reserved channels and packet queue size. The superiority of the propose scheme in meeting the QoS requirements over existing techniques is proved by the experimental studies

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Models and Algorithms for Addressing Travel Time Variability: Applications from Optimal Path Finding and Traffic Equilibrium Problems

    Get PDF
    An optimal path finding problem and a traffic equilibrium problem are two important, fundamental, and interrelated topics in the transportation research field. Under travel time variability, the road networks are considered as stochastic, where the link travel times are treated as random variables with known probability density functions. By considering the effect of travel time variability and corresponding risk-taking behavior of the travelers, this dissertation proposes models and algorithms for addressing travel time variability with applications from optimal path finding and traffic equilibrium problems. Specifically, two new optimal path finding models and two novel traffic equilibrium models are proposed in stochastic networks. To adaptively determine a reliable path with the minimum travel time budget required to meet the user-specified reliability threshold α, an adaptive α-reliable path finding model is proposed. It is formulated as a chance constrained model under a dynamic programming framework. Then, a discrete-time algorithm is developed based on the properties of the proposed model. In addition to accounting for the reliability aspect of travel time variability, the α-reliable mean-excess path finding model further concerns the unreliability aspect of the late trips beyond the travel time budget. It is formulated as a stochastic mixed-integer nonlinear program. To solve this difficult problem, a practical double relaxation procedure is developed. By recognizing travelers are not only interested in saving their travel time but also in reducing their risk of being late, a α-reliable mean-excess traffic equilibrium (METE) model is proposed. Furthermore, a stochastic α-reliable mean-excess traffic equilibrium (SMETE) model is developed by incorporating the travelers’ perception error, where the travelers’ route choice decisions are determined by the perceived distribution of the stochastic travel time. Both models explicitly examine the effects of both reliability and unreliability aspects of travel time variability in a network equilibrium framework. They are both formulated as a variational inequality (VI) problem and solved by a route-based algorithm based on the modified alternating direction method. In conclusion, this study explores the effects of the various aspects (reliability and unreliability) of travel time variability on travelers’ route choice decision process by considering their risk preferences. The proposed models provide novel views of the optimal path finding problem and the traffic equilibrium problem under an uncertain environment, and the proposed solution algorithms enable potential applicability for solving practical problems

    System Abstractions for Scalable Application Development at the Edge

    Get PDF
    Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which collect or generate huge amounts of data. Given diverse device capabilities and application requirements, data processing takes place across a range of settings, from on-device to a nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been studied extensively from the perspectives of job placement, scheduling and joint optimization. Typical approaches focus on performance optimization for individual applications. This often requires domain knowledge of the applications, but also leads to application-specific solutions. Application development and deployment over diverse scenarios thus incur repetitive manual efforts. There are two overarching challenges to provide system-level support for application development at the edge. First, there is inherent heterogeneity at the device hardware level. The execution settings may range from a small cluster as an edge cloud to on-device inference on embedded devices, differing in hardware capability and programming environments. Further, application performance requirements vary significantly, making it even more difficult to map different applications to already heterogeneous hardware. Second, there are trends towards incorporating edge and cloud and multi-modal data. Together, these add further dimensions to the design space and increase the complexity significantly. In this thesis, we propose a novel framework to simplify application development and deployment over a continuum of edge to cloud. Our framework provides key connections between different dimensions of design considerations, corresponding to the application abstraction, data abstraction and resource management abstraction respectively. First, our framework masks hardware heterogeneity with abstract resource types through containerization, and abstracts away the application processing pipelines into generic flow graphs. Further, our framework further supports a notion of degradable computing for application scenarios at the edge that are driven by multimodal sensory input. Next, as video analytics is the killer app of edge computing, we include a generic data management service between video query systems and a video store to organize video data at the edge. We propose a video data unit abstraction based on a notion of distance between objects in the video, quantifying the semantic similarity among video data. Last, considering concurrent application execution, our framework supports multi-application offloading with device-centric control, with a userspace scheduler service that wraps over the operating system scheduler

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Reliable network design under supply uncertainty with probabilistic guarantees

    Get PDF
    This paper proposes a bi-level risk-averse network design model for transportation networks with heterogeneous link travel time distributions. The objective of the network design is to minimise the total system travel time (TSTT) budget (TSTTB), which consists of the mean TSTT and a safety margin. The design is achieved by selecting optimal link capacity expansions subject to a fixed expansion budget. Users’ selfish behaviour and risk attitude are captured in the lower level traffic assignment constraints, in which travellers select routes to minimise their own path travel time budget. The properties of the design problem are analysed analytically and numerically. The analysis shows that despite the lack of knowledge of travel time distributions, the probabilities that the actual TSTT and the actual path travel time are, respectively, within the optimal TSTTB and the minimum path travel time budget under optimal design have lower bounds. The lower bounds are related to the system manager's and travellers’ risk aversion. The optimal TSTTB is proven to be bounded below even when the link expansion budget is unlimited.postprin

    Power Approaches for Implantable Medical Devices.

    Get PDF
    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources
    • …
    corecore