
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-2008 

Models and Algorithms for Addressing Travel Time Variability: Models and Algorithms for Addressing Travel Time Variability: 

Applications from Optimal Path Finding and Traffic Equilibrium Applications from Optimal Path Finding and Traffic Equilibrium 

Problems Problems 

Zhong Zhou 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Civil Engineering Commons 

Recommended Citation Recommended Citation 
Zhou, Zhong, "Models and Algorithms for Addressing Travel Time Variability: Applications from Optimal 
Path Finding and Traffic Equilibrium Problems" (2008). All Graduate Theses and Dissertations. 129. 
https://digitalcommons.usu.edu/etd/129 

This Dissertation is brought to you for free and open 
access by the Graduate Studies at 
DigitalCommons@USU. It has been accepted for 
inclusion in All Graduate Theses and Dissertations by an 
authorized administrator of DigitalCommons@USU. For 
more information, please contact 
digitalcommons@usu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/19681787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.usu.edu%2Fetd%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/129?utm_source=digitalcommons.usu.edu%2Fetd%2F129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


MODELS AND ALGORITHMS FOR ADDRESSING TRAVEL TIME VARIABILITY: 

APPLICATIONS FROM OPTIMAL PATH FINDING AND TRAFFIC 

EQUILIBRIUM PROBLEMS 

 
by 
 
 

Zhong Zhou 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree 

 
of 
 

DOCTOR OF PHILOSOPHY 
 

in 
 

Civil and Environmental Engineering 
 
 

Approved: 
 
__________________________                                    ___________________________ 
Anthony Chen                Luis Bastidas 
Major Professor           Committee Member 
 
__________________________             ___________________________ 
Jagath J. Kaluarachchi         YangQuan Chen 
Committee Member                    Committee Member 
 
__________________________             ___________________________ 
Yong Seog Kim         Byron R. Burnham 
Committee Member                    Dean of Graduate Studies  
            
            
             

UTAH STATE UNIVERSITY 
Logan, Utah 

 

2008 



 

 

ii
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Zhong Zhou 2008 
All Right Reserved 

 
 
 
 
 
 
 
 
 



 

 

iii
ABSTRACT 

 
 

Models and Algorithms for Addressing Travel Time Variability:  
 

Applications from Optimal Path Finding and Traffic Equilibrium Problems 
 
 

by 
 
 

Zhong Zhou, Doctor of Philosophy 
 

Utah State University, 2008 
 
 

Major Professor: Dr. Anthony Chen 
Department: Civil and Environmental Engineering 
 
 

An optimal path finding problem and a traffic equilibrium problem are two 

important, fundamental, and interrelated topics in the transportation research field. Under 

travel time variability, the road networks are considered as stochastic, where the link 

travel times are treated as random variables with known probability density functions. By 

considering the effect of travel time variability and corresponding risk-taking behavior of 

the travelers, this dissertation proposes models and algorithms for addressing travel time 

variability with applications from optimal path finding and traffic equilibrium problems. 

Specifically, two new optimal path finding models and two novel traffic equilibrium 

models are proposed in stochastic networks.  

To adaptively determine a reliable path with the minimum travel time budget 

required to meet the user-specified reliability threshold α, an adaptive α-reliable path 

finding model is proposed. It is formulated as a chance constrained model under a 

dynamic programming framework. Then, a discrete-time algorithm is developed based on 



 

 

iv
the properties of the proposed model. In addition to accounting for the reliability aspect 

of travel time variability, the α-reliable mean-excess path finding model further concerns 

the unreliability aspect of the late trips beyond the travel time budget. It is formulated as 

a stochastic mixed-integer nonlinear program. To solve this difficult problem, a practical 

double relaxation procedure is developed. 

By recognizing travelers are not only interested in saving their travel time but also 

in reducing their risk of being late, a α-reliable mean-excess traffic equilibrium (METE) 

model is proposed. Furthermore, a stochastic α-reliable mean-excess traffic equilibrium 

(SMETE) model is developed by incorporating the travelers’ perception error, where the 

travelers’ route choice decisions are determined by the perceived distribution of the 

stochastic travel time. Both models explicitly examine the effects of both reliability and 

unreliability aspects of travel time variability in a network equilibrium framework. They 

are both formulated as a variational inequality (VI) problem and solved by a route-based 

algorithm based on the modified alternating direction method. 

In conclusion, this study explores the effects of the various aspects (reliability and 

unreliability) of travel time variability on travelers’ route choice decision process by 

considering their risk preferences. The proposed models provide novel views of the 

optimal path finding problem and the traffic equilibrium problem under an uncertain 

environment, and the proposed solution algorithms enable potential applicability for 

solving practical problems. 

                                               (280 pages)  
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CHAPTER 1 
 

INTRODUCTION 

Uncertainty is unavoidable in real life. It surrounds all aspects of decision-making 

and affects our daily life as well as society. According to Haimes (1998), uncertainty is: 

“the inability to determine the true state of affairs of a system.” In general, uncertainty 

can be separated into two main categories: objective uncertainties and subjective 

uncertainties. The objective uncertainties can arise from stochastic variability while the 

subjective uncertainties may account for incomplete knowledge or information. More 

specifically, the stochastic variability may occur due to different time, location, or 

individual heterogeneity and the limitation of knowledge may induce the uncertainty of 

model, parameter or decision (see Figure 1.1). Similarly, as pointed by Bellman and 

Zadeh (1970): “Much of the decision-making in the real world takes place in an 

environment in which the goals, the constraints and the consequences of possible actions 

are not known precisely.” That is, real-life decisions are usually made in a state of 

uncertainty. Furthermore, because of the trade-off between getting more accurate 

information and reducing the corresponding expense, uncertainty arises from incomplete 

information will almost surely be used in the real-life decision-making process. 

Therefore, to model, analyze and solve the problems in uncertain environments has been 

an important and active research topic in many areas, such as economics, finance and 

engineering. 

In transportation, uncertainty is a critical and inseparable part of many problems. 

For example, the road network is one of the systems that serves the travel demands in 

order to connect people engaged in various activities (e.g., work, traveling, shopping, 
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Figure 1.1 Classification of uncertainty (adapted from Haimes, 1998). 
 
 
 
etc.) at different locations. The uncertainty of network travel times exists in both supply 

side (roadway capacity variation) and demand side (travel demand fluctuation). Figure 

1.2 provides an illustration of various sources of uncertainty that contribute to travel time 

variability. 

From the figure, we can observe that several exogenous sources of uncertainty 

exist in the supply side. Weather conditions refer to environmental conditions that can 

lead to changes in traveler behavior. For example, travelers may lower their speeds or 

increase their headways (spacing between vehicles) due to reduced visibility when fog, 

rain or snow is present. Traffic incidents, such as car crashes, breakdowns or debris in 

lanes, often disrupt the normal flow of traffic. Work zones are construction activities on 

the roadways that usually introduce physical changes to the highway environment. The 

number or width of lanes may be changed, shoulders may be eliminated, or roadways 

may be temporarily closed. Delays caused by work zones have been regarded as one of 

the most frustrating conditions that travelers encounter on their trips. Traffic control 



 

3
devices, such as signal timing and ramp metering, also contribute to travel time 

variability. The uncertainty introduced by these supply-side sources can be referred to as 

stochastic link capacity variations, and typically lead to non-recurrent congestion (Chen 

et al., 2002; Lo, Luo, and Siu, 2006; Al-Deek and Emam, 2006). 

On the other hand, there are several sources of uncertainty that exist in the 

demand side. Travel demand fluctuations can be introduced by temporal factors, such as 

time of day, day of week or seasonal effects. Special events are a special case of travel 

demand fluctuations, where the traffic flow is significantly different from the ‘typical’ 

pattern in the vicinity of the event. Population characteristics, such as age, car ownership, 

and household income, also affect the propensity of travel demand. Traffic information 

provided by Advanced Traveler Information Systems (ATIS) can also influence the 

travelers’ trip decision, including their departure time, destination, mode, and route 

choice, which consequently affect the traffic flow pattern. These demand variations 

usually lead to recurrent congestion (Asakura and Kashiwadani, 1991; Clark and 

Watling, 2005). 

There are also complex interactions between the supply-side and demand-side 

sources of uncertainty. For example, bad weather may reduce roadway capacity in the 

network, and may at the same time change the spatial and temporal pattern of travel 

demand, because travelers may decide to change their departure time, choose a different 

route, or even cancel the trip. In short, these uncertain events result in the variation of 

traffic flow, which directly contributes to the spatial and temporal variability of network 

travel times. Such travel time variability introduces uncertainty for travelers such that 

they do not know exactly when they will arrive at the destination. Thus, it is considered  
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Figure 1.2 Sources (not exhaustive!) of uncertainty introducing the travel time variability 
(modified from van Lint, van Zuylen, and Tu, 2008) 

 
 
as a risk to a traveler making a trip. 

The effects of the travel time variability on travelers’ route choice behaviors have 

been studied by several empirical surveys (Abdel-Aty, Kitamura, and Jovanis, 1995; 

Small et al., 1999; Lam, 2000; FHWA, 2001; Brownstone et al., 2003; Cambridge 

Systematics et al., 2003; Recker et al., 2005). Abdel-Aty, Kitamura, and Jovanis (1995) 

found that travel time reliability was either the most or second most important factor for 

most commuters. In the study by Small et al. (1999), they found that both individual 

travelers and freight carriers were strongly averse to scheduling mismatches. For 

example, the individual commuters are willing to pay a premium from $0.17 - $0.26 
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per/min of standard deviation in order to avoid congestion and to achieve greater 

reliability in travel times. Report generated by FHWA (2001) showed that shippers and 

carriers assign a value to increases in travel time, ranging from $25 to almost $200 per 

hour, depending on the product carried. From the two value-pricing projects in Southern 

California, Lam (2000) and Brownstone et al. (2003) also consistently found that 

travelers were willing to pay a substantial amount to reduce variability in travel time. 

Another study conducted by Recker et al. (2005) on the freeway system in Orange 

County, California observed that: (i) both travel time and travel time variability were 

higher in peak hours than non-peak hours; (ii) both travel time and travel time variability 

were much higher in winter months than in other seasons; and (iii) travel time and travel 

time variability were highly correlated. According to these observations, they suggested 

that commuters preferred departing earlier to avoid the possible delays caused by travel 

time variability. These empirical studies revealed that travelers considered travel time 

variability as a risk in their route choice decisions. They are interested in not only travel 

time saving but also the travel time variability reduction to minimize risk. Thus, it is 

sufficient to say travel time variability is a significant factor for travelers when making 

their route choice decisions under risk or circumstances where they do not know with 

certainty about the outcome of their decisions. 

Furthermore, a recent empirical study conducted by van Lint, van Zuylen, and Tu 

(2008) reveals that the travel time distribution is not only very wide but also heavily 

skewed with a long fat tail. For example, it has been shown that about 5% of the 

“unlucky drivers” incur almost five times as much delay as the 50% of the “fortunate 

drivers” on the densely used freeway corridors in the Netherlands. It has also been found 
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that the cost of unexpected delay for trucks is another 50 percent to 250 percent higher 

(FHWA, 2001). Therefore, the consequence of these heavily skewed travel times on the 

right tail (i.e., the late trips with unacceptable travel times) may be much more serious 

than those of modest delays and it has a significant impact on travelers’ route choice 

behavior. 

The uncertainty of travel time variability discussed above can be considered as 

objective uncertainty, which cannot be controlled by the travelers. In additional to the 

objective uncertainty, the travelers may also encounter subjective uncertainty during their 

route choice decision process. In this study, the subjective uncertainty refers to the 

travelers’ perception error of the stochastic travel time. That is, the travelers have to make 

their trip decision based on their estimated travel time distribution rather than on the 

actual travel time distribution due to the inability of the travelers to accurately estimate 

the actual travel time distribution. 

As shown in Figure 1.2, various sources of uncertainty introduce either recurrent 

or non-recurrent congestion. The congestion threatens the mobility, deteriorates the air 

quality and affects the satisfaction of highway users as well as the economy. The Texas 

Transportation Institute's 2005 Urban Mobility Report (Schrank and Lomax, 2005) 

estimated that the national traffic congestion cost is $63.1 billion in the year of 2003. 

Corresponding to the dollar losses is 3.7 billion hours of delay and 2.3 billion gallons of 

excess fuel consumed. The growth in road traffic combined with constraints on major 

infrastructure investment have led to an increased emphasis on advanced transportation 

management and information strategies to meet the growing demands by influencing the 

travel patterns of road users. In particular, the Advanced Traveler Information Systems 
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(ATIS) that utilize recent information technologies, especially the Internet and wireless 

communications, are deeply changing the ways we travel. However, there has been 

insufficient emphasis on the basic research in trying to understand how travelers make 

their travel decisions in response to this travel information. A better understanding of 

route choice and the factors that influence the routes chosen are fundamental in 

exploiting such strategies to better utilize network capacity and travel information, such 

that congestion could be reduced and the whole system performance could be improved.  

In this dissertation, we are interested in the optimal path finding problem and the 

traffic equilibrium problem in stochastic networks. These two problems are fundamental 

and interrelated in transportation system, and inherently incorporate the travelers’ route 

choice behaviors and risk preferences. 

The optimal path finding problem is an important and intrinsic research topic in 

transportation area. It is to find an optimal path according to certain route choice 

criterion. Depending on the assumption of travel time characteristics in the network, the 

optimal path finding problem can be classified into two cases: deterministic and the 

stochastic. In a deterministic environment, the path finding problem is usually defined as 

the Shortest Path (SP) problem in terms of distance, time, cost, or a combination of 

deterministic attributes (Bellman, 1958; Dijkstra, 1959; Dantzig, 1960); while in an 

uncertain environment, the link/path travel time variations and their associated 

probability density functions should be explicitly considered when determining the 

optimal path. Most existing methods for dealing with travel time variability are based on 

the Expected Value Model (EVM), which is to find the optimal path with the minimum 

expected travel time. However, the EVM is unable to account for the travel time 
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variability. Therefore, the optimal path found by EVM may be risky, i.e., it has a low 

expected travel time, yet has poor reliabilities. 

Traffic equilibrium problem, also known as the traffic assignment problem, is to 

find the equilibrium flow pattern over a given urban transportation network. It is the last 

step of the four-step travel forecasting process (Meyer and Miller, 2001; Ortuzar and 

Willumsen, 2001). Given the travel demand between origin-destination (O-D) pairs (i.e., 

travelers), and travel cost function for each link of the transportation network, the traffic 

equilibrium problem determines the traffic flow pattern and various performance 

measures (e.g., total system travel time, fuel consumption and emission, etc.) of the 

network. It stems from the relationship between the link travel time and the link flows, or 

equivalent from the interactions between congestion and travel decisions. Therefore, a 

route choice model is embedded in the traffic equilibrium model, which represents 

individual route choice decisions between various O-D pairs, such that the traffic flow 

pattern for the whole transportation network is determined. Congestion is explicitly 

considered through the link travel time functions and the interactions with route choice 

decisions of the travelers. Given an optimal route choice criterion, if congestion effect is 

not taken into account and all travelers are choosing route according to this common 

criterion, then the traffic equilibrium problem will degenerate to the optimal path finding 

problem, where each traveler will travel based on the optimal path finding results 

accordingly. However, the travel time variability is naturally neglected in the 

conventional user equilibrium (UE) model, where travelers are all assumed to be risk-

neutral and the route choice decisions are based on the expected travel time. 

To account for the travel time variability, one popular measure of travelers’ risk 
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preference is the travel time reliability. It is concerned with the probability that a trip 

between a given O-D pair could be made successfully within a given time interval or a 

specified level-of-service (Asakura and Ksahiwadani, 1991; Asakura, 1996). The reports 

issued by the Federal Highway Administration (FHWA, 2006) documented that travelers, 

especially commuters, do add a 'buffer time' to their expected travel time to ensure more 

frequent on-time arrivals when planning a trip. Travelers are expecting the answer to the 

questions that concerns with the travel time reliability, such as “how much time do I need 

to allow?” or “how reliable is the trip?” However, in reality, considering only the 

reliability aspect may not be adequate to describe travelers’ risk preferences under travel 

time variability. It does not address travelers’ concern about the unreliability aspect in 

their route choice decisions, such as “how bad should I expect from the worse cases?”, 

where trip times longer than they expected would be considered as “unreliable” or 

“unacceptable” (Cambridge Systematics et al., 2003). Therefore, it is highly desirable to 

consider the unreliability aspect of the travel time variability in travelers’ route choice 

decision process, especially when we know that the travel time distribution in real world 

is generally asymmetric and highly skew with long fat tail. 

Therefore, the primary goal of this research is to study the optimal path finding and 

traffic equilibrium problem by considering the travelers’ route choice behaviors and risk 

preferences under travel time variability. With this overall goal of the research, the 

specific objectives of the dissertation can be defined as follows: 

1. To explore the travelers’ concern of the reliability aspect of the uncertain travel time 

and its effects in their route choice decision process.   

2. To investigate traveler’s route choice decision under consideration of both reliability 
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and unreliability aspects of travel time variability. 

3. To examine the travelers’ perception error on travel time variability and how this 

perception error affects travelers’ route choice decision. 

4. To develop new optimal path finding and traffic equilibrium models that incorporate 

the travelers’ concerns above (reliability, unreliability and perception error) in their 

route choice decisions and risk preferences. 

5. To formulate the proposed path finding and traffic equilibrium models, and provide 

computational efficient and practical solution procedures.  

6. To conduct numerical studies to demonstrate the proposed models and solution 

procedures. 

This dissertation is comprised of eight chapters in total. This chapter briefly 

describes the problem statement, the objectives and scope of the research, as well as the 

organization of this dissertation.  

Chapter 2 provides a literature review of optimal path finding problems and traffic 

equilibrium problems. 

Chapter 3 and Chapter 4 contain two papers on the optimal path finding problem 

on stochastic networks. Chapter 3 proposes an adaptive α-reliable path finding problem, 

where a reliable path is determined adaptively by the minimum travel time budget 

according to a predefined travel time reliability threshold. That is, during the traveling 

period, travelers are able to dynamically adjust their routing strategy and acquire a more 

accurate estimation of their travel time budget. This adaptive approach provides travelers 

more flexibility to better arrange their schedule and activities. The adaptive α-reliable 

path finding problem is formulated as a chance constrained model (CCM), where the 
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reliability based chance constraint is explicitly described under the dynamic 

programming framework. A discrete-time algorithm is developed to find the adaptive α-

reliable path. The main contributions of this part of research are formulating such 

problem, mathematically proving some properties of the proposed model, and providing 

reliable and efficient numerical implementations. 

Chapter 4 presents an α-reliable mean-excess path finding problem, where the 

mean-excess travel time is proposed and adopted as the route choice criterion. This 

optimal path finding criterion accounts for not only the reliability aspect that the traveler 

wishes to arrive at his destination within the travel time budget, but also the unreliability 

aspect of encountering worst travel times beyond the acceptable travel time budget. The 

proposed model is formulated as a stochastic nonlinear mixed-integer programming. To 

solve this difficult problem, a double-relaxation scheme is developed to find the α-

reliable mean-excess path. The major contributions of this part of the research are in 

formulating the optimal path finding problem by considering both reliability and 

unreliability concerns of travelers under travel time variability, and in proposing an 

efficient and practical solution algorithm. To our best knowledge, there has been no such 

study on the optimal path finding problem addressing the reliability and unreliability 

aspects together. 

Chapter 5, Chapter 6, and Chapter 7 include three papers on the traffic 

equilibrium problem in stochastic networks. Chapter 5 proposes an α-reliable mean-

excess traffic equilibrium (METE) model, where travelers attempt to minimize their 

individual mean-excess travel time. In this way, both reliability and unreliability aspects 

of travel time variability are explicitly incorporated in the travelers’ route choice decision 
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process. It simultaneously addresses both questions of "how much time do I need to 

allow?" and "how bad should I expect from the worse cases?" Therefore, travelers' route 

choice behavior can be considered in a more accurate and complete manner in a network 

equilibrium framework to reflect their risk preferences under an uncertain environment. 

The model is formulated as a general variational inequality (VI) problem. Qualitative 

properties of the model are also rigorously proved. For solving the proposed model, a 

route-based traffic assignment algorithm based on the modified alternating direction 

method is adopted. The main contributions in this part of research are modeling, 

formulating and solving the traffic equilibrium problem that explicitly considers both 

reliability and reliability aspects of the travel time variability in travelers’ route choice 

decision process. 

Chapter 6 presents a comparative analysis of three user equilibrium models under 

travel time variability (i.e., the traditional user equilibrium (UE) model, the demand 

driven travel time reliability-based user equilibrium (DRUE) model, and the METE 

model), where the travel time variability is induced by the day-to-day travel demand 

variation. The major contributions of this part of research are to analytically derive the 

link/path travel time distributions and equilibrium conditions from the day-to-day travel 

demand variation, and to conduct a comparative analysis of the three user equilibrium 

models. 

Chapter 7 introduces a stochastic mean-excess traffic equilibrium (SMETE) 

model. It addresses the effect of travelers’ perception error on their route choice decision 

under travel time variability. In the SMETE model, the travelers are assumed to minimize 

their individual perceived mean-excess travel time based on the perceived travel time 
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distribution that is composed of both distributions of the random path travel time and the 

perception error. It reflects the travelers’ perception of the real travel time distribution 

based on his/her individual knowledge about the travel time variability. In general, the 

perceived travel time distribution is hard to derive and even has no analytical form at all. 

Therefore, a moment analysis approach is adopted to derive the perceived mean-excess 

travel time. The proposed model is formulated as a variational inequality (VI) problem, 

and solved by a route-based algorithm based on the modified alternating direction 

method. Qualitative properties of the model are also rigorously proved. To our best 

knowledge, this is the first attempt to integrate the traveler's perception error, travel time 

reliability and unreliability into a unified traffic equilibrium framework. The 

corresponding SMETE model is completely novel. It provides a more complete manner 

for considering travelers' route choice decisions to reflect their risk preferences under an 

uncertain environment. The major contributions of this part of research are to define and 

formulate such model, provide some qualitative properties of the VI formulation, and 

develop a solution procedure with potential applicability for solving practical problems. 

Chapter 8 is the conclusion of the dissertation. Findings and contributions of this 

dissertation are summarized. Further, recommendations for future research are included 

in this chapter. 

 
References 

 
 
Abdel-Aty, M., R. Kitamura, and P. Jovanis. 1995. Exploring route choice behavior using 

geographical information system-based alternative routes and hypothetical travel 
time information input. Transportation Research Record 1493: 74-80. 

 



 

14
Al-Deek, H., and E B. Emam. 2006. New methodology for estimating reliability in 

transportation networks with degraded link capacities. Journal of Intelligent 
Transportation Systems 10(3): 117-129. 

 
Asakura, Y. 1996. Reliability measures of an origin and destination pair in a deteriorated 

road network with variable flows, p. 273-288. Proceedings of the Fourth Meeting 
of the EURO Working Group on Transportation, University of Newcastle upon 
Tyne, UK. 

 
Asakura, Y., and M. Kashiwadani. 1991. Road network reliability caused by daily 

fluctuation of traffic flow. European Transport, Highways & Planning 19: 73-84. 
 
Bellman, R. E. 1958. On a routing problem. Quarterly of Applied Mathematics 16: 87-90. 
 
Bellman, R. E., and L. A. Zadeh. 1970. Decision making in a fuzzy environment. 

Management Science 17: 141-164. 
 
Brownstone, D., A. Ghosh, T. F. Golob, C. Kazimi, and D. V. Amelsfort, 2003. Drivers' 

willingness-to-pay to reduce travel time: Evidence from the San Diego I-15 
congestion pricing project. Transportation Research Part A 37(4): 373-387. 

 
Cambridge Systematics, Inc., Texas Transportation Institute, University of Washington, 

Dowling Associates. 2003. Providing a highway system with reliable travel times. 
NCHRP Report No. 20-58[3], Transportation Research Board, National Research 
Council, U.S.A. 

 
Chen, A., Yang, H., Lo, H. K., and Tang, W. H. 2002. Capacity reliability of a road 

network: An assessment methodology and numerical results. Transportation 
Research Part B. 36: 225-252. 

 
Clark, S. D., and D. Watling. 2005. Modeling network travel time reliability under 

stochastic demand. Transportation Research Part B 39(2): 119-140. 
 
Dantzig, G. B. 1960. On the shortest route through a network. Management Science 6: 

187-190. 
 
Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerical 

Mathematics 1: 269-271. 
 
FHWA. 2001. Creating a Freight Sector within HERS. White paper prepared for FHWA 

by HLB Decision Economics, Inc. 
 
FHWA. 2006. Travel time reliability: Making it there on time, all the time. Report No. 

70, Federal Highway Administration. 
 



 

15
Haimes, Y. Y. 1998. Risk modeling, assessment and management. John Wiley & Sons, 

New York. 744 p. 
 
Lam, T. 2000. The effect of variability of travel time on route and time-of-day choice. 

Unpublished Ph.D. dissertation. University of California, Irvine. 174 p. 
 
Lo, H. K., X. W. Luo, and B. W. Y. Siu. 2006. Degradable transport network: Travel 

time budget of travelers with heterogeneous risk aversion. Transportation Research 
Part B 40: 792-806. 

 
Meyer, M. D., and E. J. Miller. 2001. Urban transportation planning: A decision-oriented 

approach, McGraw Hill, New York. 656 p. 
 
Ortuzar, J. D., and L. G. Willumsen. 2001. Modelling transport, Wiley, New York. 514 p. 
 
Recker, W., Y. Chung, J. Park, L. Wang, A. Chen, Z. Ji, H. Liu, M. Horrocks, and J. S. 

Oh. 2005. Considering risk-taking behavior in travel time reliability. Report No. 
4110, California Partners for Advanced Transit and Highways. 

 
Schrank, D. L., and T. J. Lomax, 2005. The urban mobility report. Texas Transportation 

Institutite. 
 
Small, K. A., R. Noland, X. Chu, and D. Lewis, 1999. Valuation of travel-time savings 

and predictability in congested conditions for highway user-cost estimation. 
NCHRP Report No. 431, Transportation Research Board, National Research 
Council, U.S.A. 

 
van Lint, J. W. C., H. J. van Zuylen, and H. Tu. 2008. Travel time unreliability on 

freeways: Why measures based on variance tell only half the story. Transportation 
Research Part A 42(1): 258-277. 



 

 

16
CHAPTER 2 

 
LITERATURE REVIEW 

The primary goal of this research is to study the optimal path finding and traffic 

equilibrium problems by considering the travelers’ route choice behaviors and risk 

preferences under travel time variability.  Therefore, the objective of the literature 

review is to provide some understanding of the previous research on the optimal path 

finding and traffic equilibrium problems.  

 
Optimal Path Finding Problems 

 
 

Finding optimal path is an important and intrinsic research topic in various fields, 

such as operations research, computer science, telecommunication, etc. In transportation, 

the optimal path finding problem, in simplicity, is to find an optimal path in terms of 

certain route choice criteria (e.g., distance, time, cost or a combination of different 

attributes). In a deterministic environment, where link travel time (or link weight, length, 

or cost) is assumed to be deterministic and nonnegative in the network, the optimal path 

is usually defined as the shortest path with minimum travel time (weight or cost). 

Extensive studies have been done to solve the shortest path (SP) problem and many 

efficient algorithms have been developed. To find the shortest path between one node to 

all other nodes (i.e. One-to-All), several tree building algorithms has been proposed 

(Bellman, 1958; Dijkstra, 1959). In order to get the shortest paths between all nodes at 

one time, All-to-All algorithms were developed by Floyd (1962) and Dantzig (1966) 

based on matrix manipulations. These algorithms have been widely applied in network 
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analysis. In the past several decades, a set of studies were conducted on the deterministic 

shortest path finding problem (Nicholson, 1966; Dial, 1969; Dial et al. 1979; Ahuja, 

Magnanti, and Orlin, 1993; Glover, Klingman, and Philips, 1985; Goldberg and Radzik, 

1993; Ziliaskopoulos and Mahmassani, 1993). Excellent reviews on this topic have been 

provided by Dreyfus (1969), Steenbrink (1974), Vliet (1978), and Gallo and Pallottino 

(1984). The computational performance of various algorithms have been studied and 

improved by Dial (1969), Cherkassky, Boldberg, and Radzik (1996), and Zhan and Noon 

(1998). 

However, in real life situations, the environment is often uncertain. For 

transportation, the uncertainties could arise from various sources, such as demand 

fluctuations, incidents, bad weather, and traffic control devices (Cambridge Systematics 

et al., 2003). Consequently, link travel times are no longer deterministic and have to be 

treated as random variables. Therefore, the associated link travel time probability density 

functions should be explicitly incorporated in the travelers’ decision process when 

determining the optimal path.  

Most existing methods for dealing with travel time uncertainty have focused on 

the stochastic shortest path (SSP) problem, which is to find the shortest path with the 

minimum expected travel time/cost or maximum utility (Loui, 1960; Mirchandani and 

Soroush, 1985; Murthy and Sarkar, 1996; Hall, 1986; Fu and Rilett, 1998; Miller-Hooks 

and Mahmassani, 2000; Waller and Ziliaskopoulos, 2002; Dean, 2004; Fan, Kalaba, and 

Moore, 2005a). Mirchandani (1976) studies the optimal path finding problem where link 

travel time follows two independent states according to the Bernoulli distribution. Loui 

(1983) and Eiger, Mirchandani, and Soroush (1985) defined the expected utility of 
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random link travel time as the link expected utility and the shortest path as the path with 

the maximal path expected utility value. The advantage of these methods are that efficient 

shortest path algorithms developed for the deterministic setting (Bellman, 1958; Dijkstra, 

1959) can be readily adapted to identify the maximum expected utility path when the 

linear or exponential utility functions are adopted. Mirchandani and Soroush (1985) 

studied the SSP when the utility function is in the quadratic form. Due to the nonadditive 

property of the path utility function, i.e. the path utility is not equal to the summation of 

link utility value, the principle of optimality in dynamic programming may not hold and 

all feasible paths has to be enumerated in their algorithm. The efficiency of the algorithm 

was improved by narrowing down the feasible path set through a pruning scheme by 

Murthy and Sarkar (1996). Algorithms for determining the maximum expected value path 

was also presented under the general nonlinear and non-increasing utility function (Bard 

and Bennett, 1991) and the piecewise linear and concave utility function (Murthy and 

Sarkar, 1998). To utilize the recent development of the Advanced Traveler Information 

System (ATIS), the temporal dimension was also incorporated into the consideration of 

finding optimal path with minimum path time/cost or maximum utility. In this stochastic 

and dynamic environment, link travel time distribution is assumed to be a function of 

time dimension. Hall (1986) is believed to have conducted the first study investigating 

the stochastic and dynamic optimal path finding problem, where the optimal path is the 

one with the minimum expected path travel time, and the link travel time is assumed to 

be discretely distributed. In order to account for the continuous and independent link 

travel time distribution, Fu and Rilett (1998) proposed an approximate method to 

estimate the expected path travel time and the path travel time variance. He, Kornhauser, 
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and Ran (2002) determined the optimal path with the minimum expected disutility 

instead of the expected travel time, where the disutility function is calibrated based on the 

path travel time distribution. Excellent reviews and discussions on the time-dependent 

stochastic shortest path problems can be found in Miller-Hooks and Mahmassani (2000) 

and Dean (2004). Furthermore, Waller and Ziliaskopoulos (2002) and Fan, Kalaba, and 

Moore (2005a) extended the stochastic shortest path problems to incorporate the 

correlation between random link travel times.  

However, setting the expected value as the optimality path index is unable to 

account for the travel time variability. According to Asakura and Kashiwadani (1991) 

and Asakura (1996), travel time reliability considers the probability that a trip between an 

O-D pair can be successfully completed within a certain period of time or at a particular 

level-of-service. The minimum expected travel time path could be risky for travelers who 

are more concerned about the travel time reliability when finding optimal paths in an 

uncertain environment. Recent empirical studies (Abdel-Aty, Kitamura, and Jovani, 

1995; Small et al., 1999; Lam, 2000; Brownstone et al., 2003) reveal that the travelers are 

interested in not only travel time saving but also the reduction of travel time variability, 

and consider travel time variability as a risk in their route choice decision. Therefore, 

they may prefer a path with slightly greater expected travel time but with lower 

probability of encountering very high travel times. 

In order to better account for the risk coming from travel time variability, various 

optimal path finding models have been proposed. Loui (1983) mentioned that the optimal 

path could be the path with the minimum weighted average of the most pessimistic (the 

longest) path travel time realization and the most optimistic (the shortest) path travel time 
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realization. Yu and Yang (1998) proposed a Min-Max model to identify a robust path 

with the minimal possible longest path travel time. In other words, the path travel time in 

the worst scenario of the optimal path is better than that of other paths. Similar approach 

under the robust optimization framework was developed by Bertsimas and Sim (2003), 

where the link travel time distributions are assumed to be symmetrical, bounded and 

independent from each other. Both Min-Max and robust models recommend the optimal 

path to be the best alternative in the worst situation. Because of the probability of the 

longest travel time occurred could be very low, the Min-Max model may provide overly 

conservative solutions in a general situation. Thus, this type of model is particular useful 

when the consequence of an extreme case is very significant, such as the hazardous 

materials transportation, but may not suitable to explain travelers’ daily commuting 

behaviors. 

By abstracting the random natures of the travel time into two statistical measures, 

i.e. mean and variance, Sivakumar and Batta (1994) defined the optimal path as a path 

with the least expected path travel time while the path travel time variance is less than a 

predefined threshold value. Sen et al. (2001) presented another Mean-Variance model to 

seek a path with a minimal compromise value of expected travel time and travel time 

variance. However, the Mean-Variance models only consider the first two moments of 

the random travel time, and assume symmetrical or nearly symmetrical path travel time 

distribution, which is generally not satisfied in practice.  

Recent empirical studies (Cambridge Systematics et al., 2003; FHWA, 2006) 

show that the path travel time could be highly skew. Using only the mean and variance 

may not be sufficient to capture the characteristics of the path travel time distribution 
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accurately. Frank (1969) and Mirchandani (1976) suggested the optimal path should be 

the path that maximizes the probability of realizing a travel time less than a predefined 

threshold. Sigal, Pritsker, and Solberg (1980) considered optimality as the path that has 

the highest probability to be the shortest one. These maximum probability models are 

equivalent to finding the most reliable path (Chen and Ji, 2005) which can be regarded as 

maximizing the travel time reliability measure. However, the maximum probability 

models above require enumerating paths and evaluating multiple integrals, which prohibit 

their implementations in real size networks. To address this issue, Fan, Kalaba, and 

Moore (2005b) proposed a stochastic on-time arrival (SOTA) problem, which is to 

determine the next node to visit from the current location, such that the probability of 

arriving at the destination node is maximized.  The SOTA problem was formulated using 

dynamic programming and solved by the Picard’s method of successive approximation. 

Instead of generating an optimal path with the maximum path travel time reliability for a 

given travel time budget, the SOTA model is able to provide a portfolio of routing 

strategies associated with a range of travel time budgets. To avoid the possible non-

convergence of the successive approximation technique, Nie and Fan (2006) developed 

an increasing order of time budget (IOTB) algorithm that runs in a polynomial time. 

However, the maximal probability models and the SOTA model require travelers have 

sufficient knowledge about the network conditions in order to provide a reasonable path 

travel time budget or a sound range of travel time budgets as an input to find either the 

most reliable path or a portfolio of routing strategies. If the travel time budget is specified 

too large, the maximum reliability of most feasible paths or routing strategies will be 

close to 1. On the other hand, the corresponding travel time reliability will be extremely 
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low if the travel time budget is specified too low, where the optimal path determined by 

the maximal probability models and the optimal routing strategies developed by the 

SOTA model may be circuitous (i.e., higher expected travel time) by avoiding the risk of 

encountering unacceptable delays (i.e., high risk links). 

In view of the limitations of the above models, Chen and Ji (2005) provided an 

alternative definition of optimality that allows the travelers to specify a confidence level 

α for finding a reliable path with the minimum travel time budget such that the 

probability of the path travel time less than or equal to this budget is greater or equal to α. 

The advantage of this α-reliable path finding model is that it is able to identify a portfolio 

of paths with different levels of reliability to suit the travelers' risk preference towards 

travel time variability without the prerequisites mentioned in the above models. The α-

reliable path finding problem was formulated as a chance constrained model and solved 

by a simulation-based genetic algorithm (SGA) procedure. However, the α-reliable path 

defined and generated above is static (or pre-planned) and the travel time reliability 

requirement is only promised at the origin. This may not be suitable for the travelers who 

desire a more accurate and flexible control of their time schedule and activities. The α-

reliable path with a pre-planned routing strategy may be inappropriate under the 

circumstance where the real-time traffic information can be utilized, which is readily 

available from the Advanced Traveler Information Systems (ATIS). Furthermore, the 

SGA procedure is a heuristic, where the optimal solution cannot be guaranteed, and is 

computationally intensive due to the features of simulation and genetic algorithm. Thus, 

its application to real-world networks may be limited. Literature on the general stochastic 

optimal control (Bellman and Kalaba, 1965; Bertsekas and Tsitsiklis, 1996) has shown 
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that the adaptive strategies may generate different results from a pre-planned optimal 

strategy in a stochastic environment. Hall (1986) also showed that adaptive strategies are 

more efficient than following a pre-planned optimal path in the dynamic and stochastic 

shortest path problem. Therefore, it is interested to construct a model to adaptively 

determine a α-reliable path, such that travelers are able to dynamically adjust their 

routing strategy during the traveling period and acquire more accurate estimation of their 

travel time budget. Furthermore, a formulation of the new model is required and a 

practical solution algorithm with guaranteed convergence is needed. 

From the travelers' point of view, the α-reliable path finding model provides 

travelers the answer to the question that concerns with the reliability aspect, such as “how 

much time do I need to allow?” or “how reliable the trip is?”. The reports issued by 

FHWA (2006) documented that travelers, especially commuters, do add a 'buffer time' to 

their expected travel time to ensure more frequent on-time arrivals when planning a trip. 

However, considering only the reliability aspect may not be adequate to describe 

travelers’ risk preferences under travel time variability. It does not address travelers’ 

concern about the unreliability aspect in their path selecting decisions, such as “how bad 

should I expect from the worse cases?”, where trip time longer than they expected would 

be considered as ‘unreliable’ or ‘unacceptable’ (Cambridge Systematics et al., 2003). 

Based on the recent empirical study on the Netherlands freeways (van Lint, van Zuylen, 

and Tu, 2008), travel time distributions are not only very wide but also heavily skewed 

with long tail. It has a significant impact on travelers facing unacceptable risk (i.e., 

unacceptable travel times). For example, it has been shown that about 5% of the “unlucky 

drivers” incur almost five times as much delay as the 50% of the “fortunate drivers” on 



 

 

24
densely used freeway corridors in the Netherlands. Therefore, travel time budget adopted 

in the α-reliable path finding model may be an inadequate risk measure, which is unable 

to evaluate the impacts of the late trips. In other words, it does not assess the magnitude 

of the unacceptable travel times exceeding the travel time budget. Thus, it may introduce 

an overwhelmingly high trip time to travelers if it is adopted as a decision criterion for 

choosing an optimal path under an uncertain environment. Therefore, a new optimal path 

finding model, which can better capture the travelers' risk preferences on both the 

reliability and unreliability aspects of travel time variability (i.e., reducing the risk of 

encountering unacceptable travel times as well as improving the likelihood of arriving on 

time), need to be developed. Moreover, a formulation of this new model and a practical 

solution procedure are also desired. 

 
Traffic Equilibrium Problems 

 
 

Traffic equilibrium problem, also known as traffic assignment problem or user 

equilibrium problem, is a critical step of the four-step travel forecasting process (Meyer 

and Miller, 2001; Ortuzar and Willumsen, 2001) and is regarded as the foundation of 

many surface transportation problems. As shown in Figure 2.1, the traffic equilibrium 

problem is closely related with the applications of signal control, ramp metering, and 

road pricing in traffic management and control, and with applications of route planning 

and guidance in traveler information systems. These applications encompass many of the 

surface transportation problems we encounter on a daily basis as transportation 

professionals. Given travel demand between origin-destination (O-D) pairs (i.e., 

travelers), and travel time function for each link of the transportation network, the traffic  
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Figure 2.1. Traffic equilibrium problem and its relations with other surface transportation 
applications. 

 
 
 

equilibrium problem determines the equilibrium traffic flow pattern and various 

performance measures (e.g., total system travel time, vehicle miles of travel, vehicle 

hours of travel, fuel consumption and emission, etc.) of the network. Route choice model 

is inherently embedded in the traffic equilibrium problem, which represents individual 

route choice decisions between various O-D pairs, while congestion is explicitly 

considered through the travel time functions. The traffic equilibrium problem stems from 

the dependence of the link travel time on the link flows. In other words, it represents the 

interactions between congestion and travel decisions, such that traffic flow pattern for the 

whole transportation network is predicted. Note that, given the optimal route choice 

criterion, if the congestion effect is not taken into account and all travelers are choosing 

routes according to the same criterion, then the traffic equilibrium problem will 

degenerate to the optimal path finding problem, where each traveler will travel based on 

the optimal path finding results respectively. 
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In the literature, several traffic equilibrium models have been proposed which 

differ in: 

1.  Characterization of the network travel times (i.e., deterministic or stochastic); 

2.  Traveler’s knowledge of network travel times (i.e., with or without perception error); 

3.  Route choice behavior, including: criterion/criteria used in route choice decision 

process, route cost structure (i.e., additive or nonadditive), and route choice 

preference (e.g., risk averse or risk prone); 

According to the classification scheme proposed by Chen and Recker (2001), the 

traffic equilibrium problems can be divided into four classes under the presence of 

congestion using network uncertainty and perception error shown in Table 2.1. 

In each model, the following common assumptions are made: 

1.  To account for congestion effects, travel time is modeled as an increasing function of 

flow of vehicles on the link; 

2.  Each traveler makes a rational route choice decision based on minimizing some 

criteria related to average travel times or some disutility measure based on average 

travel times and their variances; 

 
 
 
Table 2.1. Classification of traffic equilibrium models 
 

  Perception Error? 
   No Yes 

No DN-DUE DN-SUE Network 
Uncertainty? Yes SN-DUE SN-SUE 

 
where  DN = Deterministic Network, SN = Stochastic Network 

DUE = Deterministic User Equilibrium 
SUE = Stochastic User Equilibrium 
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For comparison and discussion purposes, we define the following utility function 

for a given route: 

p p pU V ε= + , (2.1) 

where pV  is the systematic component of the utility of route p; pε  is the random error 

term of route p; and pU  is the total utility of route p. 

 
The DN-DUE model 
 

The conventional traffic equilibrium model belongs to the DN-DUE model, where 

the network uncertainty and perception error are ignored. Essentially, this model assumes 

that travelers consider only the expected values of network travel times and they are 

perfectly aware of these expected travel times on the network. According to the utility 

function specified above, this means 

p p pV E T tθ θ⎡ ⎤= − = −⎣ ⎦    and   0pε = , (2.2)  

where pt  is the average travel time of route p, and θ is a positive parameter. 

At the equilibrium state, no traveler can improve his travel time by unilaterally 

changing routes. In other words, the choices of routes made by all travelers result in a 

network flow allocation such that all used routes between every origin-destination pair 

have equal average travel times and no unused route has a lower average travel time. This 

is exactly the Wardrop’s (1952) first principle, which describes the user equilibrium (UE) 

condition. Since travel time variability is not considered in the route choice decision, all 

travelers in the DN-DUE model are implicitly assumed to be risk neutral. 

Depending on the route cost structure, formulations of the DN-DUE model 
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include four approaches, including: mathematical programming (e.g., Beckmann, 

McGuire, and Winsten, 1956; Sheffi, 1985), nonlinear complementary problem 

(Aashtiani, 1979), variational inequality (e.g., Dafermos, 1980; Nagurney, 1993), and 

fixed point (Asmuth, 1978). All four approaches can be used to formulate the additive 

traffic equilibrium problem (i.e., path cost structure is simply the sum of the link costs on 

that path). The additive assumption allows one to express route cost in terms of the sum 

of link costs, and the traffic equilibrium problem can be solved without the need to store 

paths (Gabriel and Bernstein, 1997; Lo and Chen, 2000). This is a significant benefit 

when one needs to solve large-scale network problems (Boyce, Ralevic-Deki, and Bar-

Gera, 2004) because it enables the application of a number of well-known link-based 

algorithms (e.g., Frank-Wolfe algorithm (LeBlanc, Morlok, and Pierskalla, 1975; 

Fukushima, 1984; Weintraub, Ortiz, and Gonzalez, 1985; Janson and Gorostiza, 1987; 

Lee and Nie, 2001), PARTAN algorithm (LeBlanc, Helgason, and Boyce, 1985; Florian, 

Guelat, and Spiess, 1987; Arezki and Van Vliet, 1990), restricted simplicial 

decomposition (RSD) algorithm (Hearn, Lawphongpanich and Ventura, 1985), and 

origin-based algorithm (Bar-Gera, 2002)). There are also route-based algorithms that 

solve the same problem explicitly using route-flow variables, which require storing the 

links of each individual route. Solutions resulting from a route-based algorithm provide 

both the aggregate link-flow solutions and the individual route-flow solutions that are not 

readily available from a link-based algorithm. Route-based solution algorithms for the 

additive traffic equilibrium problem include the O-D-based Frank-Wolfe algorithm 

(Chen, Jayakrishnan, and Tsai, 2002), disaggregate simplicial decomposition (DSD) 

algorithm (Larsson and Patriksson, 1992), gradient projection (GP) algorithm (Bertsekas 
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and Gafni, 1982; Jayakrishnan et al., 1994), and conjugate gradient projection algorithm 

(Lee, Nie, and Chen, 2003). For a comprehensive review and computational study of the 

route- and link-based solution algorithms for the additive traffic equilibrium problem, the 

readers are referred to Chen, Lee, and Jayakrishnan (2002), and Lee et al. (2002). 

When the route cost structure is nonadditive (i.e., route cost structure is not a 

simple sum of the link costs on that route), it is no longer feasible to solve the problem 

with just link-flow variables since there is no simple way of converting the nonadditive 

route cost to equivalent link costs. Nonadditive traffic equilibrium problems must be 

formulated and solved explicitly in the route-flow space. As adeptly discussed by Gabriel 

and Bernstein (1997), there are many situations in which the additive route cost structure 

is inadequate for addressing factors affecting a variety of transportation policies. Some of 

the examples include: (1) path-specific tolls and fares – most existing fares and tolls in 

the United States are not directly proportional to travel time or distance, (2) nonlinear 

valuation of travel time – small amounts of time are valued much less than larger 

amounts of time, and (3) emissions fess – emissions of hydrocarbons and carbon 

monoxides are a nonlinear function of travel times. Compared to the additive traffic 

equilibrium problem, there exist only a few solution algorithms for the nonadditive traffic 

equilibrium problem. These include the nonsmooth equations/sequential quadratic 

programming (NE/SQP) method (Bernstein and Gabriel, 1997), gradient projection 

algorithm (Scott and Bernstein, 1998), gradient method with Armijo stepsize for solving 

Fischer’s gap function (Lo and Chen, 2000), self-adaptive projection and contraction 

method (Chen, Lo, and Yang, 2001), and self-adaptive gradient projection algorithm 

(Zhou and Chen, 2006). 
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For a more detailed overview of route choice models, solution algorithms, and 

applications of the DN-DUE model, the reader is referred to Bell and Iida (1997), 

Cascetta (2001), Patriksson (1994), and Sheffi (1985). 

 
The DN-SUE model 
 

Due to the unrealistic assumption that all travelers have perfect knowledge of the 

network conditions, Daganzo and Sheffi (1977) extended the Wardrop’s (1952) UE 

condition by introducing a perception error into the route choice process as follows 

p p pV E T tθ θ⎡ ⎤= − = −⎣ ⎦    and   0pε ≠ , (2.3) 

In this model, each traveler is assumed to have some perception of the mean 

travel times on each link of the network, which include a random error term. Each 

traveler’s route choice criterion is to minimize the perceived value of the route travel 

time, which can be obtained by adding up the perceived travel times on all the links 

belonging to the route. The choices of routes by all travelers result in a network flow 

allocation such that no traveler can reduce his/her perceived travel time by unilaterally 

changing to another route. This definition is an extension of the UE model, known as the 

stochastic user equilibrium model. Similar to the DN-DUE model, all travelers in the 

DN-SUE model are risk neutral since only the mean travel times are considered in the 

route choice decision process. 

Due to variations in travelers’ perceptions of travel times, travelers do not always 

end up picking the correct minimum travel time route. Route choice models proposed 

under this approach can have different specifications according modeling assumptions on 

the random error term. The two commonly used random error terms are Gumbel (Dial, 
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1971) and normal (Daganzo and Sheffi, 1977) variates, which result in the logit- and 

probit-based route choice models. Logit-based route choice model has a closed-form 

probability expression and an equivalent mathematical programming formulation (Fisk, 

1980), and can be solved using both path enumeration techniques (Ben-Akiva et al., 

1984; Cascetta, Russo, and Vitetta, 1997; Cascetta et al., 2002) and column generation 

techniques (Bell et al., 1993; Bell, 1994; Chen and Alfa, 1991; Damberg, Lundgren, and 

Patriksson, 1996; Leurent, 1997; Maher, 1998). The drawbacks of the logit model are: (1) 

inability to account for overlapping (or correlation) among routes and (2) inability to 

account for perception variance with respect to trips of different lengths. These two 

drawbacks stem from the logit’s underlying assumptions that the random error terms are 

independently and identically distributed (IID) with the same, fixed variances (Sheffi, 

1985). Probit-based route choice model, on the other hand, does not have such 

drawbacks, because it handles the overlapping and identical variance problems between 

routes by allowing covariance between the random error terms for pairs of routes. 

However, probit model does not have a closed-form solution and it is computationally 

burdensome when the choice set contains more than a handful of routes. Due to the lack 

of a closed-form probability expression, solving the probit-based route choice model will 

require either Monte Carlo simulation (Sheffi and Powell, 1982), Clark’s approximation 

method (Maher and Hughes, 1997), or numerical method (Rosa and Maher, 2002). Other 

specifications of the random error term include uniform (Burrell, 1968), gamma (Bovy 

and Stern, 1990), and lognormal (Von Falkenshausen, 1976; Cantarella and Binetti, 

1998). 

Recently, there are renewed interests to improve the logit-based route choice 
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model due to the importance of route choice model in Intelligent Transportation Systems 

(ITS) applications, particularly on the applications of advanced traveler information 

systems (ATIS). Several modifications or generalizations of the logit structure have been 

proposed to relax the IID assumptions in the logit model. These extended logit models 

include the C-logit (Cascetta et al., 1996), path-size logit (Ben-Avika and Bierlaire, 1999; 

Ramming, 2002), cross-nested logit (Prashker and Bekhor, 1998; Vovsha and Bekhor, 

1998), paired combinatorial logit (Bekhor and Prashker, 1999; Gliebe, Koppleman, and 

Ziliaskopoulos, 1999; Prashker and Bekhor, 1998, 2000), and logit kernel (Bekhor, Ben-

Akiva, and Ramming, 2002). Despite the recent advances in the logit model and its 

adaptations to the route choice problem, all of the above models do not address the issues 

of travel time variability and choice behavior under uncertainty, since the main concern 

was to resolve the overlapping problem while keeping the analytical tractability of the 

logit choice probability function. 

 
The SN-DUE model 
 

The DN-DUE and DN-SUE models presented above assume that the network 

travel times are deterministic for a given flow pattern. In reality, there is a probability 

distribution of travel times for a given flow pattern that describes the variations of travel 

times on the network. Such variations could result from exogenous and/or endogenous 

sources (Cambridge Systematics et al., 2003). Exogenous sources refer to capacity 

variations (e.g., traffic incidents, capacity degradations due to work zones and weather 

conditions, traffic control device), which often lead to non-recurrent congestion (Chen et 

al., 2002; Lo, Luo, and Siu, 2006; Al-Deek and Emam, 2006), while endogenous sources 
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refer to demand variations (e.g., daily travel demand fluctuations between origin-

destination pairs), which usually lead to recurrent congestion (Asakura and Kashiwadani, 

1991; Clark and Watling, 2005; Heydecker, Lam, and Zhang, 2007). Such travel time 

variability introduces uncertainty for travelers such that they do not know exactly when 

they will arrive at the destination. Thus, it is considered as a risk to a traveler making a 

trip. Route choice decisions under network uncertainty often involve tradeoffs between 

the expected travel time and the travel time variability. This observation is supported by 

recent empirical studies (Abdel-Aty, Kitamura, and Jovanis, 1995; Ghosh, 2001; Lam, 

2000; Lam and Small, 2001; Small et al., 1999; Liu, Recker, and Chen, 2004) that found 

travelers are interested in not only travel time saving but also reduction of travel time 

variability. Abdel-Aty, Kitamura, and Jovanis (1995) found that travel time variability 

was either the most or second most important factor for most commuters. Specifically, 

about 54% of the respondents in the survey indicated that travel time variability is either 

the most important or second most important reason for choosing their daily commuting 

routes. In the study by Small et al. (1999), they found that both individual travelers and 

freight carriers were strongly averse to scheduling mismatches. For this reason, they were 

willing to pay a premium to avoid congestion and to achieve greater reliability in travel 

times. From the two value-pricing projects in Southern California, Lam (2000) and 

Brownstone et al. (2003) also consistently found that travelers were willing to pay a 

substantial amount to reduce variability in travel time. Recent study conducted by Recker 

et al. (2005) on the existing freeway system in Orange County, California observed that: 

(i) both travel time and travel time variability were higher in peak hours than non-peak 

hours; (ii) both travel time and travel time variability were much higher in winter months 
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than other seasons; and (iii) travel time and travel time variability were highly correlated. 

According to these observations, they suggested that commuters preferred departing 

earlier to avoid the possible delay caused by travel time variability. Suffice to say, travel 

time variability is an important factor for travelers when making their route choice 

decisions under risk or circumstances where they do not know with certainty the outcome 

of their decisions. 

In the SN-DUE model, network uncertainty is explicitly considered but 

perception error is ignored. One stream of traffic equilibrium models is based on the 

game theory approach (Bell, 2000). It assumes that the travelers are highly pessimistic 

about the travel time uncertainty and behave in a very risk-averse way. Based on this 

approach, Bell and Cassir (2002) proposed a risk-averse traffic equilibrium model with a 

priori specified travel time distribution. The model regarded travelers’ route choice 

process as a non-cooperative, mixed-strategy game. In this game, the travelers seek the 

best routes subject to link failure probabilities, which are selected by the demons trying to 

cause maximum damage to the travelers. Szeto, O’Brien, and O’Mahony (2006) further 

extended this approach to include elastic demand. However, it should be recognized that 

there are a number of restrictive assumptions in adopting the game theory approach to 

model the risk-averse route choice problem. 

By explicitly treating link travel times as random variables, for a given set of 

flows, there is a probability density function (PDF) associated with the route travel times. 

Because the travel time variability is included in this model, different travelers may 

respond to such variations differently depending on their risk-taking preferences. The risk 

in this case is the variability associated with network travel times. 
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( ) ( ) ( )p p p p pV E T t f t dtη θ η⎡ ⎤= = −⎣ ⎦ ∫  and  0pε = , (2.4)

where ( )pE Tη⎡ ⎤⎣ ⎦  is the expected utility of route p; ( )ptη  is the utility function 

describing the risk-taking preference of the traveler on route p; and ( )pf t  is the PDF of 

route p. 

Several traffic equilibrium models have been proposed based on the different 

construction of utility functions (Mirchandani and Soroush, 1987; Emmerink et al., 1995; 

Van Berkum and Van der Mede, 1999; Yin and Ieda, 2001; Noland et al., 1998; Noland, 

1999), which could be composed of different elements (e.g., expected travel time, travel 

time variance, late arrival penalty), and the network equilibrium condition is similar to 

the UE condition except for the expected travel time is replaced by the expected utility. 

That is, travelers are trying to make a tradeoff between the travel cost and its uncertainty. 

Recently, Watling (2006) proposed a Late Arrival Penalised UE (LAPUE) model based 

on a new utility function that consists of expected generalized travel cost plus an 

additional term representing the mean penalized late arrival under fixed departure times. 

Typically, the risk that arises from travel time variability can be represented by 

two different aspects: acceptable risk and unacceptable risk. The acceptable risk refers to 

the reliability aspect of acceptable travel time, which is defined as the average travel time 

plus the acceptable additional time (or buffer time) needed to ensure the likelihood of on-

time arrivals. The report by FHWA (2006) documented that travelers, especially 

commuters, do add a 'buffer time' to their expected travel time to ensure more frequent 

on-time arrivals when planning a trip. It represents the reliability aspect of travel time 

variability in the travelers’ route choice decision process that answers the question that 
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concerns with the travel time reliability, such as “how much time do I need to allow?” or 

“how reliable the trip is?” 

To account for the reliability aspect of acceptable travel time, the concept of 

travel time budget (TTB), which is defined as the average travel time plus an extra time 

(or buffer time) such that the probability of completing the trip within the TTB is no less 

than a predefined reliability threshold α, has been adopted to develop route choice models 

under a network equilibrium framework (e.g., Uchida and Iida, 1993; Lo, Luo, and Siu, 

2006; Shao et al., 2006). Uchida and Iida (1993) used the notion of effective travel time 

(i.e., mean travel time + safety margin) to model network uncertainty in the traffic 

assignment model. The safety margin is defined as a function of travel time variability 

which serves as a measure of risk averseness in their risk-based traffic assignment 

models. Lo, Luo, and Siu (2006) proposed a probabilistic user equilibrium (PUE) model 

to account for the effects of within budget time reliability (WBTR) due to link 

degradations with predefined link capacity distributions. By assuming travel time 

variability is induced by daily travel demand fluctuation instead of capacity degradation, 

Shao et al. (2006) proposed a demand driven travel time reliability-based user 

equilibrium (DRUE) model. Siu and Lo (2008) further extended the PUE model to 

incorporate both link degradation and demand variation, where the demand variation 

comes from the stochastic volume of the infrequent travelers.  

However, in reality, considering only the reliability aspect may not be adequate to 

describe travelers’ risk preferences under travel time variability. It does not address 

travelers’ concern about the other aspect of risk of travel time variability, i.e., 

unacceptable risk, which refers to the unreliability aspect of unacceptable late arrivals 



 

 

37
(though infrequent) that have a travel time excessively higher than the acceptable travel 

time. Therefore, the question, such as “how bad should I expect from the worse cases?”, 

which describes travelers’ risk-taking behavior in the route choice decision process, 

cannot be answered. Based on the empirical data collected on the Netherlands freeways, 

travel time distributions are not only very wide but also heavily skewed with long tail 

(van Lint, van Zuylen, and Tu, 2008). The implication of these positively skewed travel 

time distributions has a significant impact on travelers facing unacceptable risk (i.e., 

unacceptable travel times). For example, it has been shown that about 5% of the “unlucky 

drivers” incur almost five times as much delay as the 50% of the “fortunate drivers” on 

densely used freeway corridors in the Netherlands. Furthermore, the concept of TTB is 

analogous to the Value-at-Risk (VaR), which is by far the most widely applied risk 

measure in the finance area (Szego, 2005). However, models using VaR is unable to deal 

with the possibility that the losses associated with the worst scenarios are excessively 

higher than the VaR, and reduction of VaR may lead to stretch of tail exceeding VaR 

(Larsen, Mausser, and Uryasev, 2002; Yamai and Yoshiba, 2001). In the same spirit, 

TTB may also be an inadequate risk measure, which could introduce overwhelmingly 

high trip times to travelers if it is used solely as a route choice criterion in the network 

equilibrium based approach. To account for the unreliability aspect of unacceptable travel 

times, the concept of schedule delay (SD), which is defined as the difference between the 

chosen time of arrival and the official work start time (Small, 1982), has been used in 

conjunction with a disutility function to model travel choice decision (Noland et al., 

1998; Noland, 1999). Watling (2006) proposed a late arrival penalized user equilibrium 

(LAPUE) model by incorporating a schedule delay term to the utility function to penalize 
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late arrival for a fixed departure time. Siu and Lo (2007) showed that there is a 

relationship between the risk aversion coefficient of the TTB model and SD costs. 

However, note that the above models only consider one aspect of travel time variability 

(i.e., either the reliability aspect using the concept of TTB or the unreliability aspect 

using the concept of SD). To adequately describe travelers’ route choice decision process 

under travel time variability, both reliability and unreliability aspects should be explicitly 

considered. How could we develop a new route choice model under the network 

equilibrium framework, such that both reliability and unreliability aspects can be 

incorporated to hedge against travel time variability (i.e., reducing the risk of 

encountering unacceptable travel times as well as improving the likelihood of arriving on 

time) and better reflect travelers’ route choice decisions? How could we formulate this 

new model and provide a solution approach?  

 
The SN-SUE model 
 

In the SN-SUE model, both the variability of network travel times and traveler 

perception errors are taking into account. Mirchandani and Soroush (1987) were the first 

to propose a generalized traffic equilibrium problem on stochastic networks (GTESP) 

that incorporates both probabilistic travel times and variable perceptions in the route 

choice decision process, where the expected utility function was constructed as below 

( ) ( ) ( )p p p p pV E T T f T dTη θ η⎡ ⎤= = −⎣ ⎦ ∫  and  0pε ≠ . (2.5) 

At the equilibrium, each traveler is assumed to choose a “perceived optimal 

route”, which minimizes the perceived expected utility of traveling from a given origin to 

a given destination. Similar to the SN-DUE model, travelers in the GTESP model can be 
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either risk averse, risk prone, or risk neutral based on the assumptions about the 

behavioral preference of the travelers by using different forms of utility function. A 

critical difference is that the travelers use the perceived expected utility (as opposed to 

expected utility in the SN-DUE model) as the route choice criterion. Hence, equilibrium 

is achieved when no traveler can reduce his/her perceived expected utility by unilaterally 

changing to another route. In Mirchandani and Soroush’s (1987) model, the traveler’s 

perceived path travel time is a random variable where the parameters of its associated 

PDF dependent on the traveler as well as on the actual PDF of the path travel time. This 

variable perception error allows each individual traveler to experience a different travel 

time for a given set of flows. This is different from the Probit-based DN-SUE model in 

which the random error term only accounts for the randomness of the travelers’ perceived 

travel times and treats the randomness of link travel times in the form of expected values. 

Though the GTESP considered the randomness of link travel time and travelers’ 

perception error together, it adopts the expected utility function as the route choice 

criterion. Therefore, it is unable to directly take account of the reliability and unreliability 

aspects of travel time variability, which has been recognized as an important issue in 

describing the travelers’ route choice behaviors. 

To account for both of the reliability aspects of travel time variability and the 

travelers’ perception error, several models have been developed. Siu and Lo (2006) 

extended the PUE model to consider two types of uncertainty in travelers’ daily 

commutes, i.e., uncertainty in the actual travel time due to random link degradations and 

perception error variations in the travel time budget due to imperfect knowledge. Shao, 

Lam, and Tam (2006) extended the DRUE model to incorporate the randomness of link 
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travel time from the daily demand variation and travelers’ perception error on the travel 

time budget. Later, Shao et al. (2008) further extended this approach to model the rain 

effects on road network with random demand, where the free-flow travel time and link 

capacity are treated as functions of the rain intensity. However, similar to their 

corresponding SN-DUE models (PUE, DRUE), these model are also unable to account 

for the unreliability aspect of travel time variability. In order to account for the 

unreliability aspects of unacceptable late arrivals, Watling (2006) briefly mentioned that 

the late arrival penalized user equilibrium (LAPUE) model may be able to be extended to 

incorporate the travelers’ perception error in actual travel times. However, by only 

considering one aspect (either reliability or unreliability) of travel time variability, the 

above models may not be able to draw a complete picture of the traveler’s route choice 

behavior under uncertain environment. 

Furthermore, the models above (Siu and Lo, 2006; Shao, Lam, and Tam, 2006; 

Shao et al., 2008) all adopted the Gumbel variate as the random error term, which is 

added to the TTB as an additional component to construct the perceived TTB. This 

assumption, however, implies that the travelers’ perception error is independent of the 

stochastic travel time. Though a well-known logit probability expression can be derived 

from this assumption, it may not be appropriate for modeling travelers’ perception of 

travel time variability and their risk preferences toward hedging against the reliability and 

unreliability aspects of travel time variability. As pointed by Mirchandani and Soroush 

(1987), it would be more rational for travelers to model the route choice decision 

according to their perceived travel time distribution. In other words, the random error 

term should dependent on the distribution of the stochastic travel time to reflect the 
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travelers’ perception of the actual travel time distribution based on his/her individual 

knowledge about the travel time uncertainty. For example, to consider both the reliability 

aspect of travel time variability and traveler’s perception error, the reliability measures, 

such as the perceived TTB, should be treated as a whole based on the travelers’ perceived 

travel time distribution. How to develop a new traffic equilibrium model which is able to 

explicitly consider both reliability and unreliability aspects of the travel time variability 

and to reflect the travelers' perception error in the route choice decision process? How to 

formulate the model and solve this new traffic equilibrium problem?  

 
Chapter Summary 

 
 

This chapter has provided background knowledge on the optimal path finding and 

traffic equilibrium problems that relate to the principal study areas of this research.  

Research and practical interests on optimal path finding and traffic equilibrium 

models on the stochastic networks keep increasing due to their many important 

applications in reality. In the first section, the existing deterministic optimal path finding 

problems are briefly introduced. Then, various stochastic optimal path finding models are 

reviewed. New optimal path finding models on stochastic networks will be proposed in 

the next chapter to improve the existing models. Their relationships will also be 

examined. 

In the second section, the traffic equilibrium problems are reviewed according to 

different categories, where the network could be deterministic or stochastic and the 

travelers’ perception error may or may not be taken into account. Empirical studies 

revealed that travelers considered the travel time variability as a risk in their route choice 
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decision, and were interested in not only travel time saving but also the risk 

minimization. Existing literature only consider one aspect of travel time variability (either 

reliability or unreliability), or none of them. New traffic equilibrium models will be 

presented in this dissertation to address this absence in the literature. The travelers’ 

perception error of the travel time distribution will be also incorporated in the new model. 
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CHAPTER 3 

 
ADAPTIVE α-RELIABLE PATH FINDING PROBLEM: 

 FORMULATION AND SOLUTION ALGORITHM 1 

Abstract 
 
 

Optimal path finding problems under uncertainty have many important real-world 

applications in various science and engineering fields. In this study, we propose an 

adaptive α-reliable path finding problem, which is to adaptively determine a reliable path 

with the minimum travel time budget required to meet the user-specified reliability 

threshold. The problem is formulated as a chance constrained model, where the chance 

constraint describes the travel time reliability requirement under a dynamic programming 

framework. The properties of the proposed model are explored to examine its relationship 

with the stochastic on-time arrival (SOTA) path finding model. A discrete-time solution 

algorithm is developed to find the adaptive α-reliable path. Convergence of the algorithm 

is provided along with numerical results to demonstrate the proposed formulation and 

solution algorithm. 

 
Introduction 

 
 

Finding optimal path is an important and intrinsic research topic in various fields, 

such as operations research, computer science, telecommunication, transportation, etc. In 

a deterministic environment, the path finding problem is usually defined as the shortest 

path (SP) problem in terms of distance, time, cost, or a combination of deterministic 

                                                 
1 Co-authored by Zhong Zhou and Anthony Chen 
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attributes (Bellman, 1958; Dijkstra, 1959; Dantzig, 1960). However, in real life 

situations, the environment is often uncertain. For transportation, the uncertainties could 

arise from various sources, such as incidents, demand fluctuations, capacity degradations 

and traffic control devices (Cambridge Systematics et al., 2003). Consequently, network 

travel times are no longer deterministic, and travelers are unable to estimate the travel 

time required to ensure on-time arrive at the destination with certainty. Therefore, the 

uncertainty of link (or path) travel times and their associated probability density functions 

should be explicitly considered when determining the optimal path. 

Most existing methods for dealing with travel time uncertainty are based on the 

expected value model (EVM), which is to find the shortest path with minimum expected 

travel time (or cost) (Loui, 1960; Mirchandani and Soroush, 1985; Murthy and Sarkar, 

1996; Hall, 1986; Fu and Rilett, 1998; Miller-Hooks and Mahmassani, 2000; Waller and 

Ziliaskopoulos, 2002; Fan, Kalaba, and Moore, 2005a). The advantage of this kind of 

methods is that efficient shortest path algorithms developed for the deterministic setting 

(Bellman, 1958; Dijkstra, 1959) can be readily adapted to identify the minimum expected 

cost path in a stochastic setting. However, the EVM is unable to account for the travel 

time variability (i.e., the minimum expected travel time path may be risky for travelers 

who are more concerned about travel time reliability when finding optimal paths in an 

uncertain environment). In fact, recent empirical studies (Abdel-Aty, Kitamura, and 

Jovanis, 1995; Small et al., 1999; Lam, 2000; Brownstone et al., 2003) reveal that the 

travelers are interested in not only travel time saving but also the reduction of travel time 

variability, and consider travel time variability as a risk in their route choice decisions. 

In order to account for travel time variability in the path finding problem, various 
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path optimality indices have been examined. Yu and Yang (1998) proposed a min-max 

model to identify a robust path with the minimal possible longest path travel time. 

Because of the probability of the longest travel time occurred could be very low, the min-

max model may provide too conservative solutions in a general situation. Sen et al. 

(2001) presented a mean-variance model to seek a path with a minimal compromise value 

of expected travel time and travel time variance. Sivakumar and Batta (1994) also 

considered similar scheme for balancing the mean and variance of path travel time. 

However, the mean-variance model is only applicable for symmetrical or nearly 

symmetrical path travel time distribution, which is generally not satisfied in practice. 

Recent empirical studies (Cambridge Systematics et al., 2003; FHWA 2004, 2006) show 

that the path travel time could be highly skew. Using only the mean and variance may not 

be sufficient to capture the characteristics of path travel time distribution accurately. 

Frank (1969) and Mirchandani (1976) suggested the optimal path should be the path that 

maximizes the probability of realizing a travel time less than a predefined travel time 

threshold. Sigal, Pritsker, and Solberg (1980) considered optimality as the path that has 

the highest probability to be the shortest one. All these maximum probability models are 

equivalent to finding the most reliable path (Chen and Ji, 2005) and can be regarded as 

maximizing the travel time reliability measure, which is defined as the probability that a 

trip between a given O-D pair could be made successfully within a given time interval or 

a specified level-of-service (Bell and Iida, 1997). However, all of these models require 

enumerating paths and evaluating multiple integrals, which make it difficult to implement 

for real size networks. To address this issue, Fan, Kalaba, and Moore (2005b) proposed a 

stochastic on-time arrival (SOTA) problem. The SOTA problem was formulated using 
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dynamic programming and solved by the Picard’s method of successive approximation. 

Instead of generating an optimal path with the maximum path travel time reliability for a 

given travel time budget, the SOTA model provides a portfolio of routing strategies 

associated with a range of travel time budgets. To avoid the possible non-convergence of 

the successive approximation technique, Nie and Fan (2006) developed an increasing 

order of time budget (IOTB) algorithm that runs in polynomial time. However, the 

maximal probability models and the SOTA model require travelers have sufficient 

knowledge about the network conditions in order to provide a reasonable path travel time 

budget or a sound range of travel time budgets as an input to find either the most reliable 

path or the portfolio of routing strategies. If the travel time budget is specified too large, 

the maximum reliability of most feasible paths or routing strategies will be close to 1. On 

the other hand, the corresponding travel time reliability will be extremely low if the travel 

time budget is specified too low. In such cases, the optimal path determined by the 

maximal probability model and the optimal routing strategies developed by the SOTA 

model may be circuitous (i.e., higher expected travel time) by avoiding the risk of 

encountering unacceptable delays (i.e., high risk links). In view of the limitations of the 

above models, Chen and Ji (2005) provided an alternative definition of optimality that 

allows the travelers to specify a confidence level α for finding a reliable path with the 

minimum travel time budget such that the probability of the path travel time less than or 

equal to this budget is greater or equal to α. The advantage of this α-reliable path finding 

model is that it is able to identify a portfolio of paths with different levels of reliability to 

suit the travelers' risk preferences toward travel time variability without the prerequisites 

mentioned in the above models. The α-reliable path finding problem was formulated as a 
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chance constrained model and solved by a simulation-based genetic algorithm (SGA) 

procedure. The α-reliable path defined and generated above is static (or pre-planned). In 

other words, once the SGA procedure is terminated, the optimal α-reliable path is 

determined. Travelers have to follow this path for the whole trip, where the travel time 

reliability requirement is only promised at the origin. This may not be suitable for the 

travelers who desire a more accurate and flexible control of their time schedule and 

activities. Furthermore, the α-reliable path with a pre-planned routing strategy may be 

inappropriate under the circumstance where real-time traffic information can be utilized, 

which is readily available from the Advanced Traveler Information Systems (ATIS). 

Finally, the SGA procedure is a heuristic, where the optimal solution cannot be 

guaranteed, and is computationally intensive. Thus, its application to real-world networks 

may be limited.  

In this study, we consider an adaptive α-reliable path finding problem, which has 

the ability to incorporate both travelers’ anticipation and real-time traffic information into 

the route choice decision process.  Therefore, during the traveling period, travelers are 

able to dynamically adjust their routing strategy and acquire a more accurate estimation 

of their travel time budget. This adaptive approach provides travelers more flexibility to 

better arrange their schedule and activities. The adaptive α-reliable path finding problem 

is formulated as a chance constrained model (CCM), where the reliability based chance 

constraint is explicitly described under the dynamic programming framework. By 

exploring the properties of the proposed model with the SOTA model, a discrete-time 

solution algorithm is developed to find the adaptive α-reliable path. 

The reminder of the paper is organized as follows. The second section presents 
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the adaptive α-reliable path finding model as well as its formulation. Properties of the 

proposed model are explored in the third section, which serves as the foundation for 

developing the discrete-time solution algorithm described in the fourth section. Then, 

numerical experiments are conducted to illustrate the proposed model and solution 

algorithm. Finally, conclusions and further research directions are addressed. 

 
The Adaptive α-reliable Path Finding Problem 

 
 

Let ),( ANG  denote a stochastic network, where N is the set of nodes and A  is 

the set of links. Also, denote O(n) as the set of outbound links emanating from node n 

and I(n) as the set of inbound links feeding into node n. ( )ijp t  is a priori known 

probability density function for nonnegative independent random link travel time ijξ on 

any link (i, j). The adaptive α-reliable path finding problem is to find the best routing 

strategy from a starting node r (r∈N) to destination s, such that at each intermediate node 

i (including origin r) of the trip, the travel time budget required to satisfy the predefined 

confidence level α  (i.e., travel time reliability) from node i to destination s is minimum.  

From the definition, we can see that the whole trip from origin r to destination s 

can be regarded as a multi-stage decision process. At each routing decision stage, the 

optimal decision for the remaining trip (i.e., to decide what is the next node to continue 

with) is determined by both the current location (i.e., intermediate node i) and the real-

time information of link travel time distribution. Comparing with the previous definition 

of the α-reliable path finding problem (Chen and Ji, 2005), the adaptive α-reliable path 

finding problem has two major advantages. First, it provides a more accurate and 
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complete estimation of the travel time budget. That is, the minimum travel time budget is 

determined at each intermediate location, which ensures the required travel time 

reliability (i.e., confidence level α) based on travelers’ risk preference. Second, it has the 

ability to incorporate real-time traffic information. In this case, the optimal routing 

strategy cannot be determined a priori due to the randomness involved in the transition 

between the consecutive stages. By using the adaptive α-reliable path finding strategy, 

travelers are able to acquire more flexibility of controlling their time and arranging their 

activities, while still keeping the desired travel time reliability.  

Let ( )iT α represent the minimum travel time budget of arriving at the destination 

s from node i with the probability that the actual travel time from i to s less than  ( )iT α  is 

greater than or equal to α. Let ( )iP T denote the maximum probability of arriving at the 

destination s from node i within time T or less. Then, the adaptive α-reliable path finding 

problem can be represented as: 

 ( ) ( ){ }min |i iT T P Tα α= ≥ , Ni ∈ .  (3.1) 

Note that the probability of a traveler traversing link (i, j) within time interval 

( , dω ω ω+ ) is ( )ijp dω ω , the adaptive α-reliable path finding problem can be formulated 

as a chance constrained model as follows. 

 min T  (3.2) 

Subject to: 

 ( ) ( )
0

, ( )
T

ij jp P T d j O iω ω ω α− ≥ ∀ ∈∫ , (3.3) 
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 ( ) 1, 0sP T T= ≥ , (3.4) 

where the chance constraint (3.3) describes the travel time reliability requirement based 

on the dynamic programming framework, and constraint (3.4) represents the initial 

condition and nonnegativity of the travel time budget. Solving the chance constrained 

model (3.2)-(3.4) provides the minimum travel time budget ( )iT α and the corresponding 

optimal routing strategy, i.e., a sequence of successor nodes to visit from each node i with 

confidence level α, denoted as ( )iQ α , where  

 ( )
( )

( ) ( ){ }0        
arg min | ,

T

i ij j
j O i

Q T p P T d i Nα ω ω ω α
∈

= − ≥ ∈∫ . (3.5) 

The choice of successor node depends on the traveler's current location, real-time 

information and reliability requirement. Therefore, during each stage of the trip, the 

traveler can get updated minimum travel time budget ( )iT α  as well as the next node to 

be visited. The information can be utilized by the traveler to arrange their time and 

schedule in a more efficient and flexible way. Moreover, in the next section, we will see 

that the proposed chance constrained model with a dynamic-programming-based 

reliability constraint has a close relationship with the stochastic on-time arrival (SOTA) 

problem. Thus, it enables the development of an efficient solution procedure without path 

enumeration, which is generally time-consuming and impractical for real applications. 

 
Properties of the Adaptive α-reliable Path Finding Problem 

 
 

Let ( )iu T  be the maximum probability of arriving at destination s from node i 

within time T or less. According to Fan, Kalaba, and Moore (2005b), the SOTA problem 
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can be formulated as the following system of nonlinear convolution integral equations: 

 ( )
( )

( ) ( ) ( )
0

max , , 1, 0
T

i ij j sj O i
u T p u T d i N u T Tω ω ω

∈
= − ∈ = ≥∫ . (3.6) 

The corresponding optimal routing strategy at each location i is represented by 

 ( )
( )

( ) ( )
0         

arg max ,
T

i ij j
j O i

Q T p u T d i Nω ω ω
∈

= − ∈∫ . (3.7) 

In this section, we will show the close relationship between the adaptive α-

reliable path finding problem and the SOTA problem.  First, we give the definition of a 

strictly monotone mapping operator. 

 
Definition 1. An operator f : n nK R R⊆ →  is said to be strictly monotone on K  if it 

satisfies 

 ( ) ( )( ) ( ) 0Tf x f y x y− − > , , ,x y K x y∀ ∈ ≠ . (3.8) 

Then, we have the following assumption:  

Assumption 1. At any node i∈N, i ≠ s, the maximum on-time arrival probability 

( )iu T from node i to destination s is strictly monotone on the predefined travel time 

budget T. That is, 

 ( )( ) ( )1 2 1 2 1 2 1 2( ) 0, , 0,
T

i iu T u T T T T T T T− − > ≥ ≠ . (3.9) 

Assumption 1 implies that a larger travel time budget will allow for a higher 

travel time reliability (i.e., maximum on time arrival probability) and a lower travel time 

reliability is due to its limited travel time budget. 
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Based on assumption 1, we have the following Lemma: 

Lemma 1. Suppose assumption 1 is satisfied, the minimum travel time budget of the 

adaptive α-reliable path finding problem for a given confidence level α (i.e., the 

maximum on-time arrival probability determined by the SOTA problem) is equal to the 

predefined time budget of the SOTA problem. 

Proof.  First, suppose a predefined travel time budget T1 is given at location i, solving the 

SOTA problem gives  

 ( )1iu Tα =  

  
( )

( ) ( )1

10
max

T

ij jj O i
p u T dω ω ω

∈
= −∫ . (3.10) 

Now, consider the adaptive α-reliable path finding problem whose probability threshold 

is α. Suppose the optimal solution of the adaptive α -reliable path problem is T2, i.e., 

 ( ){ }2 min | iT T P T α= ≥ , i N∈  

 ( ) ( ){ }0
min | , ( )

T

ij jT p P T d j O iω ω ω α= − ≥ ∀ ∈∫ . (3.11) 

From (3.10) and (3.11), we have 

 2 1T T≤ . (3.12) 

If we assume 2 1T T< , according to the assumption of a strictly monotone mapping 

operator (i.e., Eq. (3.9)), Eq. (3.10), and Eq. (3.11), it is easy to obtain 

 
( )

( ) ( ){ } ( )
( ) ( ){ }2 1

2 10 0
max max

T T

ij j ij jj O i j O i
p u T d p u T dα ω ω ω ω ω ω α

∈ ∈
≤ − < − =∫ ∫ ,(3.13) 
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which is a contradiction. Therefore, T2 must equal to T1. This completes the proof.           

From Lemma 1, it is easy to see that each optimal routing strategy of the SOTA 

problem at location i is also an optimal routing strategy of the adaptive α-reliable path 

finding problem with respect to the travel time reliability threshold α identified by the 

SOTA problem. 

In the following, we give another assumption: 

Assumption 2.  At any node i∈N, i ≠ s, the minimum travel time budget ( )iT α  from node 

i to destination s is strictly monotone for a given confidence level  α. That is, 

 ( )( ) ( )1 2 1 2 1 2 1 2( ) 0, , [0,1],
T

i iT Tα α α α α α α α− − > ∈ ≠ . (3.14) 

This assumption implies that in order to obtain a higher travel time reliability, a 

larger minimum travel time budget is needed. On the other hand, a smaller minimum 

travel time budget could be acceptable if the travel time reliability requirement is low. 

 
According to this assumption, the following Lemma can be derived: 

Lemma 2.  Suppose assumption 2 is satisfied, the maximum on-time arrival probability of 

the SOTA problem for a given travel time budget (i.e., the minimum travel time budget 

determined by the adaptive α-reliable path finding problem) is equal to the predefined 

travel time reliability threshold (i.e., confidence level) of the adaptive α-reliable path 

finding problem. 

Proof. First, suppose a predefined travel time reliability threshold α1 is given at location i, 

solving the adaptive α-reliable path finding problem gives  
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 ( ){ }*
1min | iT T P T α= ≥ , i N∈  

 ( ) ( ){ }10
min | , ( )

T

ij jT p P T d j O iω ω ω α= − ≥ ∀ ∈∫ . (3.15) 

Now, consider the SOTA problem whose travel time budget is *T . Suppose the 

optimal solution of the SOTA problem is α2, i.e. 

 ( )*
2 iu Tα =  

 
( )

( ) ( ){ }*
*

0
max ,

T

ij jj O i
p u T d i Nω ω ω

∈
= − ∈∫ . (3.16) 

From Eq. (3.15) and Eq. (3.16), we have: 

 ( ) ( )
( )

( ) ( ){ }* *
* *

1 20 0
max

T T

ij j ij jj O i
p P T d p u T dα ω ω ω ω ω ω α

∈
≤ − ≤ − =∫ ∫ . (3.17) 

If we assume 1 2α α< , according to the strictly monotone assumption in Eq. 

(3.14), and Eqs. (3.16) and (3.17), it is easy to obtain 

 ( ) ( ){ }*
10

min | , ( )
T

ij jT T p P T d j O iω ω ω α= − ≥ ∀ ∈∫

 ( ) ( )
( )

( ) ( ){ }*
*

0 0
min | max

T T

ij j ij jj O i
T p P T d p u T dω ω ω ω ω ω

∈
< − ≥ −∫ ∫ , 

 *T≤  

which is a contradiction. Therefore, it must have 2 1α α= . This completes the proof.        

From Lemma 2, it is easy to see that each optimal routing strategy of the adaptive 

α-reliable path finding problem at location i is also an optimal routing strategy of the 

SOTA problem with respect to the minimum travel time budget identified by the adaptive 

α-reliable path finding problem. 
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From Lemma 1 and Lemma 2, we have the following theorem: 

Theorem 1. Suppose assumption 1 and assumption 2 are both satisfied, the adaptive α-

reliable path finding problem is equivalent with the SOTA problem. 

Note that, for the uncertain circumstance studied in this research (i.e., stochastic 

network with a priori known probability density function for nonnegative independent 

random link travel times), both assumption 1 and assumption 2 are typically satisfied. 

Consequently, Theorem 1 is also true. Here, equivalence means that, at any location i, if 

(T, α, j) is an optimal set of solutions of the adaptive α-reliable path finding problem, 

where α is a predefined travel time reliability threshold, T is the optimal objective value 

(i.e., the minimum travel time budget), and j represents the successor node identified by 

the optimal routing strategy, then (T, α, j) is also an optimal set of solutions of the SOTA 

problem, where T is a predefined travel time budget, α is the optimal objective value (i.e., 

maximum on-time arrival probability), and j still represents the successor node identified 

by the optimal routing strategy, and vice versa. 

 
Solution Procedure 

 
 

Consider the chance constrained model of the adaptive α-reliable path finding 

problem (Eqs. (3.2) - (3.4)), it is generally difficult to solve the problem directly since the 

minimum travel time budget are explicitly included in both the objective function and the 

chance constraint. In other words, the minimum travel time budget is not only considered 

as an objective function, but also regarded as a decision variable, which represents the 

upper bound of the nonlinear convolution integral inequality (Eq. (3.3)) for describing the 

reliability requirement of the trip. Furthermore, for real-world applications, the number of 
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possible paths between the origin and destination pair is enormous, which makes the path 

enumeration approach impractical. Inspired by the properties of the proposed model and 

its close relationship between the adaptive α-reliable path finding problem and the SOTA 

problem examined in the previous section, we are able to develop a discrete-time solution 

algorithm for identifying the adaptive α-reliable path dynamically.  

Suppose Ti is the minimal travel time budget of the adaptive α-reliable path based 

on a predefined travel time reliability threshold α at location i, let's consider the discrete 

case of travel time budget Ti: 

 ( )0 1, , , , ,i k LT t t t t= … … , (3.18) 

where kt k h= ⋅ , 0,1,....,Lk = , L it T=  and h is the unit discrete-time step. 

Let ( )ij mP t denote the probability that the traveler spends time between mt  and 

1mt +  to traverse link (i, j). According to Eq. (3.6), the maximum on-time arrival 

probability of the SOTA problem based on the travel time budget Ti can be rewritten as: 

 ( )
( )

( ) ( ) ( )
0

max , , , 1, 0,1, ,L
Lt

i i ij j i s kj O i t t
u T P t u T t i N i s u t k

∈ =

= − ∈ ≠ = =∑ … . (3.19) 

Eq. (3.19) implies that the travel time t on any link (i, j) can only take values that 

are nonnegative integer multiples of the unit time step h. This makes the evaluation of the 

above equation much easier and enables better control of the solution precision by 

adjusting the time step h.  

To solve the SOTA problem using Eq. (3.19), we are particularly interested in the 

increasing order of time budget (IOTB) algorithm (Nie and Fan, 2006). The main idea is 
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to scan the network following the increasing order of the time budget (i.e., compute the 

finite sum of Eq. (3.19) following the increasing order from 0t to Lt ). The algorithm can 

be briefly summarized as below: 

Step 1. Set ( ) ( ) ( )0, 1, 1i k s k j ku t u t Q t= = = − , , , , 0,1, ,Li j N i s k∀ ∈ ≠ = …  

Step 2. for t = 0t to Lt    

{ for all link (i, j)∈A 

 { ( ) ( )
0

Lt

ij j i
t t

prob P t u T t
=

= −∑  (3.20) 

         if ( )iprob u t> , then set ( )iu t Prob= , ( )iQ t j=  

        } 

          } 

According to Theorem 1, the maximum on-time arrival probability ( )i iu T of the 

SOTA problem solved by the IOTB algorithm above based on the travel time budget Ti is 

exactly the confidence value α of the adaptive α-reliable path that provides the minimum 

travel time budget Ti. Therefore, instead of solving the minimum travel time budget Ti 

through the chance constrained model (3.2)-(3.4) directly, we are able to seek the 

maximum on-time arrival probability through the SOTA problem. Once the travel time 

reliability of the SOTA problem is equal to the predefined confidence value α, the 

corresponding travel time budget is exactly the minimal travel time budget Ti  that we are 

looking for. At the same time, the successor node j at location i, which composes the 

optimal routing strategy of the adaptive α-reliable path finding problem, is exactly the 
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node ( )i iQ T  generated by the optimal routing strategy of the SOTA problem at location i. 

Based on this idea, a discrete-time solution algorithm for identifying the adaptive α-

reliable path from origin r to destination s can be depicted in Figure 3.1, where the 

Procedures 1.1 and 1.2 in the flow chart above are described as follows. 

Procedure 1.1 

Step 1. Set an initial travel time budget T ; 

Step 2. Solve the SOTA problem, obtain a maximum on-time arrival probability 

( )nodeu Tβ = ; 

Step 3. If α β ε− ≤ , then set 0 1T T T= = , go to Step 5; 

Step 4. If β α> , then set 1T T= , go to Step 4.1, else set  0T T= , go to Step 4.3; 

Step 4.1 Set 0 1 1 =  T Tσ , where 10 1σ< < , then solve the SOTA problem 

( )0nodeu Tβ = ; 

Step 4.2 If β α> , set 1 0T T= , go to Step 4.1, else go to Step 5; 

Step 4.3 Set 1 2 0T Tσ= , where 2 1σ > , then solve the SOTA problem 

( )1nodeu Tβ = ; 

Step 4.4 If β α< , set 0 1T T= , go to Step 4.3, else go to Step 5; 

 Step 5. Return the travel time interval [ ]0 1,T T ; 

 
Procedure 1.2 

 Step 1. If β α ε− >  and 1 0T T h− ≥ , then go to Step 2, else go to Step 3; 

Step 2. Let ( )*
0 1 0 2T T T T= + − , solve the SOTA problem ( )*

nodeu Tβ = . If  
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  β α> , then set *

1T T= , else set *
0T T= . Go to Step 1; 

Step 3. If β α ε− ≤ , go to Step 5, else go to Step 4; 

Step 4. If minh h= , go to Step 5, else set h hτ= ⋅ , where 0 1τ< < , go to Step 1; 

Step 5. Report optimal solution, return; 

 
 
 

 
 

Figure 3.1 Flow chart of the discrete-time solution algorithm. 
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Remarks: 

(1) To acquire the travel time budget interval that the optimal travel time budget lies 

in, an initial travel time budget 0T  can be specified by the travelers based on their 

estimation on the possible range of the reasonable travel time budget. If the 

travelers have no idea about the normal range of the travel time budget, they can 

just randomly choose one. Then, the proposed discrete-time solution algorithm 

(flow chart (3.1)) can automatically identify the feasible budget interval that 

contains the optimal solution. The least expected travel time between origin r to 

destination s could be a natural choice as the initial 0T . According to our 

experience, it typically takes at most 2 to 3 iterations to acquire the desired travel 

budget interval based on this initial estimation. 

(2) The proposed discrete-time solution algorithm has a polynomial running time. 

This can be seen from the IOTB algorithm adopted for solving the SOTA 

problem, where each link is visited L times during the operations of the algorithm. 

Thus, its total computational complexity can be approximately estimated as 

0.5mL2, where m is the number of links. Furthermore, once the travel time budget 

interval is determined, the search for the optimal travel time budget at each 

location i converges in a finite number of iterations. Suppose the computed 

probability β is within the ε-neighborhood of the desired reliability threshold α, 

i.e. β∈(α-ε, α+ε). According to Theorem 1, there exists a δ-neighborhood of the 

optimal travel time budget *T , i.e. ( *T δ− , *T δ+ ). Once the travel time budget 

falls within the δ-neighborhood, the discrete-time solution algorithm can be 
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considered as convergent. It is easy to see that the searching effort only needs to 

take at most 1 01 log log 2T Tn
δ

⎡ − ⎤⎛ ⎞= − + ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
 number of iterations to converge, 

where ⎡x⎤ is the next integer value of x.  

From the flow chart, it seems that for each intermediate node i, the SOTA 

problem has to be solved repeatedly. This is in fact unnecessary. Once the upper 

bound 1T of the travel time budget interval is determined by the procedure 1.1, the 

possible optimal routing strategies, the maximal on-time arrival probabilities, and 

the corresponding travel time budgets for each discrete-time point less than 1T  are 

readily available, which can be used as a lookup table for future iterations. Based 

on this remark, we have the following proposition: 

Proposition 1. For each intermediate location i (include origin r), once the optimal 

travel time budget is determined, it can be used as the upper bound of travel time 

for its successor node. As a result, the whole sequence of the optimal travel time 

budgets is monotonically decreasing. 

Proof. For the adaptive α-reliable path finding problem with a predefined 

confidence value α, let's suppose the optimal travel time budget at any 

intermediate location i is iT  with successor node j, which is identified by the 

proposed discrete-time solution algorithm. Consider the corresponding SOTA 

problem with a travel time budget specified as iT , we have 

 ( )i iu Tα =  (3.21) 
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( )

( ) ( )
0

max iT

il l il O i
p u T dω ω ω

∈
= −∫  (3.22) 

 ( ) ( )
0

iT

ij j ip u T dω ω ω= −∫  (3.23) 

 ( ) ( )
0

iT

ij j ip u T dω ω< ∫  (3.24) 

 ( )j iu T< , 

where (3.21) and (3.23) are based on Theorem 1, while (3.22) and (3.24) comes 

from the definition of the SOTA problem given in Eq. (3.6).  

 
Now, suppose the optimal travel time budget of location j is jT , it follows that 

 ( ) ( )j j j iu T u Tα= < . (3.25) 

According to Lemma 2, we have  

 j iT T< . (3.26) 

Therefore, from origin r to destination s, the optimal travel time budget sequence 

following the optimal routing strategy is in a descending order. This completes 

the proof.   

Therefore, during the iteration, we only need to solve the SOTA problem 

for locating the upper bound of the travel time interval at origin r. After that, there 

is no need to solve the SOTA problem anymore. This ensures the efficiency of the 

proposed discrete-time solution algorithm. The only exception that needs to 

resolve the SOTA problem is in the situation where the initial time step h needs 
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be refined in order to achieve the desired level of precision. Then, the updated 

results will be used as a new lookup table for future iterations to keep the solution 

algorithm efficient. 

(3) It should be noted that, to utilize the IOTB algorithm in our solution procedure, 

the discrete probabilities ( )ij kP t needs to be computed a priori. In this study, we 

use the recursive adaptive Simpson quadrature to compute ( )ij kP t . However, 

other numerical methods, such as the rectangular or trapezoid method, can also be 

adopted. From the above discussion of computational complexity, ( )ij kP t  only 

needs to be computed at the beginning phase of the solution procedure for 

locating the upper bound of the travel time interval at origin r or in the case that 

the time step h needs to be refined. After that, ( )ij kP t  can be used repeatedly for 

future iterations to ensure efficiency of the solution procedure. Note that the 

workload for computing ( )ij kP t  is not considered in the computational 

complexity analysis. 

 Another important issue needs to be addressed is the time step h. The 

accuracy and efficiency of the proposed discrete-time solution algorithm depend 

on the fineness of h. There is a tradeoff between the accuracy and efficiency when 

the proposed approach is applied to real-world problems. Smaller time steps 

introduce a higher accuracy but also require a higher computational overhead. A 

self-adaptive time step scheme is incorporated in the proposed solution algorithm 

(see procedure 1.2) to adjust the time step automatically in order to obtain a 

higher level of precision. However, due to the rapidly increasing computational 
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efforts of L (number of times a link is visited in the algorithm, which is decided 

by both the travel time budget and the time step), a minimal time step minh  is also 

introduced in the solution procedure to limit the computational overhead. 

Fortunately, it normally takes less than two or three hours from any origin to any 

destination in a real urban transportation network studied in practice. Few 

travelers have incentive to switch route for saving only a few seconds. Nie and 

Fan (2006) concluded that “a unit time of 15 or 30 seconds might be good enough 

for practical purpose. As such, L is usually less than 1,000 in practice.” Therefore, 

in the proposed discrete-time solution algorithm, the minimal time step minh  can 

be readily set as either 15 or 30 seconds for real-world applications in order to 

approach a balance between efficiency and accuracy. 

 
Numerical Results 

 
 

In the numerical experiments, two networks are adopted for evaluation purposes. 

A small network is used to illustrate the adaptive α-reliable path finding model and the 

correctness of the discrete-time solution algorithm. A large network is employed to 

demonstrate the applicability of the discrete-time solution algorithm to real-world 

applications. 

 

Small network 
 

The small network adopted here is modified from Fan, Kalaba, and Moore 

(2005b), which contains 5 nodes and 18 links (see Figure 3.2). In order to facilitate the 
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presentation of the essential ideas, the link travel times are assumed to follow a log-

normal distribution with nonnegative probability density function as specified below: 

 ( )
( )2

2
ln
21| ,

2

x

f x e
x

µ
σµ σ

σ π

− −

= , 0x∀ > . (27) 

The log-normal distribution is closely related with the normal distribution and has 

been commonly adopted in practice to model a broad range of random process. The mean 

and variance are 22σµ+= em  and ( )2 22 1v e eµ σ σ+= − , respectively. 

The parameters of the log-normal distribution probability density function for 

each link are listed in Table 3.1. 

 
 
 

 
 

Figure 3.2 Small network. 
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Table 3.1 Link travel time distribution parameters 
 

 Parameters 
Link # µ σ 
1,4,7,16 1 1 
3,5,8,9,12 2 0.5 
2,6,11,13,17 1 0.5 
10,14,15,18 2 1 

 
 
 
Suppose node 5 is the destination, by setting the initial time step h to be 0.01 and 

the desired precision to be 1e-3, the minimum travel time budgets and the corresponding 

optimal routing strategies (i.e., successor node) for all origins under different desired 

travel time reliabilities are presented in Table 3.2. 

From Table 3.2, we can observe that the optimal travel time budget monotonically 

increases for all the origins as the desired travel time reliability (confidence level α) 

increases. These results are consistent with our expectation. Furthermore, the optimal 

routing strategies change when the travel time reliability requirement is varied. For 

example, for the trip originating from node 1, the optimal successor node changes from 

node 3 to node 2 when a lower travel time reliability is specified. Even though the 

expected travel time of path (nodes 1-2-5) is greater than the expected travel time of path 

(nodes 1-3-5), travelers still prefer path (nodes 1-2-5) due to the higher variance of travel 

time on this path. In this case, travelers exhibit a risk prone behavior (i.e., seeking for a 

path with lower travel time budget at the cost of reduced travel time reliability). The 

relationship between the travel time budget and the desired travel time reliability as well 

as the routing strategies can be further demonstrated in Figure 3.3, which depicts the 

approximate cumulative distribution curves of the two paths corresponding to the two  
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Table 3.2 Optimal solutions under different desired travel time reliabilities 
 
 

Origin 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
T 1(α) 1.9800 3.0900 4.0300 4.9800 5.5100 6.0300 6.6304 7.3604 8.4025 10.5310

successor 
node 2 2 2 2 3 3 3 3 3 3

T 2(α) 0.5200 0.9650 1.3850 1.8500 2.4000 3.0800 3.9900 5.3217 7.6636 14.0523
successor 
node 5 5 5 5 5 5 5 5 5 5

T 3(α) 1.1900 1.6200 1.9400 2.2400 2.5500 2.8950 3.3002 3.8063 4.5655 6.1826
successor 
node 5 5 5 5 5 5 5 5 5 5

T 4(α) 1.4200 2.6200 3.7700 4.8700 5.5900 6.4300 7.4700 8.8919 11.2291 17.6404
successor 
node 5 5 5 2 2 2 2 2 2 2

3

4

Travel Time Reliability (α)

1

2

 
 
 
 
routing strategies from origin 1 to destination 5. From Figure 3.3, we can observe that a 

higher travel time reliability implies a higher travel time budget and the optimal routing 

strategy changes after reaching a certain reliability threshold (i.e., 36.84% in this 

example). Similarly, for the trip starting at node 4, if a lower reliability requirement is 

imposed, the adaptive α-reliable strategy suggests node 5 as the best successor node, 

though directly taking link 15 results in a higher expected travel time. These results 

clearly illustrate that different criteria of optimality (e.g., the minimum travel time budget 

and least expected travel time) may introduce various optimal routing decisions. 

In the following, the trip from node 1 is examined to demonstrate the convergence 

of the discrete-time solution algorithm as well as the effect of the self-adaptive time step 

adjustment scheme. Suppose the desired precision is 1e-4 and the initial step size is given 

as 0.2, the evolution of the time step, the corresponding minimal travel time budget and 

the residual error β α− , where α and β are the desired and computed travel time 

reliability respectively, are provided in Table 3.3. 
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Figure 3.3 Cumulative distribution curves for two adaptive α-reliable paths. 
 
 
 

 
Table 3.3 Evolution of the solution 
 

Time step h Residual 
error 

Minimal travel 
time budget 

0.2000 0.0070340 8.3925 
0.1000 0.0042890 8.4925 
0.0500 0.0024380 8.4425 
0.0250 0.0015010 8.4175 
0.0125 0.0000826 8.4050 

 
 
 

From Table 3.3, we can observe that the residual error is decreasing while the 

time step size is reducing. It demonstrates the effectiveness of the self-adaptive step-size 

adjustment scheme, which enables the proposed solution procedure to reach a specified 

level of precision. Therefore, the optimal reliable routing strategy can be found and the 

desired confidence level can be approached. 
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Large network 
 

To illustrate the applicability of the discrete-time solution algorithm in real-world 

applications, a large network is adopted. The network is taken from Bar-Gera (2001), 

which contains 387 zones, 933 nodes, and 2950 links. It is a fairly realistic yet aggregated 

representation of the Chicago region, thus named as the Chicago Sketch Network. In this 

experiment, OD pairs (368, 932) and (915, 901) are adopted to demonstrate the proposed 

model and solution algorithm. Since the origin and destination of each OD pair are 

located on opposite corners of the region, it makes them a good representative for our 

experiments. In order to facilitate the presentation of the essential ideas, we assume the 

travel times on all links follow a normal distribution using the link free-flow travel time 

as the mean. In additional, in each test, we set the variance of the links along the shortest 

path between OD pairs (368, 392) and (915, 901) to be half of the free-flow travel time, 

and the variance of all other links to be 10% of the mean travel time. 

In the first test, we consider OD pair (368, 932). We choose α = 0.7, 0.8 and 0.9 

as the desirable travel time reliabilities for testing. The optimal solutions for each case are 

provided in Table 3.4. The results of the least expected value path are also shown in the 

figure for comparison purposes. From Table 3.4, we can observe that, by considering 

travel time variability, the adaptive α-reliable path finding model generates different 

routing strategies compared to the expected value model. Furthermore, the routing 

strategies are also different from each other based on various α values. Similar to the 

results of the small network, the optimal travel time budgets are monotonically increasing 

at all intermediate nodes as the desired travel time reliability increases. The optimal 

routing strategy changes when the travel time reliability requirement is varied. This 
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illustrates that the proposed adaptive α-reliable path finding model is able to generate a 

portfolio of adaptive α-reliable paths according to the risk preference (i.e., different α 

values) specified by the traveler. For demonstration purposes, the adaptive α-reliable 

paths with different confidence values and the least expected value path are graphically 

displayed in Figure 3.4. From the figure, we can see that all adaptive α-reliable paths are 

quite different from the least expected value path. Though the adaptive α-reliable paths 

share some common links in the first half of the journey, the remaining part of the 

journey uses different links according to the specified confidence level value. It should be 

note that, in practice, the degree of distinctness among the adaptive α-reliable paths 

depends on both confidence levels and network characteristics. 
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Figure 3.4 Optimal paths in the Chicago Sketch network for OD pair (368, 932). 
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Table 3.4 Optimal solutions for the Chicago Sketch network of OD pair (368, 932) 

 
Adaptive α-reliable path Least expected   

value path α = 0.7 α = 0.8 α = 0.9 

Node # Travel time 
(min) Node # Travel time 

budget (min) Node # Travel time 
budget (min) Node # Travel time 

budget (min) 
368 112.87 368 120.67 368 123.47 368 134.31
914 111.90 914 118.25 914 120.10 914 122.80
389 108.65 389 114.80 389 116.55 389 119.20
390 103.90 801 107.20 801 109.05 801 111.55
388 91.80 802 101.20 802 103.10 802 105.50
391 85.45 803 95.30 803 97.05 803 99.55
392 80.85 807 90.50 807 92.30 807 94.90
393 78.15 806 87.50 806 89.30 806 91.75
394 74.95 710 84.60 710 86.30 710 88.90
395 72.70 584 79.85 584 81.60 584 84.05
396 69.30 588 75.25 588 77.00 588 79.45
397 67.30 397 72.60 397 74.45 397 76.70
604 66.20 398 70.50 398 72.10 398 74.60
399 64.50 399 69.65 399 71.40 399 73.75
537 60.50 537 65.55 537 67.25 537 69.45
536 57.55 536 62.45 536 64.10 610 68.60
438 55.65 438 60.20 438 61.60 615 65.65
437 51.85 437 56.25 437 57.60 622 62.30
436 49.05 556 52.90 556 54.25 555 59.20
496 48.05 557 49.95 560 51.55 556 56.00
495 45.65 559 47.25 561 49.05 560 53.40
494 43.05 566 45.05 494 48.30 561 50.85
493 41.10 500 43.45 563 46.10 494 50.05
497 39.70 570 42.75 564 44.55 563 47.70
498 39.05 572 40.10 565 43.00 564 46.20
533 37.80 573 37.45 568 41.40 565 44.60
532 36.55 528 35.10 574 39.30 568 42.90
531 35.15 526 26.05 575 36.25 574 40.90
529 33.98 527 20.45 581 33.55 575 37.70
528 32.58 543 16.50 582 29.80 581 35.05
526 23.98 903 15.55 541 26.80 582 31.25
527 18.60 544 12.20 902 22.95 541 28.30
543 14.93 515 11.65 542 20.70 902 24.40
534 11.95 932 903 16.40 542 22.10
515 10.45 544 13.00 903 17.65
932  515 12.40 544 14.35

  932  515 13.35
   932 
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In the second test, we consider OD pair (915, 901). We choose α = 0.85 and 0.99 

as the desirable travel time reliabilities, where confidence level 0.85 is often adopted in 

engineering designs and confidence level 0.99 is adopted as an extreme case to further 

validate the proposed model and solution algorithm. The optimal solutions are provided 

in Table 3.5 and the corresponding adaptive α-reliable paths are depicted in Figure 3.5. 

Similar to the first test, the results of the least expected value path are also provided for 

comparison purposes. From the results, significant differences among the adaptive α-

reliable paths and the least expected value path can be observed. Both tests demonstrate 

the ability of the proposed adaptive α-reliable path finding model for finding optimal 

strategies to hedge against travel time variability according the travelers’ risk preferences. 
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Figure 3.5 Optimal paths in the Chicago Sketch network for OD pair (915, 901). 
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Table 3.5 Optimal solutions for the Chicago Sketch network of OD pair (915, 901) 
 

Adaptive α-reliable path Least expected 
value path α = 0.85 α = 0.99 

Node # Travel 
time (min) Node # Travel time 

budget (min) Node # Travel time 
budget (min) 

915 135.03 915 146.03 915 153.58
916 129.18 916 139.80 916 148.80
917 123.38 917 133.80 917 141.85
782 116.49 918 127.55 918 135.20
787 110.94 783 120.80 783 128.85
795 105.02 788 116.05 788 122.80
799 100.28 790 113.35 790 120.85
805 97.48 796 110.30 796 117.10
804 94.61 800 107.50 800 115.25
808 91.77 808 101.40 808 108.05
584 85.50 584 94.70 584 101.30
605 80.25 588 90.10 588 96.60
607 77.75 397 87.65 397 93.55
606 74.88 604 86.45 604 93.55
403 73.68 399 84.75 606 90.60
404 70.68 537 80.80 675 87.05
405 69.76 536 77.65 677 84.35
488 68.81 438 75.85 687 80.45
487 66.40 437 72.00 689 77.90
535 62.91 556 68.65 699 74.30
486 62.65 557 65.65 701 71.95
480 60.76 490 63.05 813 68.65
479 59.59 631 61.85 472 66.55
478 56.57 571 57.95 815 64.50
477 54.27 637 55.70 821 61.45
504 53.40 644 52.85 823 58.60
505 50.17 646 49.75 828 55.85
506 47.93 653 46.50 838 52.35
507 44.35 655 43.05 454 50.75
646 44.08 663 39.75 840 49.20
653 41.15 665 36.40 847 44.55
655 38.04 849 31.45 857 38.30
663 35.10 859 25.30 885 31.15
665 32.11 887 18.20 892 23.85
849 27.54 893 11.80 897 19.35
859 21.80 901  443 18.15
887 15.33   898 13.65
893 9.53   900 8.55
901    901  
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Conclusions 

 
 

In this paper, an adaptive α-reliable path finding problem is introduced. It is to 

adaptively determine a reliable path from a given origin to a given destination under an 

uncertain environment, such that at each intermediate node (including the origin) the 

desired reliability threshold α is satisfied and its corresponding travel time budget is 

minimum. The adaptive α-reliable path finding problem has the ability to incorporate 

both travelers' anticipation and real-time traffic information into the route choice decision 

process. Thus, travelers' routing strategy can be dynamically adjusted and more accurate 

estimation of their travel time budget can be acquired during the traveling period. It 

allows more flexibility and better arrangement of their schedule and activities. The 

problem is formulated as a chance constrained model, where the chance constraint 

represents the travel time reliability requirement under a dynamic programming 

framework. The properties of the proposed adaptive α-reliable path finding model are 

explored in relation with the stochastic on-time arrival path finding model. Equivalency 

of the two models is rigorously proved. By using the equivalence property, a discrete-

time solution algorithm is developed.  The computational complexity of the proposed 

algorithm is examined and its convergence properties are discussed. The proposed model 

and solution algorithm are also demonstrated by numerical experiments using both a 

small network and a large network.  

In this study, the link travel time distributions are assumed to be independent. It 

would be of interest to further study the situation with correlated link travel times. 

Furthermore, the proposed path finding model may be adopted to describe the traveler's 
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risk-averse route choice behavior. Therefore, it can be embedded as a subproblem in a 

risk-based traffic equilibrium problem (e.g., Lo, Luo, and Siu, 2006; Shao et al., 2006). 

That would be an interesting topic for further study. 
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CHAPTER 4 

 
THE α-RELIABLE MEAN-EXCESS PATH FINDING MODEL IN  

STOCHASTIC NETWORKS1 

Abstract 
 
 

In this paper, we propose an α-reliable mean-excess model for finding optimal 

path in stochastic networks. This new model accounts for not only the reliability aspect 

that the traveler wishes to arrive at his/her destination within the travel time budget, but 

also the unreliability aspect of encountering worst travel times beyond the acceptable 

travel time budget. The α-reliable mean-excess path finding model is consistent with the 

commuters’ route choice behavior revealed in several recent empirical studies. That is, 

commuters are not only interested in saving their travel time but also in reducing their 

risk of being late. The proposed model is formulated as a stochastic mixed-integer 

nonlinear programming problem. To solve this difficult problem, a double-relaxation 

scheme is developed to find the α-reliable mean-excess paths. Illustrative examples and 

numerical results are presented to demonstrate the proposed model and solution 

procedure. 

 
Introduction 

 
 

Uncertainties are unavoidable in many decision-making problems. The path 

finding problem is no exception. In a transportation network, travel times are highly 

uncertain. The sources contributing to travel time variability could be exogenous and/or 

                                                 
1 Co-authored by Zhong Zhou and Anthony Chen 
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endogenous (Cambridge Systematics et al., 2003). Exogenous sources refer to capacity 

variations (e.g., traffic incidents, capacity degradations due to work zones and weather 

conditions, traffic control device, etc.), which often lead to non-recurrent congestion 

(Chen et al., 1999, 2002; Lo, Luo, and Siu, 2006; Al-Deek and Emam, 2006), while 

endogenous sources refer to demand variations (e.g., travel demand fluctuations between 

origin-destination pairs), which usually lead to recurrent congestion (Asakura and 

Kashiwadani, 1991; Clark and Watling, 2005; Heydecker, Lam, and Zhang, 2007). The 

resulting link/path travel time distributions often exhibit high asymmetry with long tails 

when both recurrent and non-recurrent congestion occur simultaneously. Such travel time 

variability introduces uncertainty for travelers such that they do not know exactly when 

they will arrive at the destination. Thus, it is considered as a risk to a traveler making a 

trip. Many stochastic path finding models in the literature hedge against travel time 

variability by using the expected value model (e.g., Hall, 1986; Fu and Rilett, 1998; 

Miller-Hooks and Mahmassani, 2000; Waller and Ziliaskopoulos, 2002; Fan, Kalaba, and 

Moore, 2005a), which is unable to directly address the risk preferences of travelers 

toward travel time variability on their route choice decisions. The path with the minimum 

expected travel time may be risky for travelers who are more concerned about travel time 

reliability when finding optimal paths in an uncertain environment. 

Recently, various optimal path finding models have been developed to take travel 

time variability into consideration. Sen et al. (2001) presented a mean-variance model to 

seek a path with a minimal compromise value of the expected travel time and travel time 

variance. Sivakumar and Batta (1994) also considered a similar routing strategy for 

balancing the mean and variance of path travel times. However, the mean-variance model 
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implies symmetrical or nearly symmetrical path travel time distribution, which is 

generally not satisfied in practice. Recent empirical studies (Cambridge Systematics et 

al., 2003; FHWA, 2006; van Lint, van Zuylen, and Tu, 2008) show that the link/path 

travel time distributions could be highly skew. Using only the mean and variance of 

travel time may not be sufficient to capture the characteristics of the path travel time 

distribution accurately. Yu and Yang (1998) proposed a min-max model to identify a 

robust path with the minimal possible longest path travel time. Similar approach under 

the robust optimization framework was developed by Bertsimas and Sim (2003), where 

the link travel time distributions are assumed to be symmetrical, bounded and 

independent from each other. Both models recommend the optimal path to be the best 

alternative in the worst situation. However, because of the probability of encountering the 

longest travel time (worst situation) could be very low, the min-max model may provide 

an overly conservative solution. On the other hand, Frank (1969) and Mirchandani (1976) 

suggested the optimal path should be the path that maximizes the probability of realizing 

a travel time less than a predefined travel time threshold. Sigal, Pritsker, and Solberg 

(1980) considered optimality as the path that has the highest probability to be the shortest 

one. Fan, Kalaba, and Moore (2005b) proposed the stochastic on-time arrival (SOTA) 

problem under a dynamic programming framework to provide a portfolio of routing 

strategies that maximize the probability of on-time arrival for a range of travel time 

budgets. All these maximum probability models are equivalent to finding the most 

reliable path that maximizes the travel time reliability (Bell and Iida, 1997). Chen and Ji 

(2005) provided an alternative definition of optimality that allows the travelers to specify 

a confidence level α for finding a reliable path with the minimum travel time budget such 
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that the probability of the path travel time less than or equal to this budget is greater or 

equal to α. Similar definition was proposed by Lu et al. (2006), where the travel time 

budget is called the Time-at-Risk (TaR). The optimal path was determined by solving a 

bi-objective mathematical program, which is to minimize a parameterized sum of the 

expected path travel time and the path travel time budget defined by TaR. Zhou and Chen 

(Chapter 3) proposed an adaptive α-reliable path finding problem that adaptively 

determines a reliable path with the minimum travel time budget required to meet the user-

specified reliability threshold α. In fact, the concept of the travel time budget (or TaR) 

adopted in the above models is analogous to the Value-at-Risk (VaR), which is defined as 

a quantile of potential losses and by far the most widely applied risk measure in the 

finance area (Szego, 2005). However, it has been determined that VaR is not even a 

weakly coherent measure of risk (Artzner et al., 1999). Models using VaR are unable to 

deal with the possibility that the losses associated with the worst scenarios are 

excessively higher than the VaR and reduction of VaR may lead to stretch the tail 

exceeding VaR (Yamai and Yoshiba, 2001). In the same spirit, travel time budget (or 

TaR) may also be an inadequate risk measure, which is unable to evaluate the impacts of 

the late trips. In other words, it does not assess the magnitude of the unacceptable travel 

times exceeding the travel time budget; thus it may introduce an overwhelmingly high 

trip times to travelers if it is adopted as a decision criterion for choosing an optimal path 

under an uncertain environment. 

From the travelers’ point of view, the α-reliable path finding model provides 

travelers the answer to the question that concerns with the reliability aspect, such as “how 

much time do I need to allow?” or “how reliable the trip is?” The report issued by FHWA 
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(2006) documented that travelers, especially commuters, do add a 'buffer time' to their 

expected travel time to ensure more frequent on-time arrivals when planning a trip. 

However, considering only the reliability aspect may not be adequate to describe 

travelers’ risk preferences under travel time variability. It does not address travelers’ 

concern about the unreliability aspect in their path selection decisions, such as “how bad 

should I expect from the worse cases?”, where trip times longer than they expected would 

be considered as “unreliable” or “unacceptable” (Cambridge Systematics et al., 2003). 

Based on the recent empirical study on the Netherlands freeways (van Lint, van Zuylen, 

and Tu, 2008), travel time distributions are not only very wide but also heavily skewed 

with long tail. It has a significant impact on travelers facing unacceptable risk (i.e., 

unacceptable travel times). For example, it has been shown that about 5% of the “unlucky 

drivers” incur almost five times as much delay as the 50% of the “fortunate drivers” on 

densely used freeway corridors in the Netherlands. Therefore, it is highly desirable to 

move forward by developing a new optimal path finding model that can better reflect the 

travelers' risk preferences on both the reliability and unreliability aspects of travel time 

variability (i.e., reducing the risk of encountering unacceptable travel times as well as 

improving the likelihood of arriving on time). This motivates our present research. 

In this paper, we present a new model called α-reliable mean-excess model, or 

mean-excess model for short, for finding optimal path in stochastic networks. In contrast 

to the α-reliable path finding model (Chen and Ji, 2005), which is to minimize the travel 

time budget required to satisfy the user-specified confidence level α, the mean-excess 

model attempts to minimize the path mean-excess travel time, which is the conditional 

expectation of travel times beyond the travel time budget. Note that the mean-excess 
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model also provides the endogenously determined travel time budget for a given 

confidence level α specified by the traveler. This optimal path finding criterion can be 

regarded as a combination of the buffer time measure that represents the reliability aspect 

by determining the travel time budget required to ensure on-time arrival at least at a 

confidence level α, and the tardy time measure that represents the unreliability aspect of 

encountering worst travel times beyond the travel time budget (Cambridge Systematics et 

al., 2003). It incorporates both the reliability and unreliability aspects of travel time 

variability into the path finding decision criterion to simultaneously address both 

questions: "how much time do I need to allow?" and "how bad should I expect from the 

worse cases?" Furthermore, the definition of mean-excess travel time is consistent with 

the conditional value-at-risk (CVaR) in the risk optimization literature (Rockafellar and 

Uryasev, 2000). The CVaR is able to model flexible travel time distributions and has 

been applied in various disciplines, such as portfolio optimization (Rockafellar and 

Uryasev, 2000), facility location (Chen et al., 2006) and fleet allocation (Yin, 2007), 

albeit not in the context of the stochastic path finding problem. Therefore, it is 

meaningful to develop a path finding model that makes use of the CVaR measure to find 

robust paths that explicitly consider the trade-off between the reliability and unreliability 

aspects of travel time variability. Furthermore, compared to the α-reliable path finding 

model of Chen and Ji (2005), the mean-excess model is computationally much easier to 

solve, which makes it practical for applications such as route guidance systems based on 

the Advanced Traveler Information Systems (ATIS), and also provides a meaningful 

alternative to travelers who are concerned about both reliability and unreliability aspects 

of travel time variability. 
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The reminder of the paper is organized as follows. Section 2 presents the α-

reliable mean-excess path finding model and its mathematical formulation. An illustrative 

example is used to demonstrate the differences of the proposed model with the expected 

value model and the α-reliable (or travel time budget) model. In Section 3, a double-

relaxation scheme is developed for solving the proposed model. Numerical results are 

presented in Section 4 to demonstrate the proposed model and solution procedure. 

Finally, conclusions and further research directions are addressed in Section 5. 

 
The α-reliable Mean-excess Path Finding Model 

 
 

This section describes the α-reliable mean-excess model for finding optimal path 

under travel time uncertainty. Notation is provided first for convenience, followed by the 

definitions of mean-excess travel time, its mathematical programming formulation, and 

illustrative examples to highlight the differences between the expected value model, the 

α-reliable model, and the α-reliable mean-excess model.  

 
Notation 
 

),( AVG    A stochastic network composed by nodes and links 

V     Set of nodes 

A     Set of links 

r    Origin (or source) node 

s    Destination (or terminal) node 

)(nI     Set of inbound links feeding into node n 

)(nO     Set of outbound links emanating from node n 
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ijξ     Random travel time on link (i , j) 

ξ     Vector of random link travel times ( ),, ijξξ =   

ijx  Decision variable, where ijx =1 means that link (i, j) is in 

the path, and 0 otherwise 

x Vector of decision variables, ( ), ,ijx x= , representing a 

feasible path from origin r to destination s 

( ),T x ξ  Random travel time of path x (i.e., ( ),
ij

ij ij
x x

T x xξ ξ
∈

= ∑ ) 

( ),xας ξ  Travel time budget of path x with a predefined confidence 

level α 

( ),xαη ξ  Mean-excess travel time of path x with a predefined 

confidence level α  

 
Definitions of mean-excess path and 
its mathematical formulation 
 

To better reflect travelers’ risk preferences and allow a trade-off between the 

reliable and unreliable aspects in path selection, we define the mean-excess path travel 

time to be the optimal path finding criterion as follows. 

Definition 1. (Mean-Excess Travel Time) The mean-excess travel time ( ),xαη ξ  for a 

path x with a predefined confidence level α is equal to the conditional expectation of the 

travel times exceeding the corresponding path travel time budget ( ),xας ξ , i.e., 

 ( ) ( ) ( ) ( ), , | , ,x E T x T x xα αη ξ ξ ξ ς ξ= ≥⎡ ⎤⎣ ⎦ ,  (4.1) 
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where ( ),T x ξ  is the random travel time of path x from origin r to destination s, E[⋅] is 

the expectation operator, and ( ),xας ξ  is the minimum path travel time budget defined as  

 ( ) ( )( ){ }, min | Pr ,x T T x Tας ξ ξ α= ≤ ≥ , (4.2) 

where T is the path travel time threshold, α is a pre-determined confidence level 

specified by the traveler, and ( )( )Pr ,T x ξ  is the probability that the path travel time less 

than the threshold is greater than or equal to α. A path that satisfies the above condition is 

called the α-reliable path (Chen and Ji, 2005). The α-reliable path is meaningful for 

travelers who are concerned with arriving at the destination within a certain level of 

confidence while minimizing the travel time budget to satisfy the travel time reliability 

constraint. This definition is also adopted in the models of Lo, Luo, and Siu (2006) and 

Shao, Lam, and Tam (2006) to handle travel time variability in a network equilibrium 

framework. Consequently, the mean-excess path as the optimal path can be defined as 

follows. 

Definition 2. (Mean-Excess Path) A path x is called the mean-excess path from origin r to 

destination s if 

 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

min , | , | , ,

min ', | ', | ', ',

x E T x T x x

x E T x T x x

α α

α α

η ξ ξ ξ ς ξ

η ξ ξ ξ ς ξ

≥⎡ ⎤⎣ ⎦

≤ ≥⎡ ⎤⎣ ⎦
, (4.3) 

for any path x' from origin r to destination s. 

Based on Definition 1, by assuming the marginal cumulative distribution function 

of path travel time on x is ( ),P x ξ , we have 

 ( ) ( ) ( ) ( ), , | , ,x E T x T x xα αη ξ ξ ξ ς ξ= ≥⎡ ⎤⎣ ⎦  
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 ( )
( ) ( )

( )
, ,

1 , ,
1 T x x

T x dP x
αξ ς ξ

ξ ξ
α ≥

=
− ∫ . (4.4) 

Several possible travel time distributions, either exogenously or endogenously 

defined in the transportation system, have been suggested in the literature to describe 

travel time variability under an uncertain environment. One of the most popular and 

straightforward assumptions is to assume the link travel time follows an independent or 

multivariate normal distribution (e.g., Sen et al., 2001; Lo, Luo, and Siu, 2006, Shao, 

Lam, and Tam, 2006). The advantage of the normal distribution assumption is obvious: it 

enables the derivation of an analytical probability density function, which is also normal, 

for each individual path. Thus, the correlation effects can be specified and the qualitative 

analysis and computation can be easily performed. 

However, the normal distribution assumption implies that link travel time is a 

symmetrical distribution, which is generally not the case in practice. It is more reasonable 

to adopt an asymmetrical distribution with some form of positive skewness to reflect the 

actual travel time variability under recurrent and non-recurrent congestion (i.e., long tail 

to the right). For example, Noland and Small (1995) adopted the exponential travel time 

distribution for studying the morning commute problem. A family of distributions known 

as the “Johnson curves”, including the lognormal distribution, was studied by Clark and 

Watling (2005) to model the total network travel time under random demand, and by 

Zhou and Chen (Chapter 6) for the comparative analysis of three network equilibrium 

models under stochastic demand. Gamma type distributions were tested by Fan and Nie 

(2006) for the stochastic optimal routing problem. A mixture of normal distribution was 

suggested by Watling (2006) for modeling stochastic link/path travel times. 
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Therefore, to illustrate the definitions of mean-excess travel time and its relation 

to the travel time budget, a hypothetical distribution shown in Figure 4.1 is adopted. The 

dash line represents the probability density function (PDF), while the solid line represents 

the cumulative distribution function (CDF). Given a confidence level α, the travel time 

budget is the minimum travel time threshold allowed by travelers such that the 

corresponding CDF of actual travel time less than this threshold is at least α. The shaded 

area (i.e., tail) represents all possible worse situations (late trips) that the actual travel 

time is higher than the travel time budget, and the mean-excess travel time is the 

conditional expectation of the late trips. Clearly, from the figure, we can see that the 

travel time budget does not assess the magnitude of the possible travel time associated 

with the worse situations and is unable to distinguish the situations where the actual 

travel time is only a little bit higher than the travel time budget from those in which the 

actual travel times are extremely higher. Therefore, the travel time budget only ensures 

the reliability aspect of on-time arrival for a given confidence level α, while the mean-

excess travel time accounts for both the reliability aspect (i.e., travel time budget required 

to ensure on-time arrival at a confidence level α) and the unreliability aspect of travel 

time variability (i.e., encountering worse travel times beyond the travel time budget in the 

tail). 

Furthermore, note that Eq. (4.1) can be restated as: 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , | , ,x x E T x x T x xα α α αη ξ ς ξ ξ ς ξ ξ ς ξ= + − ≥⎡ ⎤⎣ ⎦ . (4.5) 

Therefore, the mean-excess travel time can be decomposed into two individual  
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Figure 4.1 Illustration of the definitions of travel time budget and mean-excess travel 

time. 
 
 
 
components. The first component is exactly the travel time budget of path x, which 

reflects the reliability requirement (i.e., the confidence level α) of the travelers. The 

second component is the expected value of the possible delays (or late trips) with 

respectto the path travel time budget, which can be regarded as a kind of ‘expected delay’ 

for choosing the current path that reflects the unreliable impacts of travel time variability 

induced by both recurrent and non-recurrent congestion. Clearly, the definition of mean-

excess travel time incorporates both the reliability and unreliability aspects in the path 

selection process, while the existing path finding criteria only consider the reliability 

aspect (e.g., α-reliable path, most reliable path) or consider neither aspect at all (e.g., 

mean path travel time). It enables the travelers to choose an optimal path such that the 

corresponding travel time budget allows for on-time arrival with a predefined confidence 

level and the possible risk of encountering worst travel times beyond the travel time 
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budget is minimized. 

According to definition 1 and definition 2, the mean-excess path finding model 

can be formulated as a stochastic mixed-integer nonlinear programming (SMINLP) 

problem as follows: 

 ( ) ( )
( ) ( )

( )
, ,

1min , , ,
1x

T x x

x T x dP x
α

α
ξ ς ξ

η ξ ξ ξ
α ≥

=
− ∫  (4.6) 

 
( ) ( )

1
. . 0 , ;

1
ij ki

j O i k I i

i r
s t x x i r i s

i s∈ ∈

∀ =⎧
⎪− = ∀ ≠ ≠⎨
⎪− ∀ =⎩

∑ ∑ , (4.7) 

 { } Ajixij ∈∀∈ ),(,1,0 , (4.8) 

where 

 ( ) ( )( ){ }, min | Pr ,x T T x Tας ξ ξ α= ≤ ≥ . (4.9) 

From the above formulation, we can see that Eqs. (4.7) and (4.8) define the 

feasibility of paths connecting from origin r to destination s. For any path x, the 

corresponding travel time budget for a predefined confidence level α, which represents 

the travelers’ concern about travel time reliability, is provided by Eq. (4.9). The objective 

function given in Eq. (4.6) uses these paths that satisfy the travel time budget to further 

examine the expected impacts of worst travel times in the tail (i.e., actual travel times 

greater than the budget) in order to select an optimal path that considers both the 

reliability aspect given by the travel time budget and the unreliability aspect of worst 

travel times in the tails that are overwhelmingly higher than the allowable travel time 

budget. Thus, the optimal mean-excess path is determined by minimizing the mean-

excess travel time of all feasible paths, i.e. 



 

102
 ( )

'
arg min ',

x X
x xαη ξ

∈
= . (4.10) 

where X is the feasible path set defined by (4.7) - (4.8). 

 
Illustrative example 
 

The following illustrative example shows the differences among the expected 

value, α-reliable, and mean-excess path finding models. A small hypothetical network 

with three parallel paths connecting origin r and destination s is adopted in this 

demonstration (see Figure 4.2). In this example, all travelers are assumed to have a 

confidence level of α = 90%. In order to facilitate the presentation of the essential ideas, 

the travel time distributions of the three paths are assumed to follow a log-normal 

distribution ( ),Logn µ σ , whose PDF is shown as below: 

 ( ) ( )2

2

ln1| , exp
22

f
ξ µ

ξ µ σ
σξσ π

⎛ ⎞− −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

, 0ξ∀ > . (4.11) 

The log-normal distribution is closely related to the normal distribution and has 

been commonly adopted in practice to model a broad range of random processes. The 

parameters µp and σp of the log-normal distribution for each path p (p = 1, 2,  3) are 

shown in the Figure 4.2. 

In this simple network where the path is equal to the link, the solution for the 

expected value model can be derived analytically as follows. 

 ( )2exp 2p p p pE Tπ µ σ⎡ ⎤= = +⎣ ⎦ , (4.12) 

where pT  represents the random travel time of path p (p = 1, 2, 3). 

If the travelers adopt the α-reliable path finding model, the following  
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Figure 4.2 Hypothetical network used to illustrate the different path finding models. 
 
 
 
minimization problem should be considered (Chen and Ji, 2005): 

min pς   ( ). . Pr 90%p ps t T ς≤ ≥ . (4.13) 

Under the assumption of the log-normal distributed path travel times, the travel  

 
time budget each path can be analytically computed (Aitchison and Brown, 1957) as 

follows: 

 ( )( )1exp 2 2 1p p perfς σ α µ−= − + , (4.14) 

where ( )1erf − ⋅  is the inverse of the Gauss error function defined as: 

 ( ) ( )2

0

2 exp
x

erf x t dt
π

= −∫ . (4.15) 

Now, suppose the travelers adopt the mean-excess path finding model. The 

minimization problem given in Eqs. (4.6) - (4.9) can be rewritten as: 

   
( )2

2

ln1 1min exp
1 22p

p p
p p

pp p

T
T dT

Tς

µ
α σπ σ

∞
⎛ ⎞− −⎜ ⎟⋅
⎜ ⎟− ⋅
⎝ ⎠

∫   ( ). . Pr 90%p ps t T ς≤ ≥ ,(4.16) 

Under the assumption of the log-normal distributed path travel times and 
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performing some calculus manipulations, the mean-excess travel time for each path can 

be analytically presented as: 

 
( )2

20

ln1 1 exp
1 22

p p
p p p p p

pp p

T
T dT

T

µ
η ς ς

α σπ σ
∞ +

⎛ ⎞− −⎜ ⎟⎡ ⎤= + − ⋅⎣ ⎦ ⎜ ⎟− ⋅
⎝ ⎠

∫   

  ( ) ( )( ) ( )2 1exp 2 2 2 1 1p p perfµ σ α σ α−= + ⋅Φ − ⋅ − + − , (4.17) 

where ( )Φ ⋅  is the standard normal CDF, [ ]a a+ =  if 0a > , and [ ] 0a + =  otherwise. 

The complete results derived analytically for all three path finding models are 

provided in Table 4.1. 

From Table 4.1, it is clear that different path finding models provide different 

optimal paths, which reflect various risk preferences and considerations toward travel 

time variability of the travelers. First, if the travelers are all risk-neutral, they only 

consider the mean path travel time during their path selection process. Therefore, from 

the expected value model column, they should choose path 3, which has the minimum 

expected travel time of 7. However, path 3 is very risky, since it has the second highest 

travel time budget and the highest mean-excess travel time. To ensure a 90% confidence 

level of on-time arrival, travelers on path 3 have to allow a higher travel time budget than 

those choosing path 2. Furthermore, even with the second highest travel time budget, 

travelers on path 3 still have to experience the highest risk of facing a 10% probability 

that the actual trip time will be longer than this travel time budget. Second, if the travelers 

are risk-averse and concern more about the travel time reliability, they may choose a path 

that gives them the minimum travel time budget. Under the α-reliable model column, 

travelers will choose path 2. Therefore, travelers who plan to travel through path 2 may 
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Table 4.1 Comparison of different path finding models 

 
 Path finding model 

  
Expected value 

model α-reliable model Mean-excess model 

Decision criterion Mean travel time Travel time budget Mean-excess travel time 
Path 1 10 12.6389 13.9291 
Path 2 8 12.1697 14.8037 
Path 3 7 12.5119 17.0817 
Optimal path Path 3 Path 2 Path 1 

 
 
 
depart later than those who choose other paths and still ensure a 90% confidence level of 

punctual arrival. However, comparing the expected value model column and the α-

reliable model column, it shows that the path with the least travel time budget may 

introduce a higher mean-excess travel time. Therefore, for travelers who are concerned 

with not only the travel time reliability, but also the unreliability of encountering worse 

travel times, they may prefer to choose path 1. Though, by doing that, the corresponding 

travel time budget is not the minimum, the expectation of the unacceptable travel times 

greater than the allowable travel time budget is reduced by half compared to the α-

reliable model. In addition, they can still enjoy a 90% reliability of punctual arrival. 

 
Solution Procedure 

 
 

Solving stochastic mixed-integer nonlinear programming problems is generally 

inefficient by using the general purpose integer programming software, especially when 

the network size is large. Furthermore, even the joint link travel time distribution is 

known with a PDF, an analytical expression of the path travel time distribution is usually 

not available. Fortunately, as will be shown later, an analytical path travel time PDF is 
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not necessary for solving the mean-excess path finding model described in the above 

sections.  It is sufficient to have a sampling technique, which generates random samples 

according to the link travel time probability density function. Moreover, a double-

relaxation scheme is developed in this paper that uses the network structure to enhance 

computational efficiency for practical implementation. 

According to Rockafellar and Uryasev (2000), the minimization problem given in 

Eqs. (4.6) - (4.9) is equivalent to minimizing the following program: 

 ( ) ( ) ( )
0,

1min , , ,
1x

x T x dP x
α

α α ας
η ξ ς ξ ς ξ

α

+∞
= + −⎡ ⎤⎣ ⎦− ∫ , (4.18) 

where ας is a free decision variable, x X∈ , [ ]a a+ =  if 0a > , and [ ] 0a + =  otherwise. 

It can be proved that the optimal value of the objective function ( ),xαη ξ  is the 

minimum mean-excess travel time, the corresponding optimal solution x gives the mean-

excess path, and the optimal value of the free decision variable ας  is the travel time 

budget of the mean-excess path. Moreover, the integral in Eq. (4.18) can be approximated 

by sampling the random link travel times according to the specified PDFs. If the 

sampling technique generates a collection of random link travel time vectors, 1, , Nξ ξ… , 

where ( ), ,k k
ijξ ξ= , for 1, ,k N= … , then Eq. (4.18) can be approximated as: 

 ( ) ( ) ( )
1

1min , ,
1

N
k

x k

x T x
Nα α αη ξ ς ξ ς

α
+

=

⎡ ⎤= + −⎣ ⎦− ∑ . (4.19) 

To relax the nonnegative mapping ( ), kT x ξ ς
+

⎡ ⎤−⎣ ⎦ , we introduce an auxiliary decision 

variables kλ , for 1, ,k N= … . Then, Eq. (4.19) can be replaced by the following linear 

program: 
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 ( ) ( ) 1

1min ,
1

N

kx k

x
Nα αη ξ ς λ

α =

= +
− ∑  

subject to the following linear constraints: 

 
ij

k
k ij ij

x x
x αλ ξ ς

∈

≥ −∑  and 0kλ ≥ , for 1, ,k N= … . 

Note that, such relaxation is independent of the distribution assumption. It works 

for both symmetrical and asymmetrical distributions (e.g., normal and non-normal). 

However, solving large-scale mixed integer linear programs may still be time-

consuming using the general purpose mixed integer programming software. By utilizing 

the network structure described by the flow conservation constraints given in Eq. (4.7), 

we are able to perform another relaxation by replacing the 0-1 constraints in Eq. (4.8) by  

 0 1 ( , )ijx i j A≤ ≤ ∀ ∈ . 

Therefore, by performing the sampling technique and the two relaxations, the mean-

excess path finding model can be finally reduced to a linear program as follows. 

 ( ) ( ) 1

1min ,
1

N

kx k

x
Nα αη ξ ς λ

α =

= +
− ∑  (4.20) 

 . . ,
ij

k
k ij ij

x x
s t x αλ ξ ς

∈

≥ −∑    for 1, ,k N= … , (4.21) 

 0kλ ≥ , for 1, ,k N= … , (4.22) 

 
( ) ( )

1
0 , ;
1

ij ki
j O i k I i

i r
x x i r i s

i s∈ ∈

∀ =⎧
⎪− = ∀ ≠ ≠⎨
⎪− ∀ =⎩

∑ ∑ , (4.23) 

 0 1 ( , )ijx i j A≤ ≤ ∀ ∈ . (4.24) 

As discussed above, our solution procedure includes two important relaxations. 
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Therefore, we named it the double-relaxation method. In the following, we summarize 

the main steps of the solution procedure: 

Double-Relaxation Solution Procedure 

Step 1. Solve the linear program (LP) in Eqs. (4.20) - (4.24) using any efficient LP 

solvers (e.g., interior point algorithm).  

Step 2. Identify a subset of paths with positive flows from the solution obtained in Step 1. 

This is done by assigning link capacities corresponding to the solution, and 

retrieving the flow-augmenting paths as a maximum-flow problem.  

Step 3. Check the objective value of each path within the path set identified in Step 2.  

Find the path with the minimum objective value as the optimal mean-excess path.  

Remarks: 

(1) As mentioned before, solving the mean-excess model (4.18) also provides the 

corresponding travel time budget ας  for the mean-excess path at the same time. 

Therefore, the proposed solution procedure is able to acquire the optimal travel time 

budget and the corresponding α-reliable path during the solution process. The only 

additional operation required is to check the travel time budget of each path within 

the path set, which can be performed in Step 3 along with the process of checking the 

mean-excess travel time. This provides another way to solve the α-reliable path 

finding problem that could be more efficient than the simulation-based genetic 

algorithm (SGA) procedure suggested by Chen and Ji (2005). 

(2) The proposed solution procedure is useful when the link travel time distributions are 

already known. Furthermore, it can also directly deal with historical link travel time 

data or stochastic travel time patterns described by a set of scenarios. In that case, the 
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minimization program (4.19) can be replaced by 

 ( ) ( ) ( )
1

1min , ,
1

M
k

kx k

x p T xα α αη ξ ς ζ ς
α

+

=

⎡ ⎤= + ⋅ −⎣ ⎦− ∑ , (4.25) 

where kp is the probability of occurrence for scenario kζ , 1, ,k M= … , and M is the 

total number of scenarios. By relaxing the nonnegative mapping ( ), kT x ζ ς
+

⎡ ⎤−⎣ ⎦ with 

an auxiliary decision variable, kλ , Eq. (4.20) can be rewritten as  

 ( ) ( ) 1

1min ,
1

M

k kx k

x pα αη ξ ς λ
α =

= + ⋅
− ∑  (4.26) 

and the corresponding constraints (4.21) and (4.22)  are also replaced by 

 ,
ij

k
k ij ij

x x
x αλ ξ ς

∈

≥ −∑  for 1, ,k M= …  

 0kλ ≥ ,     for 1, ,k M= …  (4.27) 

Therefore, by performing the proposed double-relaxation scheme, we can also obtain 

the optimal mean-excess travel time as well as the optimal mean-excess path. 

(3)  The solution obtained in Step 1 may be all integers (0 or 1), or include some positive 

fractions. In the former case (i.e. the solution is all integers), we already obtain the 

optimal path from origin r to destination s with the minimum mean-excess travel 

time. In the latter case, we need to identify a subset of paths that have positive flow 

associated with the solution. The procedure in Step 2 has been adopted in Sen et al. 

(2001) for determining optimal paths under the mean-variance model. It retrieves the 

flow-augmenting paths in a maximum flow problem, where the link capacities 

correspond to the solution of the relaxed LP problem. For more details of the 

procedure, we refer to Murthy (1994).  
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(4) To examine the computational complexity of the above solution procedure, we notice 

that the linear program can be solved in polynomial time using the recently developed 

interior point algorithms (Mehrotra, 1992). Furthermore, the solution procedure for 

identifying the path set in Step 2 also runs in polynomial time (Sen et al., 2001; 

Murthy, 1994). Therefore, the proposed double-relaxation solution procedure is 

computationally efficient. It should be noted that the efficiency and accuracy of the 

proposed solution algorithm will also be affected by different sampling techniques 

and number of samples. In this study, a conventional Monte Carlo approach is 

adopted for numerical experiments. However, other sampling techniques, such as 

Quasi-Monte Carlo methods (e.g., Boyle, Broadie, and Glasserman, 1997; Kreinin et 

al., 1998), could be incorporated to enhance the computational performance of the 

proposed solution procedure. 

 
Numerical Results 

 
 

To demonstrate the proposed mean-excess model and solution procedure, two 

networks are adopted in the numerical experiments. A small network is used first to 

illustrate the mean-excess model and the correctness of the solution procedure. A 

medium-sized network is then employed to demonstrate the applicability of the solution 

procedure to larger networks. In our implementation, all codes are written in Matlab 7, 

where a built-in interior point algorithm procedure is called for solving the relaxed linear 

program. The numerical experiments are tested on a PC Workstation with 3.0 GHz CPU 

and 2G memory. 
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Small network 
 

The first test network shown in Figure 4.3 is a 9-node grid network taken from 

Chen and Ji (2005). In this network, there are four types of links and the travel times on 

all four types of links are assumed to follow a normal distribution with similar means but 

different variances (see Table 4.2). All possible paths from origin 1 to destination 9 are 

also labeled and represented in the figure. The reason for choosing a normal distribution 

in this numerical experiment is because it enables deriving analytical expressions of the 

travel time distribution for each path. Therefore, we can solve the problem analytically 

and use the results as a benchmark to compare the mean-excess model with the α-reliable 

model and to validate the proposed double-relaxation solution procedure. 

Based on the assumption of normally distributed link travel times, the path travel 

time distributions are also normal. Therefore, the descriptive statistics of all the paths can 

be analytically computed (Table 4.3).  

According to the definitions of travel time budget and mean-excess travel time, it 

is easy to derive the analytical form of path travel time budget and path mean-excess 

travel time as below: 

 
 ( )12 2 1p p erfς µ σ α−= + ⋅ −  (4.28) 

 
( )

( )( )21exp 2 1
2 1

p
p p erf

σ
η µ α

π α
−= + − −

−
 (4.29) 

By assuming travelers' confidence level α increases from 0.5 to 0.9 with an 

interval of 0.1, the corresponding path travel time budget and path mean-excess travel 

time are listed in Table 4.4 and Table 4.5. 
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Figure 4.3 Small network. 
 
 
 
Table 4.2 Link travel time distribution 
 

Link Type Distribution (mean, variance) 
A Normal (200, 400) 
B Normal (207, 20) 
C Normal (202.5, 30) 
D Normal (198, 1500) 

 
 
 
Table 4.3 Statistics of all paths 
 

 
Path 1 
(sec.) 

Path 2 
(sec.) 

Path 3 
(sec.) 

Path 4 
(sec.) 

Path 5 
(sec.) 

Path 6 
(sec.) 

Mean 800 828 810 805 807.5 807.5 
STD 28.28 28.77 28.46 28.37 28.42 28.42 

 
 
 
The α-reliable paths and mean-excess paths for each confidence level are 

provided in Table 4.4 and Table 4.5, where the corresponding optimal path travel time 
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budget and optimal path mean-excess travel time are all marked in bold. From the two 

tables above, the following observations can be drawn:  

Different path finding criteria provide different optimal paths. It is easy to see that  

path 1 would be the optimal path if the expected value model is adopted, which gives 

the minimum mean travel time. However, path 1 may not be a reliable path under an 

uncertain environment. For example, under a confidence level of 0.8, the optimal path 

with the minimum travel time budget is path 4. Even the mean travel time of path 4 is 

higher than that of path 1, travelers may still prefer path 4, which requires a lower 

travel time budget in order to ensure a 80% reliability of on-time arrival. On the other 

hand, to consider not only a 80% travel time reliability but also the unreliable aspect 

(i.e., the impact of possible late arrivals with travel times higher than the travel time 

budget) path 2 should be selected as the optimum since it has the minimal mean-

excess travel time.  

The path travel time budget and path mean-excess travel time are non-decreasing 

when the confidence level α increases. This observation is not surprising because, to 

obtain a higher reliability, extra buffer times are needed.  

 
 
 

Table 4.4 Analytical results of the α-reliable model for different confidence levels (α) 
 

Confidence 
level (α) 

Path 1 
(sec.) 

Path 2 
(sec.) 

Path 3 
(sec.) 

Path 4 
(sec.) 

Path 5 
(sec.) 

Path 6 
(sec.) 

α-reliable 
path 

0.5 800.00 828.00 810.00 805.00 807.50 807.50 Path 1 
0.6 810.13 830.27 823.97 812.43 818.69 818.69 Path 1 
0.7 820.98 832.69 838.91 820.38 830.66 830.66 Path 4 
0.8 833.66 835.53 856.40 829.68 844.67 844.67 Path 4 
0.9 851.26 839.46 880.66 842.58 864.09 864.09 Path 2 
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Table 4.5 Analytical results of the mean-excess model for different confidence levels (α) 
 

Confidence 
level (α) 

Path 1 
(sec.) 

Path 2 
(sec.) 

Path 3 
(sec.) 

Path 4 
(sec.) 

Path 5 
(sec.) 

Path 6 
(sec.) 

Mean-excess 
 path 

0.5 831.92 835.14 853.99 828.40 842.73 842.73 Path 4 
0.6 838.63 836.64 863.25 833.32 850.15 850.15 Path 4 
0.7 846.36 838.37 873.90 838.99 858.68 858.68 Path 2 
0.8 855.99 840.52 887.18 846.05 869.31 869.31 Path 2 
0.9 870.20 843.70 906.76 856.47 885.00 885.00 Path 2 

 
 
 

Furthermore, we can observe that the path mean-excess travel time is always higher 

than the corresponding path travel time budget. This observation is consistent with 

Eq. (4.5), where an additional buffer time is added to the travel time budget to 

account for the possibility of encountering worst travel times beyond the travel time 

budget. In this way, the mean-excess model accounts for both reliability and 

unreliability aspects rather than only the reliability aspect as in the α-reliable model 

to minimize the expensive penalty of possible delays in the tail. 

Now, using the analytical results as a benchmark, we can examine the validity of 

the proposed double-relaxation solution procedure. Let's choose a sample size (N) of 300, 

the generated augmented paths, travel time budgets and mean-excess travel times are 

provided in Table 4.6. The α-reliable paths and mean-excess paths for each confidence 

level are also listed in the table, where the corresponding optimal path travel time budget 

and optimal path mean-excess travel times are marked in bold. 

The results demonstrate the validity of the proposed solution procedure, which is 

capable of finding the mean-excess paths with the optimal mean-excess travel time and 

the α-reliable paths with the minimum travel time budget. Note that the proposed 

solution procedure is applicable for the uncertain environment in practice, where the link 
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Table 4.6 Numerical results of the 9-node network 
 

Confidence 
level 

Generated 
path 

Travel time 
budget 

α-reliable 
path 

Mean-excess 
travel time 

Mean-excess 
path 

0.5 Path 1 798.39 832.46 
 Path 4 802.73 829.09 
 Path 6 806.41 842.24 
 Path 3 805.27 

Path 1 

849.94 

Path 4 

0.6 Path 1 809.94 839.57 
 Path 4 813.42 834.14 
 Path 5 812.47 848.71 
 Path 6 819.86 859.37 
 Path 2 830.54 

Path 1 

836.90 

Path 4 

0.7 Path 1 822.63 847.30 
 Path 4 822.09 839.37 
 Path 6 827.74 858.83 
 Path 3 836.96 869.22 
 Path 2 833.26 

Path 4 

838.56 

Path 2 

0.8 Path 1 831.67 857.56 
 Path 4 831.26 845.60 
 Path 5 841.55 869.99 
 Path 6 852.86 881.78 
 Path 2 836.16 

Path 4 

840.60 

Path 2 

0.9 Path 1 851.84 873.41 
 Path 4 840.76 855.04 
 Path 6 865.73 885.86 
 Path 3 876.67 900.35 
 Path 2 839.77 

Path 2 

843.18 

Path 2 

 
 
 
travel time distributions are generally asymmetric and have long tails (van Lint, van 

Zuylen, and Tu, 2008). Under such cases, it may be quite difficult or even impossible to 

derive the path travel time distributions and find the optimal path analytically. 

In the following, we examine the computational performance of the proposed 

double-relaxation solution procedure. First, we define the difference between the optimal 

mean-excess travel time obtained from the proposed solution procedure ( optη ) and the 
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one derived from the analytical method ( *

optη ) to be *
opt op tη η−  . Then, the CPU time 

and the logarithm of the difference with respect to the sample size are plotted in Figure 

4.4. Here, without loss of generality, we choose a confidence level of 80%. 

From the figure, we can see that CPU time tends to increase when the sample size 

increases. This is to be expected because more samples will introduce more constraints 

during the relaxation process, thus increasing the size of the relaxed LP problem. On the 

contrary, the difference *
opt optη η−  tends to decrease when the sample size increases. 
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Figure 4.4 CPU times and the common logarithm of the differences w.r.t. various sample 
size at α=80%. 
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This is also anticipated, because more samples will enhance the representation of the 

uncertain environment. Thus, it enables us to obtain a more accurate estimation of the 

optimal solution.  

 
Medium-sized network 
 

In this section, the proposed model and solution procedure are demonstrated using 

the Sioux Falls network (Leblanc, 1973), which is a medium-sized network with 76 links 

and 24 nodes (see Figure 4.5). Without loss of generality, the link travel times are 

assumed to follow a lognormal distribution with different means and variances. Links 6, 

8, 10, 31, 12, 15, 16, and 19 (represented by the dotted lines) use the free-flow travel time 

as the mean and 1/10 of the mean as the variance; links 13, 23, 25, 26, 28, 43, 46, and 47 

(represented by the bold lines) use the free-flow travel time as the mean and 1/15 of the 

mean as the variance; the remaining links use the free-flow travel time as the mean and 

1/2 of the mean as the variance. Node 1 is selected as the origin and node 15 is chosen as 

the destination. The reliability requirements (i.e., confidence level α) are tested from 0.5 

to 0.9, and the sample size is set to be 400. The detailed solutions are provided in Table 

4.7. 

The results demonstrate that the proposed model and solution procedure do have 

the capability of identifying the optimal path under asymmetric link travel time 

distributions. Thus, it is able to take the travelers’ risk preferences into consideration 

under more general situations than the traditional path finding models based on the 

expected value model or the mean-variance model. By varying the reliability 

requirements, the solution procedure can provide a portfolio of optimal paths that reflect 
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Figure 4.5 Sioux Falls network. 
 
 
 
the travelers’ various risk preferences. Furthermore, different path finding criteria may 

provide different optimal paths. For example, under the same reliability requirement (e.g., 

80% confidence level), the mean-excess path could be different from the α-reliable path.  

In each given confidence level, the optimal mean-excess travel time is always greater 

than the optimal travel time budget due to the consideration of both reliability and 

unreliability aspects. As a byproduct, the mean-excess model also obtains the travel time 

budget of the α-reliable model in the proposed solution procedure with a few extra 
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calculations (see Step 3 and remark 1 in the solution procedure section). Moreover, the 

proposed solution procedure only explores part of the feasible path set. This implies that 

the double-relaxation solution procedure has the potential to determine optimal paths in 

real size networks efficiently, where the number of feasible paths may be numerous. 

 
Conclusions 

 
 

In this study, the α-reliable mean-excess path finding model is proposed to 

consider both the travel time reliability requirement and the unreliability impact of 

encountering worst travel times beyond the acceptable travel time budget. This optimal  

 
 
 
Table 4.7 Computational results of Sioux Falls network 
 

Confidence 
level 

Generated paths in 
node sequence 

Travel time budget 
(min.) 

Mean-excess travel 
time (min.) 

CPU time
(second)

0.5 [1 3 4 11 10 15] 16.25 22.84 
 [1 3 4 11 14 15] 15.76 22.63 

3.0823 

0.6 [1 3 4 11 10 15] 17.71 24.33 
 [1 3 4 11 14 15] 17.02 24.19 

 [1 2 6 5 9 10 15] 22.04 30.48 
 [1 2 6 8 9 10 15] 21.23 31.70 

3.5667 

0.7 [1 3 4 11 10 15] 19.54 26.24 
 [1 3 4 11 14 15] 18.82 26.29 
 [1 2 6 5 9 10 15] 24.29 32.87 
 [1 2 6 8 9 10 15] 23.78 34.80 

3.3443 

0.8 [1 3 4 11 10 15] 21.87 29.02 
 [1 3 4 11 14 15] 21.54 29.26 
 [1 2 6 5 9 10 15] 26.86 36.61 
 [1 2 6 8 9 10 15] 27.47 39.53 

4.2621 

0.9 [1 3 4 11 10 15] 25.83 34.48 
 [1 3 4 11 14 15] 25.99 34.72 
 [1 2 6 5 9 10 15] 33.22 43.84 

4.7293 
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path finding criterion combines the buffer time measure, which represents the reliability 

aspect by determining the travel time budget required to ensure on-time arrival with a 

predefined confidence level α, and the tardy time measure, which represents the 

unreliability aspect of encountering unacceptable delays. It addresses two concerns of the 

travelers: “how much time do I need to allow?” and “how bad should I expect from the 

worse cases?” Therefore, it is able to capture the travelers’ risk preferences more 

completely and accurately, and better reflect the travelers’ decision process on path 

selection. The model is useful for practical uncertain environments, where the travel time 

distributions are generally nonnegative, asymmetric with long tails. A double-relaxation 

solution procedure is also developed to solve the proposed model. Illustrative examples 

and numerical experiments are conducted to demonstrate the features of the proposed 

model and the validity and efficiency of the solution procedure. The flexibility of the 

model and the efficiency of the solution procedure enable the determination of reliable 

paths that can potentially be adopted in various real world applications, such as in-vehicle 

route guidance system of ATIS. 

In this study, the Monte Carlo simulation is adopted for solving the proposed 

stochastic mixed-integer nonlinear program. It would be of interest to improve the 

double-relaxation procedure by using more efficient simulation techniques. Furthermore, 

the proposed mean-excess path finding model provides a pre-planned mean-excess path. 

It would also be of interest to further extend the proposed model to enable travelers to 

adaptively determine a α-reliable mean-excess path in a stochastic network, such as that 

in Fan et al. (2005b) and Zhou and Chen (Chapter 3). 
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CHAPTER 5 

 
THE α-RELIABLE MEAN-EXCESS TRAFFIC EQUILIBRIUM MODEL  

WITH STOCHASTIC TRAVEL TIMES1 

Abstract 
 
 

In this paper, we propose a new model called the α-reliable mean-excess traffic 

equilibrium model or the mean-excess traffic equilibrium (METE) model for short that 

explicitly considers both reliability and unreliability aspects of travel time variability in 

the route choice decision process. In contrast to the travel time budget (TTB) models that 

consider only the reliability aspect defined by TTB, this new model hypothesizes that 

travelers are willing to minimize their mean-excess travel times (METT) defined as the 

conditional expectation of travel times beyond the TTB. As a route choice criterion, 

METT can be regarded as a combination of the buffer time measure that ensures the 

reliability aspect of on-time arrival at a confidence level α , and the tardy time measure 

that represents the unreliability aspect of encountering worst travel times beyond the 

acceptable travel time allowed by TTB. It addresses both questions of “how much time 

do I need to allow?” and “how bad should I expect from the worse cases?” Therefore, 

travelers' route choice behavior can be considered in a more accurate and complete 

manner in a network equilibrium framework to reflect their risk preferences under an 

uncertain environment. The METE model is formulated as a variational inequality 

problem and solved by a route-based traffic assignment algorithm via the self-adaptive 

alternating direction method. Some qualitative properties of the model are rigorously 

                                                 
1 Co-authored by Zhong Zhou and Anthony Chen 
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proved. Illustrative examples are also presented to demonstrate the characteristics of the 

model as well as its differences compared to the recently proposed travel time budget 

models. 

 
Introduction 

 
 

Uncertainty is unavoidable in real life. It surrounds all aspects of decision-making 

and affects our daily life as well as the society. In transportation, uncertainty is a critical 

and inseparable part of many problems. For example, the road network is one of the 

systems that serves the travel demands in order to connect people engaged in various 

activities (e.g., work, traveling, shopping, etc.) at different locations. The uncertainty of 

network travel times exists in both supply side (roadway capacity variation) and demand 

side (travel demand fluctuation). Figure 5.1 provides an illustration of various sources of 

uncertainty that contribute to travel time variability. From the figure, we can observe that 

several exogenous sources of uncertainty exist in the supply side. Weather conditions 

refer to environmental conditions that can lead to changes in traveler behavior. For 

example, travelers may lower their speeds or increase their headways (spacing between 

vehicles) due to reduced visibility when fog, rain or snow is present. Traffic incidents, 

such as car crashes, breakdowns or debris in lanes, often disrupt the normal flow of 

traffic. Work zones are construction activities on the roadways that usually introduce 

physical changes to the highway environment. The number or width of lanes may be 

changed, shoulders may be eliminated, or roadways may be temporarily closed. Delays 

caused by work zones have been regarded as one of the most frustrating conditions that 

travelers encounter on their trips. Traffic control devices, such as signal timing and ramp  
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Figure 5.1 Sources (not exhaustive!) of uncertainty introducing the travel time variability 
(modified from van Lint et al., 2008). 

 
 
 

metering, also contribute to travel time variability. The uncertainty introduced by these 

supply-side sources can be referred to as stochastic link capacity variations, and typically 

lead to non-recurrent congestion (Chen et al., 2002; Lo, Luo, and Siu, 2006; Al-Deek and 

Emam, 2006). On the other hand, there are several sources of uncertainty exist in the 

demand side. Travel demand fluctuations can be introduced by temporal factors, such as 

time of day, day of week or seasonal effects. Special events are a special case of travel 

demand fluctuations, where the traffic flow is significantly different from the “typical” 

pattern in the vicinity of the event. Population characteristics, such as age, car ownership, 

and household income, also affect the propensity of travel demand. Traffic information 
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provided by Advanced Traveler Information Systems (ATIS) can also influence the 

travelers’ trip decision, including their departure time, destination, mode, and route 

choice, which consequently affect the traffic flow pattern. These demand variations 

usually lead to recurrent congestion (Asakura and Kashiwadani, 1991; Clark and Watling, 

2005). There are also complex interactions between the supply-side and demand-side 

sources of uncertainty. For example, bad weather may reduce roadway capacity in the 

network, and may at the same time change the spatial and temporal pattern of travel 

demand, because travelers may decide to change their departure time, choose a different 

route, or even cancel the trip. In short, these uncertain events result in the variation of 

traffic flow, which directly contributes to the spatial and temporal variability of network 

travel times. Such travel time variability introduces uncertainty for travelers such that 

they do not know exactly when they will arrive at the destination. Thus, it is considered 

as a risk to a traveler making a trip. 

The effects of the travel time variability on travelers’ route choice behaviors have 

been studied by several empirical surveys (Abdel-Aty, Kitamura, and Jovanis, 1995; 

Small et al., 1999; Lam, 2000; Brownstone et al., 2003; Cambridge Systematics, et al., 

2003; Recker et al., 2005). Abdel-Aty, Kitamura, and Jovanis (1995) found that travel 

time reliability was either the most or second most important factor for most commuters. 

In the study by Small et al. (1999), they found that both individual travelers and freight 

carriers were strongly averse to scheduling mismatches. For this reason, they were 

willing to pay a premium to avoid congestion and to achieve greater reliability in travel 

times. From the two value-pricing projects in Southern California, Lam (2000) and 

Brownstone et al. (2003) also consistently found that travelers were willing to pay a 
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substantial amount to reduce variability in travel time. Another study conducted by 

Recker et al (2005) on the freeway system in Orange County, California observed that: (i) 

both travel time and travel time variability were higher in peak hours than non-peak hours; 

(ii) both travel time and travel time variability were much higher in winter months than in 

other seasons; and (iii) travel time and travel time variability were highly correlated. 

According to these observations, they suggested that commuters preferred departing 

earlier to avoid the possible delays caused by travel time variability. These empirical 

studies revealed that travelers considered travel time variability as a risk in their route 

choice decisions. They are interested in not only travel time saving but also the travel 

time variability reduction to minimize risk. Thus, it is suffice to say travel time variability 

is a significant factor for travelers when making their route choice decisions under risk or 

circumstances where they do not know with certainty about the outcome of their 

decisions. Furthermore, a recent empirical study conducted by van Lint et al. (2008) 

reveals that the travel time distribution is not only very wide but also heavily skewed 

with a long fat tail. For example, it has been shown that about 5% of the “unlucky 

drivers” incur almost five times as much delay as the 50% of the “fortunate drivers” on 

the densely used freeway corridors in the Netherlands. The consequence of these heavily 

skewed travel times on the right tail (i.e., the late trips with unacceptable travel times) 

may be much more serious than those of modest delays, and it has a significant impact on 

travelers’ route choice behavior. 

However, travel time variability is not considered in the traditional user 

equilibrium (UE) model, where travelers are all assumed to be risk-neutral and the route 

choice decisions are based solely on the expected travel time. To model the route choice 
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behavior under stochastic travel times, some of the previous works are briefly described 

as follows. One stream of equilibrium-based models adopted the concept of utility 

(Emmerink et al., 1995; Mirchandani and Soroush, 1987; Noland, 1999; Noland et al., 

1998; Van Berkum and Van der Mede, 1999; Yin and Ieda, 2001), where the disutility 

function was constructed using a combination of attributes (e.g., expected travel time, 

travel time variance or standard deviation, late arrival penalty, etc.), and the network 

equilibrium conditions are similar to those of the traditional UE model except for the 

disutility function is replaced by the expected travel time. That is, travelers attempt to 

make a tradeoff between the expected travel time and its uncertainty. Recently, Watling 

(2006) proposed a late arrival penalized user equilibrium (LAPUE) model based on the 

concept of schedule delay. The new disutility function consists of the expected 

generalized travel cost plus a schedule delay term to penalize the late arrival under fixed 

departure times. 

A game theory based approach to model travel time variation was proposed by 

Bell (2000). It assumes that the travelers are highly pessimistic about the travel time 

variability and behave in a very risk-averse manner. Based on this approach, Bell and 

Cassir (2002) proposed a risk-averse traffic equilibrium model as a non-cooperative, 

mixed-strategy game to model the travelers’ route choice process. In this game, travelers 

seek the best routes to avoid link failures, while the demons select links to cause the 

maximum damage to the travelers. Szeto, O’Brien, and O’Mahony (2006) further 

extended this approach to include elastic demand and provided a nonlinear 

complementarity problem (NCP) formulation. 

Uchida and Iida (1993) defined travel time variation as a risk and proposed two 
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risk assignment models. Both models are established using the concept of effective travel 

time, which is defined as the mean travel time plus a safety margin. Lam and Chan (2005) 

argued that travelers should consider both travel time and travel time reliability for their 

route choices. Thus, a path preference index (PI) that combines the path travel time index 

(TI) and the path travel time reliability index (RI) is proposed to be the criterion of route 

choices. Lo and Tung (2003) proposed a probabilistic user equilibrium (PUE) model, 

where travel time variability is introduced by day-to-day stochastic link degradation with 

predefined link capacity distributions. Lo, Luo, and Siu (2006) extended this approach by 

incorporating the concept of travel time budget (TTB) to develop the within budget time 

reliability (WBTR) model. Different from Uchida and Iida’s (1993) definition, TTB is 

defined by a travel time reliability chance constraint, such that the probability that travel 

time exceeds the budget is less than a predefined confidence level α specified by the 

traveler to represent his/her risk preference. This definition is similar to that defined by 

Chen and Ji (2005), where the route with the minimum TTB is termed “α-reliable route”. 

Therefore, each commuter learns the travel time variations through his/her daily 

commutes and chooses a route that minimizes his/her TTB. Later, Siu and Lo (2006) 

extended the WBTR model to take traveler’s perception variation into consideration. By 

assuming travel time variation is induced by daily travel demand variation instead of 

capacity degradation, Shao et al. (2006) extended the PUE model and proposed a demand 

driven travel time reliability-based user equilibrium (DRUE) model. The DRUE model 

was further extended to a reliability-based stochastic user equilibrium (RSUE) model to 

account for both perception error and multiple user classes (Shao, Lam, and Tam, 2006). 

The core idea behind the travelers’ route choice behavior of the above models (Lo, Luo, 
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and Siu, 2006; Shao, Lam, and Tam, 2006; Siu and Lo, 2006) is based on the concept of 

TTB, which is defined as the average travel time plus an extra buffer time as an 

acceptable travel time, such that the probability of completing the trip within the TTB is 

no less than a predefined reliability threshold (or a confidence level α). In fact, the 

concept of TTB is analogous to the Value-at-Risk (VaR), which is by far the most widely 

applied risk measure in the finance area (Szego, 2005). However, it has been determined 

that VaR is not even a weakly coherent measure of risk (Artzner et al., 1997, 1999). 

Models using VaR is unable to deal with the possibility that the losses associated with the 

worst scenarios are excessively higher than the VaR, and reduction of VaR may lead to 

stretch of tail exceeding VaR (Larsen, Mausser, and Uryasev, 2002; Yamai and Yoshiba, 

2001). In the same spirit, TTB may also be an inadequate risk measure, which could 

introduce overwhelmingly high trip times (i.e., unreliability aspect of travel time 

variability) to travelers if it is used solely as a route choice criterion in the network 

equilibrium based approach. 

Furthermore, to describe travelers' route choice decision process under travel time 

variability, considering only the reliability aspect (i.e., buffer time or acceptable travel 

time defined by TTB) may not be adequate to describe travelers’ risk preferences. On the 

one hand, the reports issued by the Federal Highway Administration (FHWA, 2004, 2006) 

documented that travelers, especially commuters, do add a 'buffer time' (or safety margin) 

to their expected travel time to ensure more frequent on-time arrivals when planning a 

trip. It represents the reliability aspect in the travelers' route choice decision process. On 

the other hand, the impacts of late arrival and its explicit link to the travelers' preferred 

arrival time were also examined in the literature (e.g., Noland et al., 1998; Noland, 1999; 
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Hall, 1993; Porter, Wright and Dale, 1996) and appreciated as the ‘value’ of unreliability 

(Watling, 2006). It represents travelers' concern of the unreliability aspect of travel time 

variability in their route choice decision process, where trip times longer than they 

expected would be considered as ‘unreliable’ or ‘unacceptable’ (Cambridge Systematics 

et al., 2003). Therefore, it is reasonable to incorporate both reliability and unreliability 

aspects of travel time variability into the network equilibrium model to describe travelers’ 

route choice behavior under stochastic travel times. 

In this paper, we present a new α-reliable mean-excess traffic equilibrium model 

or mean-excess traffic equilibrium (METE) model for short that explicitly considers both 

reliability and unreliability aspects of travel time variability in the route choice decision 

process. In contrast to the TTB models (Lo, Luo, and Siu, 2006; Shao et al., 2006; Shao, 

Lam, and Tam, 2006; Siu and Lo, 2006) that consider only the reliability aspect defined 

by TTB, this new model hypothesizes that travelers are willing to minimize their mean-

excess travel time (METT) defined as the conditional expectation of travel times beyond 

the TTB. As a route choice criterion, METT can be regarded as a combination of the 

buffer time measure that ensures the reliability of on-time arrival, and the tardy time 

measure that represents the unreliability impacts of excessively late trips (Cambridge 

Systematics et al., 2003). It incorporates both reliability and unreliability aspects of travel 

time variability to simultaneously address both questions of "how much time do I need to 

allow?" and "how bad should I expect from the worse cases?" Therefore, travelers' route 

choice behavior can be considered in a more accurate and complete manner in a network 

equilibrium framework to reflect their risk preferences under an uncertain environment. 

Furthermore, the definition of METT is consistent with the conditional value-at-risk 
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(CVaR) measure in the literature (Rockafellar and Uryasev, 2000, 2002) for risk 

optimization. It has been recognized as a good alternative measure of risk due to its 

coherent mathematical characteristics, and it is suitable for modeling flexible travel time 

distributions, including non-symmetric and heavy tailed distributions. In addition, CVaR 

has been applied in various fields, such as portfolio optimization (Rockafellar and 

Uryasev, 2002), facility location (Chen et al., 2006) and fleet allocation (Yin, 2007), 

albeit not in the context of traffic equilibrium problem under uncertainty. 

The remainder of the paper is organized as follows.  In Section 2, the concept of 

mean-excess travel time in a stochastic network is introduced and the mean-excess traffic 

equilibrium model is proposed, where the model is formulated as a variational inequality 

(VI) problem. Some properties and analytical results of the model and formulation are 

also presented.  In Section 3, a route-based traffic assignment algorithm based on the self-

adaptive alternating direction method is developed to determine the equilibrium flow 

pattern. In Section 4, numerical examples are presented to illustrate the features of the 

proposed model, to compare with other related user equilibrium models, and to 

demonstrate the applicability of the solution procedure. Finally, conclusions and 

recommendations for future research are given in Section 5. 

 
The Mean-Excess Traffic Equilibrium Model 

 
 

This section describes the METE model for determining the equilibrium flow 

pattern under stochastic travel times. Notation is provided first for convenience, followed 

by the definition of mean-excess travel time, an illustrative example to highlight the 

differences of using the expected travel time, the TTB, and the METT as a route choice 
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criterion, the variational inequality formulation for the METE model and its qualitative 

properties, and the derivation of travel time distribution under different sources of 

uncertainty. 

 
Notation 
 

),( ANG  A stochastic network composed by nodes and links 

N Set of nodes 

A Set of links 

R Set of origins 

S Set of destination 

rsP  Set of routes between origin r and destination s 

a Link index 

r Origin index 

s Destination index 

p Route index  

α Reliability threshold (or confidence level) that represents 

the traveler’s risk preference  

rs
pT   Random travel time on route p between origin r and 

destination s 

( )rs
pE T  Expected travel time on route p between origin r and 

destination s 

( )rs
pγ α  Buffer time on route p between origin r and destination s 



 

136
required to ensure on-time arrival at a confidence level α 

rs
pξ  Travel time budget (i.e., expected travel time + buffer time) 

on route p between origin r and destination s required to 

ensure on-time arrival at a confidence level α 

rs
pη  Mean-excess travel time on route p between origin r and 

destination s 

η  Vector of mean-excess route travel times ( ), ,
Trs

pη… …  

rsπ  Minimal mean-excess travel time between origin r and 

destination s 

at  Mean travel time on link a 

2
aσ  Variance of travel time on link a 

rsq  O-D demand between origin r and destination s 

q Vector of O-D demands ( ), ,
Trsq… …  

rs
pf  Flow on route p between origin r and destination s 

f Vector of route flows ( ), ,
Trs

pf… …  

Λ  OD-Route incidence matrix 

av  Flow on link a 

rs
paδ⎡ ⎤∆ = ⎣ ⎦  Route-link incidence matrix, where 1rs

paδ =  if route p from 

origin r to destination s uses link a, and 0 otherwise 
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Definition of mean-excess travel time 

In this study, travelers are assumed to have knowledge of the distribution of the 

travel time variability. In practice, this kind of knowledge can be acquired from various 

sources, such as their past commuting experiences or advanced traveler information 

systems (ATIS). Travelers then incorporate this information into their route choice 

decisions along with their own risk-preferences to reach a long-term habitual equilibrium 

flow pattern. Therefore, to study the user equilibrium problem, the key factor here is to 

understand the travelers’ route choice behavior under travel time variability. In this 

section, we will illustrate the concept of METT (i.e., analogous to the Conditional Value-

at-Risk (CVaR) measure used in financial engineering) adopted as a route choice 

criterion in a traffic equilibrium framework and demonstrate its differences with the 

travel time budget (TTB) criterion adopted in many recent developed traffic equilibrium 

models to consider the reliability aspect of travel time variability in the route choice 

decision process. 

As mentioned above, travelers are unable to accurately estimate the travel time 

from their origin to destination due to travel time variability. This is considered as a risk 

associated with their route choice decisions. According to Mirchandani and Soroush 

(1987), travelers making route choice decisions under an uncertain environment can be 

categorized into three groups according to their attitudes toward risk (e.g., risk-prone, 

risk-neutral and risk-averse). In the traditional UE model, travelers are assumed to be 

risk-neutral since they make their route choice decisions solely based on the expected 

travel time ( )rs
pE T , where rs

pT  is the random travel time on route p between origin r and 

destination. However, recent empirical studies (Small et al., 1999; Lam, 2000; 
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Brownstone et al., 2003; Liu, Recker, and Chen, 2004; de Palma and Picard, 2005; 

Cambridge Systematics et al., 2003; FHWA, 2004, 2006) revealed that most travelers are 

actually risk-averse. They are willing to pay a premium to avoid congestion and minimize 

the associated risk.  

By considering the travel time reliability requirement, travelers are searching for a 

route such that the corresponding TTB allows for on-time arrival with a predefined 

confidence level α (Lo, Luo, and Siu, 2006; Siu and Lo, 2006; Shao et al., 2006). 

Meanwhile, they are also considering the impacts of excessively late arrival (i.e., the 

unreliable aspect of travel time variability) and its explicit link to the travelers' preferred 

arrival time in the route choice decision process (Noland et al., 1998; Noland, 1999; 

Watling, 2006). Therefore, it is reasonable for travelers to choose a route such that the 

travel time reliability (i.e., acceptable travel time defined by TTB) is ensured most of the 

time and the expected unreliability impact (i.e., unacceptable travel time exceeding TTB) 

is minimized. This trade-off between the reliable and unreliable aspects in travelers' route 

choice decision process can be represented by the mean-excess travel time (METT) 

defined as follows. 

Definition 1. The mean-excess travel time ( )rs
pη α  for a route rsPp ∈  between origin r to 

destination s with a predefined confidence level α is equal to the conditional expectation 

of the travel time exceeding the corresponding route TTB ( )rs
pξ α , i.e., 

 ( ) ( )[ | ]rs rs rs rs
p p p pE T Tη α ξ α= ≥ , , ,rsp P r R s S∀ ∈ ∈ ∈ , (5.1) 

where rs
pT  is the random travel time on route p from origin r to destination s, E[⋅] is the 



 

139
expectation operator, and ( )rs

pξ α  is the minimum TTB on route p from origin r to 

destination s defined by the travel time reliability chance constraint at a confidence level 

α in Eq. (5.2) (Chen and Ji, 2005; Lo, Luo, and Siu, 2006): 

 ( ) ( ){ }min | Prrs rs
p pTξ α ξ ξ α= ≤ ≥ , (5.2) 

              ( ) ( )rs rs
p pE T γ α= + , , ,rsp P r R s S∀ ∈ ∈ ∈ , (5.3) 

where ( )rs
pγ α  is the extra time added to the mean travel time as a ‘buffer time’ to ensure 

more frequent on-time arrivals at the destination under the travel time reliability 

requirement at a confidence level α. It should be noted that Eq. (5.3) is exactly the 

definition of the TTB used in the α-reliable route finding model of Chen and Ji (2005), 

the DRUE model of Shao, Lam, and Tam (2006), the RSUE model of Shao, Lam, and 

Tam (2006), and the WBTR model of Lo, Luo, and Siu (2006). 

According to the definition above, it is easy to see that if the route travel time 

distribution ( )rs
pTf  is known, the METT can be represented as: 

 ( ) ( )
( )

( )1
1 rs rs

p p

rs rs rs rs
p p p p

T

T f T d T
ξ α

η α
α ≥

=
− ∫ . (5.4) 

Moreover, Eq. (5.1) can be restated as: 

 ( ) ( ) ( ) ( )|rs rs rs rs rs rs
p p p p p pE T Tη α ξ α ξ α ξ α⎡ ⎤= + − ≥⎣ ⎦ . (5.5) 

Therefore, the METT can be decomposed into two individual components. The first 

component is exactly the TTB of route p, which reflects the reliability aspect of 

acceptable risk allowed by the travelers at a confidence level α. The second component is 

the expected value of the late trips with respect to the TTB, which can be regarded as a 
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kind of “expected delay” or “conditional expected regret” for choosing the current route, 

to reflect the unreliable aspect of unacceptable risk (i.e., trip times exceeding the 

acceptable travel time defined by TTB). Clearly, as a new route choice decision criterion, 

the METT incorporates both reliable and unreliable factors into the route choice decision 

process, while other existing route choice criteria consider only one aspect (e.g., TTB) or 

consider neither aspect at all (e.g., mean route travel time). It simultaneously addresses 

both questions of “how much time do I need to allow?” and “how bad should I expect 

from the worse cases?” Both questions relate particularly well to the way travelers make 

decisions. 

To illustrate the definition of METT and its relation to TTB, a hypothetical route 

travel time distribution shown in Figure 5.2 is adopted. The solid line represents the 

probability distribution function (PDF), while the dotted line represents the cumulative 

distribution function (CDF). Given a confidence level α, the TTB is the minimum travel 

time threshold (i.e., mean travel time + safety margin) allowed by the travelers such that 

the corresponding cumulative probability of actual travel time less than this threshold is 

at least α. The shaded area (i.e., tail) represents all possible worse situations (late trips) 

that the actual travel time is higher than the TTB, and the METT is the conditional 

expectation of the late trips. Clearly, from the figure, we can observe that the TTB does 

not assess the magnitude of the possible travel times associated with the worse situations 

and is unable to distinguish the situations where the actual travel times are only a little bit 

higher than the TTB from those in which the actual travel times are extremely higher. In 

other words, it does not address the question that concerns with the unreliability aspect, 

such as “how bad should I expect from the worse case?” Therefore, the TTB only ensures 
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the reliability aspect of on-time arrival for a given confidence level α, while the METT 

accounts for both the reliability aspect (i.e., TTB required to ensure on-time arrival at a 

confidence level α) and the unreliability aspect of travel time variability (i.e., 

encountering worse travel times beyond the TTB in the tail). 

 
Illustrative example 
 

The following illustrative example shows the differences of using the expected 

travel time, TTB, and METT as the route choice criterion. A small hypothetical network 

with three parallel routes connecting origin r and destination s is adopted in this 

demonstration (see Figure 5.3). In this example, all travelers are assumed to have a 

confidence level of α = 90%. In order to facilitate the presentation of the essential ideas, 

the travel time distributions of the three routes are assumed to follow a log-normal 

distribution ( ),Logn µ σ , whose PDF is shown as below: 
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Figure 5.2 Illustration of the travel time budget and mean-excess travel time. 
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 ( ) ( )2

2

ln1| , exp
22

f
ξ µ

ξ µ σ
σξσ π

⎛ ⎞− −
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

, 0ξ∀ > . (5.6) 

The log-normal distribution is closely related to the normal distribution and has 

been commonly adopted in practice to model a broad range of random processes. The 

parameters µp and σp of the log-normal distribution ( ),Logn µ σ  for each route p (p = 1, 2,  

3) are shown in Figure 5.3. 

In this simple network where the route is equal to the link, the solution for the 

expected travel time criterion can be derived analytically as follows. 

 ( ) ( )2exp 2
pppp TE σµπ +== , (5.7) 

where Tp represents the random travel time of route p (p = 1, 2, 3). 

If the travelers are concerned with travel time reliability and want to minimize 

their corresponding TTB at the same time, the following minimization problem should be 

considered (Chen and Ji, 2005): 

 ( )min
p

p p pE T
γ

ξ γ= +  (5.8) 

 
 
 

 
 

Figure 5.3 Hypothetical network used to illustrate the different route choice criteria. 
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 s.t. ( )Pr 90%p pT ξ≤ ≥ . (5.9) 

Under the assumption of the log-normal distributed route travel time, the TTB for 

each route can be analytically computed (Aitchison and Brown, 1957) as follows: 

 ( )( )1exp 2 2 1p p perfξ σ α µ−= − + , (5.10) 

where ( )1erf − ⋅  is the inverse of the Gauss error function defined as: 

 ( ) ( )2

0

2 exp
x

erf x t dt
π

= −∫ . (5.11) 

Now, suppose travelers are concerned with not only the reliability of on-time 

arrival, but also the impact of situations that actual travel times are higher than the TTB. 

Then, it is meaningful for them to minimize the METT, while still ensures the reliability 

requirement. Following the METT definition in Eq. (5.1), we consider the following 

minimization problem: 

 min [ | ]p p p pE T Tη ξ= ≥  (5.12) 

 s.t. ( )Pr 90%p pT ξ≤ ≥ . (5.13) 

Under the assumption of lognormal distribution, the minimization problem (5.12) 

and (5.13) can be rewritten as: 

 
( )

( )2

2

ln1 1min exp
1 0.9 22p

p p
p p

pp p

T
T dT

Tξ

µ
σπ σ

∞
⎛ ⎞− −⎜ ⎟⋅
⎜ ⎟− ⋅
⎝ ⎠

∫  (5.14) 

 ( ). . Pr 90%p ps t T ξ≤ ≥ . (5.15) 

By performing some calculus manipulations on the minimization problem (5.14) 

and (5.15), the METT of route p can be analytically derived as follows: 
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( )2

20

ln1 1 exp
1 22

p p
p p p p p

pp p

T
T dT

T

µ
η ξ ξ

α σπ σ
∞ +

⎛ ⎞− −⎜ ⎟⎡ ⎤= + − ⋅⎣ ⎦ ⎜ ⎟− ⋅
⎝ ⎠

∫  

 ( ) ( )( )2 1exp 2 2 2 1p p perfµ σ α σ−= + ⋅Φ − ⋅ − + , (5.16) 

where ( )Φ ⋅  is the standard normal CDF, [ ]a a+ =  if 0a > , and [ ] 0a + =  otherwise. 

The analytically derived results for all three routes are shown in Figure 5.4, where 

the x-axis represents the different route choice criteria and the z-axis represents the 

corresponding measurement value (in minutes) for a given criterion. For simplicity, the 

mean travel time, travel time budget and mean-excess travel time are abbreviated by 

MTT, TTB and METT, respectively. 

From Figure 5.4, it is clear that different route choice criteria provide different 

optimal routes, which reflect various risk preferences and considerations of the travelers 

toward travel time variability. If the travelers are all risk-neutral, they only consider the 

expected route travel time during their route choice decisions (i.e., the traditional UE 

model). Therefore, based on the first group of bars in the figure, they should choose route 

3, which has the minimum expected travel time of 7. However, to ensure a 90% 

confidence level of on-time arrival, choosing route 3 will no longer be the optimal 

decision. If the travelers are risk-averse and concern more about the travel time reliability, 

they may choose a route that gives them the minimum TTB. This can be observed in 

Figure 5.5, where the TTB for each route is represented by the summation of two parts, 

i.e., mean travel time plus an extra buffer time. This is consistent with the definition of 

TTB given in Eq. (5.3), where the buffer time describes the impacts from the reliability 

aspect of travel time variability on travelers’ route choice decisions. From the figure, we  
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Figure 5.4 Analytical results for all three routes with different route choice criteria. 
 
 
 
can see that to make sure a 90% travel time reliability, route 3 has to add the longest 

buffer time (5.51 min), which makes its TTB higher than that of route 2. Therefore, by 

considering the impacts of the travel time reliability aspect, travelers will prefer route 2 

due to its lowest TTB. In other words, travelers who plan to travel through route 2 may 

depart later than those who choose other routes and still ensure a 90% confidence level of 

punctual arrival. 

However, as discussed in the previous section, TTB is unable to account for the 

magnitude of the worse travel times in the distribution tail. That is, it is unable to assess 

the impacts related to the unreliable situations where the actual travel times may be 
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Figure 5.5 Analysis of the impacts of travel time reliability. 
 
 
 
overwhelmingly higher than the TTB. Therefore, routes with a lower TTB may have a 

higher METT, and travelers who choose these routes will have a 10% probability of 

encountering trip times much greater than the allowable TTB. This can be demonstrated 

more clearly in Figure 5.6, where the METT for each route is represented by the 

summation of three parts, i.e., mean travel time, buffer time and “expected delay.” This is 

consistent with the definition of METT by combining Eq. (5.3) and Eq. (5.5) , where the 

“expected delay” describes the impacts from the unreliability aspect of travel time 

variability on travelers’ route choice decisions, and the summation of the other two 

components (mean travel time and buffer time) give the TTB that represents the travel 

time reliability requirement specified by the travelers. 

From the figure, we can see that travelers on route 2 or 3 may experience a higher 

expected delay than those on route 1 when the 10% worse cases happened, even though 

they has a lower TTB. These worse cases may be due to various sources, such as severe 
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Figure 5.6 Analysis of the impacts of travel time unreliability. 
 
 
 
incidents, bad weather conditions and special events. Therefore, for travelers who are 

concerned with not only the travel time reliability, but also the unreliability of 

encountering worse travel times, they may prefer to choose route 1, which has the lowest 

METT. Though, by doing that, the corresponding TTB is not the minimum, the 

expectation of the unacceptable travel times greater than the allowable TTB is 

significantly reduced compared to other choices. In addition, they can still enjoy at least a 

90% reliability of punctual arrival. Note that the METT is always higher than the 

corresponding TTB. This implies that the METT criterion can be regarded as a more 

conservative measure of risk, which reflects the behavior of travelers who have a more 

negative attitude toward schedule delay and a higher degree of risk-averseness in hedging 

against travel time variability. The impacts on travelers’ route choice decision by 
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considering both travel time reliability and unreliability can be further illustrated in 

Figure 5.7 to show the percentages of each component (i.e., mean travel time, buffer time 

and expected delay) corresponding to the METTs. From the figure, we can see that the 

unreliability aspect of travel time variability is as significant as the reliability aspect on 

travelers’ route choice decision. For example, the buffer time (reliability aspect) and the 

expected delay (unreliability aspect) of route 3 are 32% and 27% of METT, respectively. 

Furthermore, we can see that the reliability and unreliability aspects on route 3 have 

nearly 59% impacts in total on travelers’ route choice decisions, which even higher than 

the impacts from the mean travel time (only around 41%). It demonstrates that the 

reliability and unreliability aspects do play an important role in travelers’ route choice 

decisions under travel time variability. Therefore, none of them (reliability and 

unreliability aspects) should be ignored in practice. 

 
Equilibrium conditions and variational  
inequality formulation 
 
Consider a strongly connected transportation network [N, A], where N and A denote the  
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Figure 5.7 Proportion of each component in the mean-excess travel times. 
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sets of nodes and links, respectively. Let R and S denote a subset of N for which travel 

demand rsq  is generated from origin r R∈  to destination s S∈ , and let rs
pf  denote the 

flow on route rsp P∈ , where rsP is a set of routes from origin r to destination s. We 

assume that the link travel time is stochastic, which is represented by a random vector 

{ }aT T= , where aT  represents the random travel time on link a A∈ . 

Let rs
paδ⎡ ⎤∆ = ⎣ ⎦ denote the route-link incidence matrix, where 1rs

paδ =  if route p 

from origin r to destination s uses link a, and 0, otherwise. Then, the feasible flow set Ω 

can be described as below: 

 , ,
rs

rs rs
p

p P

q f r R s S
∈

= ∀ ∈ ∈∑ , (5.17) 

 ,
rs

rs rs
a p pa

r R s S p P

v f a Aδ
∈ ∈ ∈

= ∀ ∈∑∑ ∑ , (5.18)

 0, , ,rs rs
pf p P r R s S≥ ∀ ∈ ∈ ∈ , (5.19) 

where (5.17) is the travel demand conservation constraint, (5.18) is a definitional 

constraint that sums up all route flows that pass through a given link a, and (5.19) is a 

non-negativity constraint on the route flows.  

As discussed in the previous section, it is reasonable to assume that travelers are 

willing to minimize their METT when traveling from an origin to a destination under an 

uncertain environment. Consequently, a long-term habitual traffic equilibrium can be 

reached. It is termed the mean-excess traffic equilibrium model. Let η  denote the METT 

vector ( ), ,
Trs

pη… … , rsπ  denote the minimal METT between O-D pair (r,s), and f denote 
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the route-flow vector ( ), ,

Trs
pf… … . The conditions of mean-excess traffic equilibrium 

state can be characterized as follows. 

Definition 2: The mean-excess traffic equilibrium state is reached by allocating the O-D 

demands to the network such that no traveler can improve his/her METT by unilaterally 

changing routes. In other words, all used routes between each O-D pair have equal 

METT, and no unused route has a lower METT, i.e. the following conditions hold: 

 
*

*
*

0 ) 0
( ) , , ,

0   ) 0

rs
prs rs rs

p rs
p

    if  (f
f p P r R s S

if  (f  
η π

⎧ = >⎪− ∀ ∈ ∈ ∈⎨≥ =⎪⎩
. (5.20) 

Such an equilibrium state is what results if each and every traveler simultaneously 

attempts to minimize his/her excess-mean travel time. Then the mean-excess traffic 

equilibrium model can be formulated as a variational inequality problem VI(f,Ω) as 

follows. 

Find a vector *f ∈Ω , such that 

 * *( ) ( ) 0Tf f fη − ≥ , f∀ ∈Ω . (5.21) 

The following two Propositions give the equivalence of the VI formulation and 

the mean-excess traffic equilibrium model as well as the existence of an equilibrium 

solution. 

Proposition 1. Assume the mean-excess route travel time function ( )fη  is positive, the 

solution of the VI problem (5.21) is equivalent to the equilibrium solution of the mean-

excess traffic equilibrium model. 

Proof. Note that *f is a solution of the VI problem (5.21) if and only if it is a solution of 

the following linear program: 
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 ( )*min

T

f
f fη

∈Ω
 (5.22) 

By considering the primal-dual optimality conditions of (5.22), we have 

 ( )* *( ) 0, , ,rs rs rs rs
p pf f p P r R s Sη π⋅ − = ∀ ∈ ∈ ∈ , (5.23) 

 *( ) 0, , ,rs rs rs
p f p P r R s Sη π− ≥ ∀ ∈ ∈ ∈ , (5.24) 

and Eq. (5.19). It is easy to see the METE condition (5.20) is satisfied. This completes 

the proof.              € 

Proposition 2. Assume the mean-excess route travel time function ( )fη  is positive and 

continuous, the mean-excess traffic equilibrium problem has at least one solution. 

Proof. According to Proposition 1, we only need to consider the equivalent VI 

formulation. Note that the feasible set Ω is nonempty and convex. Furthermore, the 

mapping ( )fη  is continuous according to the assumption. Thus, the VI problem (5.21) 

has at least one solution (e.g., see Nagurney, 1993). This completes the proof. € 

Note that, in this study, the travelers are assumed to be risk-averse and concerned 

with both reliability and unreliability aspects of travel time variability, where the link 

travel time distribution is assumed to has a continuous CDF by fitting the real 

surveillance data. Consider the link/route relationship 

 , , ,rs rs rs
p a ap

a A
T T p P r R s Sδ

∈

= ∀ ∈ ∈ ∈∑  (5.25) 

and the definition of the METT in Eq. (5.1), it is reasonable to give the positive and 

continuous assumption of the function ( )fη  as in the above propositions. Consequently, 

the validity of the VI formulation and the existence of the solution are ensured. 
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Stochastic travel time under different 
sources of uncertainty 

 
The METE model and its VI formulation proposed above are ‘generic’ in the 

sense that the link/route travel time variability is characterized by a known PDF. In 

practice, the travel time variability could come from various sources of uncertainty as 

described in Figure 5.1. Exogenous sources of uncertainty exist in the supply side, which 

refer to capacity variations (e.g., traffic incidents, capacity degradations due to work 

zones and weather conditions, traffic control device, etc.), and typically lead to non-

recurrent congestion (Al-Deek and Emam, 2006; Chen et al., 2002; Lo, Luo, and Siu, 

2006), while endogenous sources of uncertainty exist in the demand side, which refer to 

demand variations (e.g., travel demand fluctuations between origin-destination (OD) 

pairs) and usually lead to recurrent congestion (Asakura and Kashiwadani, 1991; Clark 

and Watling, 2005). These uncertain events result in the variation of traffic flow, which 

directly contributes to the spatial and temporal variability of network travel times. 

Therefore, it is necessary to review the commonly studied sources of uncertainty and 

their corresponding derivations of stochastic travel time in the literature in order to better 

understand the implications of the proposed modeling approach. 

Let us consider the widely adopted Bureau of Public Road (BPR) link 

performance function 

 0 1 ,
n

a
a a

a

vt t a A
c

β
⎛ ⎞⎛ ⎞
⎜ ⎟= + ∀ ∈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (5.26) 

where at , 0
at , av , and ac  are the travel time, free-flow travel time, capacity, and flow on 

link a; β  and n  are the deterministic parameters. The variability of travel time could 
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come from the free-flow travel time, the link flow, or the link capacity as described 

below. 

Free-flow travel time variation. To describe the travel time variability due to 

various non-routine events such as weather, road conditions, or traffic delays, 

Mirchandani and Soroush (1987) suggested a nonnegative random free-flow link travel 

time 0
aT , which follows a Gamma distribution with shape parameter k and scale 

parameter θ, i.e., ( )0 ,aT k θΓ∼ . Then, the mean and variance of aT  can be represented as 

below: 

 ( ) 1
n

a
a

a

vE T k
c

θ β
⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (5.27) 
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2 1
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a

vVar T k
c

θ β
⎛ ⎞⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

. (5.28) 

Capacity variation. Lo, Luo, and Siu (2006) considered stochastic link capacity 

degradation, which is one of the main sources of travel time variability. Under the 

relatively minor day-to-day events, such as vehicle breakdown and accident, the link 

capacity is subject to stochastic degradation to different degrees. By assuming the 

capacity degradation random variable aC  (we use capital letters to represent random 

variables) is independent of the amount of traffic ( av ) on it, and follows a uniform 

distribution defined by an upper bound (the design capacity ac ) and a lower bound (the 

worst-degraded capacity, to be a fraction aρ of the design capacity), Lo, Luo, and Siu, 

(2006) derived the mean and variance of aT as below: 
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To relax the assumption of uniform distribution, they suggested adopting the 

Mellin Transform technique as discussed in Lo and Tung (2003). 

Demand variation. Another main source of travel time variability is the stochastic 

travel demand.  In view of the day-to-day travel demand fluctuation, the traffic demand 

between each OD pair is assumed to be a random variable with a given probability 

distribution: 

 , ,rs rs rsQ q r R s Sε= + ∀ ∈ ∈ , (5.31) 

where ( )rs rsq E Q=  is the mean demand, and rsε is the random term with ( ) 0rsE ε = . 

Consequently, the route flow rs
pF  and link flow aV  are also random variables that 

contribute to travel time variability. By assuming that the route flow follows the same 

type of probability distribution as the OD demand, the route flow’s coefficient of 

variation (CV) is equal to that of the OD demand, and the route flows are mutually 

independent, Shao et al. (2006) analytically derived the mean and variance of aT based on 

the assumption that the OD demands are normally distributed (Asakura and Kashiwadani, 

1991; Clark and Watling, 2005) as follows. 
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where ( )1 !!i −  is the double factorial of 1i − , i.e., ( ) ( )( )1 !! 1 3 2i i i− = − − …  ( i is even), 

n
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is binomial coefficient, i.e., 
( )

!
! !

n n
i n i i

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

, and v
aσ  is the standard deviation of the 

random link flow. 

Under similar assumptions, except that the route flow’s variance-to-mean ratio 

(VMR) is assumed to be equal to that of the OD demand to maintain the flow 

conservation constraints, Zhou and Chen (Chapter 6) analytically derived the mean and 

variance of aT  based on the log-normal distribution as follows.  
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where v
aµ  and v

aσ are the parameters of the link flow distribution ( ),v v
a aLogn µ σ . 

It should be noted that the assumption of mutually independent route flows can 

also be relaxed (Luathep, Sumalee, and Lam, 2007; Shao, 2007). 

Recently, some researches (Shao et al., 2008; Siu and Lo, 2008) were conducted 

to model travelers’ route choice behavior under travel time variability due to both 

demand fluctuation and link capacity degradation. Shao et al. (2008) considered the rain 
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effects on road network, where the link free-flow travel time is represented by a non-

decreasing function of rainfall intensity, the link capacity is represented by a non-

increasing function of rainfall intensity, and travel demand is stochastic. Siu and Lo 

(2008) considered the travel demand is composed of two parts: commuters and non-

commuters, where the randomness of travel demand is assumed to be introduced by the 

volume of non-commuters, and the link capacity is subject to stochastic degradation. 

Derivation of METT. To facilitate the presentation of the essential ideas, we 

assume that the link travel times are independent. This assumption is also adopted by Lo, 

Luo, and Siu (2006); Shao et al. (2006), Siu and Lo (2006), and Watling (2006). Hence, 

the mean and variance of rs
pT  can be written as: 

 [ ] , , ,rs rs rs rs
p p a pa

a A

E T E T p P r R s Sµ δ
∈

⎡ ⎤= = ∀ ∈ ∈ ∈⎣ ⎦ ∑ , (5.36) 
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Var T Var T p P r R s Sσ δ
∈

⎡ ⎤= = ∀ ∈ ∈ ∈⎣ ⎦ ∑ . (5.37) 

According to the Central Limit Theorem, for routes consisting of many links, the 

random route travel times tend to be normal distributed regardless of what the underlying 

link travel time distribution is (Lo and Tung, 2003; Shao et al., 2006): 

 ( )( )2
~ ,rs rs rs

p p pT N µ σ . (5.38) 

Then, according to the definition of the METT in Eq. (5.1) and assuming the 

travelers’ confidence level is α, the route METT can be represented as the following 

minimization problem: 
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Following some simple calculus manipulations, the METT of route p can be 

represented as 

 
( )

( )( )21

exp
22 1

rs
prs rs

p p

ασ
η µ

π α

−⎛ ⎞Φ⎜ ⎟= + −
⎜ ⎟−
⎝ ⎠

. (5.41) 

Note that, in reality, the link travel times may not be totally independent due to 

the network topology or the sources of variations. Therefore, the effects of the covariance 

of link travel times should be considered in future research. A recent attempt in this 

direction can be found in Lam, Shao, and Sumalee (2008). 

Other forms of travel time distributions were also proposed in the literature. For 

example, exponential and uniform travel time distributions were adopted in Noland and 

Small (1995) for studying the morning commute problem. A family of distributions 

known as the “Johnson curves” was studied by Clark and Watling (2005) to model the 

total network travel time under random demand. Gamma type distributions were tested 

by Fan and Nie (2006) in the stochastic optimal routing problem. To allow for a more 

flexible control over the right-hand tail and better fit the data, a mixture of normal 

distribution was suggested in Watling (2006). However, no matter what kind of 

distribution is assumed, the concept of METT and the METE model are still valid. METT 

is a simple, convenient representation of risk, which fits quite well to the way that 
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travelers' assess the reliability and unreliability aspects of travel time variability and 

make their route choice decisions to tradeoff the buffer time measure (i.e., the reliability 

aspect measured by TTB) and the tardy time measure (i.e., the unreliability aspect that 

measures the worst travel times beyond TTB) accordingly. 

 
Solution Procedure 

 
 

A basic assumption of the traditional traffic equilibrium models is the additivity, 

i.e. the route cost is simply the sum of the costs on the links that constitute that route. 

This additive assumption enables the application of a number of well-known algorithms 

(e.g., the Frank-Wolfe algorithm), and the traffic equilibrium problem can be solved 

without the need to store routes. This is a significant benefit when one needs to solve 

large-scale network problems (Boyce, Ralevic-Dekic, and Bar-Gera, 2004). However, 

these types of algorithms are not applicable to the METE model, since the METT is 

nonadditive in general. Therefore, to solve the proposed model, a route-based algorithm 

is needed (Bernstein and Gabriel, 1997; Chen Lo, and Yang, 2001; Gabriel and Bernstein, 

1997; Lo and Chen, 2000). 

Main ideas of the solution procedure. By exploring the special structure of the 

METE model, a modified alternating direction (MAD) algorithm, which is a kind of 

projection-based algorithm, is adopted in this study (Han, 2002) for solving the VI 

problem (Eq. (5.21)). By attaching a Lagrangian multiplier vector y to the demand 

conservation constraints Eq.(5.17), we can reformulate the METE model as an equivalent 

VI problem, denoted as ( ),VI F K shown below: 
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Find u K∗ ∈ , such that 

 * *( ) ( ) 0,TF u u u u K− ≥ ∀ ∈ , (5.42) 

where 
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where Λ denotes the OD-Route incidence matrix, q denotes the demand vector 

( ), ,
Trsq… … , n is the total number of routes, and k is the total number of OD pairs. Based 

on this transformation, we can see that a projection on the new feasible region K is much 

easier than on the original set Ω. Therefore, in each iteration, the MAD algorithm can 

make a simple projection on the set K to update the solution vector u. This simple 

projection makes the MAD algorithm very attractive. Furthermore, a self-adaptive 

stepsize updating scheme is embedded in the MAD algorithm, where the stepsize is 

automatically updated according to the information of the previous iterations (i.e., route 

flows and route METT). These features make the MAD algorithm efficient and robust. 

The global convergence of the MAD algorithm can be rigorously proven under mild 

conditions, which only require the underlying mapping ( )fη to be continuous and 

monotone. However, the monotonicity is hard to guarantee in practice. Hence, 

convergence may not always ensure, especially for large-scale networks. 

Flowchart of the MAD algorithm. Based on the discussions above, the detailed 

steps of the MAD algorithm can be represented in the following flowchart (Figure 5.8). 

For more details about the MAD algorithm, such as the derivation of the descent 
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direction ( , )k

kd u β and the scaling factor ( , )k
kuρ β , we refer to Han (2002) and Zhou, 

Chen and Han (2007). In the numerical experiments, we specify the initial stepsize  

 
 
 

 

 
Figure 5.8 Flowchart of the MAD algorithm. 
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0 1β = and define the residual ( ),e u β  as the root mean squared error (RMSE) of the 

route flows between two consecutive iterations: 

 1

2
( , )k k k

ke u f f Pβ −= − , (5.44) 

where 
2

⋅ is Euclidean norm and P  is the number of routes. 

Generation of the route set. The remaining complication is how to generate the 

route set in real applications. Lo and Chen (2000) and Chen, Lo, and Yang (2001) 

proposed two alternative approaches: the first approach works with a set of predefined 

routes, which could be derived from personal interviews and hence constitutes a set of 

likely used routes; the second approach is to use a heuristic column generation procedure, 

where a k-shortest route algorithm is adopted in each iteration. Chen and Ji (2005) 

proposed a genetic algorithm for finding α-reliable routes. This approach may be also 

extended to find routes with the minimum METT. To facilitate the presentation of the 

essential ideas, in our implementation, we assume a set of working routes is available in 

advance to solve the METE model. Behaviorally, using a working route set (i.e., 

generated from a choice set generation scheme) has the advantage of identifying routes 

that would likely to be used (Bekhor, Toledo, and Prashker, 2008; Cascetta, Russo, and 

Vitetta, 1997). Future work should include developing more efficient algorithm for 

finding routes with the minimum METT and combining it as a column generation 

procedure in the proposed solution procedure. 
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Numerical Examples 

 
 

To demonstrate the proposed METE model and solution procedure, two networks 

are adopted in the numerical experiments. First, a small network is used to illustrate the 

features of the proposed model, its differences compared to other traffic equilibrium 

models, and the correctness of the solution procedure. Then, a medium-sized network is 

employed to demonstrate the applicability of the solution procedure to larger networks. 

 
Small network 
 

To illustrate the proposed METE model, a simple network consists of 4 nodes, 5 

links and 3 routes (Figure 5.9) is adopted, where the route-link relationship is shown in 

Table 5.1. There is one OD pair (1, 4) with 1000 units of demand. The free-flow travel 

time for each individual link is assumed to follow a normal distribution. The reason for 

choosing a normal distribution in this numerical experiment is because it enables deriving 

analytical expressions of the METT for each route. Therefore, we can solve the problem 

analytically and use the results as a benchmark to compare the METE model with the  

 
 
 

 
 

Figure 5.9 Small network. 
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traditional traffic equilibrium model and the travel time budget model. The standard 

deviations of the link free-flow travel time are exogenously defined in Table 5.2 and the 

mean link travel times are calculated from the Bureau of Public Road (BPR) function as 

below: 

 
2
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⎛ ⎞⎛ ⎞
⎜ ⎟= + ∀ ∈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (5.45) 

where at , 0
at , av , and aC are the mean travel time, free-flow travel time, flow, and 

capacity of link a, accordingly. The corresponding network characteristics are also shown 

in Table 5.2. Without loss of generality, in the following tests, we assume the confidence 

level of all travelers is 90%. Note that, to facilitate the presentation in this study, we 

assume that the link travel times are independent from each other. Therefore, under the 

assumptions, the route travel time distribution can be acquired from Eq. (5.41). However, 

the effects of link correlations could also be incorporated in the proposed model scheme, 

as long as the joint probability distribution function of the route travel time can be 

derived. 

 
 
 
Table 5.1 Route-link relationship of the small network 
 

Route 
# Link Sequence 

1 1-2 
2 1-3-5 
3 4-5 
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The equilibrium route flow pattern is shown in Table 5.3, as well as the 

corresponding mean travel time, TTB and METT. To check the validity of the results, we  

examine two conditions: travel demand conservation constraints and METE equilibrium 

conditions. As expected, all conditions are satisfied. The route flows sum up to the OD 

travel demands and the METT of all used routes are equal and minimal. Furthermore, to 

analyze the impact of travel time variability on travelers’ route choice decisions, the 

percentages of the three travel time components (mean travel time, buffer time, and 

‘expected delay’) that compose the METT for each route are depicted in Figure 5.10. As 

we discussed before, the summation of the mean travel time and the buffer time gives the 

TTB, which represents the travel time reliability requirement of the travelers. Specifically, 

in this experiment, the travelers are assumed to have a 90% confidence level of on-time 

arrival. At the same time, the “expected delay” describes the unreliability aspect of travel 

time variability, which evaluates the risk associated with the unacceptable late arrivals 

(though infrequent) that have a travel time excessively higher than the TTB. From the 

figure, we can see that the reliability and unreliability aspects of travel time variability 

have around 15% - 20% impacts on travelers’ route choice decisions. Though the  

 
 
 
Table 5.2 Network characteristics 
 

Link # 
Free-flow travel time 

( 0
at ) Capacity (Ca) 

Standard deviation of the 
free-flow travel time 

1 5 600 2 
2 12 400 6 
3 7 400 1 
4 10 400 5 
5 8 600 2 
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percentage of the impacts associated with the unreliability aspect is not high (around 5%) 

in this simple example, which is due to the normally distributed link free-flow travel time, 

it is expected to play a more significant role in the travelers’ route choice decisions under 

highly skew link travel time distributions in practice. 

In the following, we further compare the METE model with the conventional UE 

model and the reliability-based user equilibrium model. Recall that the route choice 

criterion in the conventional UE model is the mean route travel time, while the reliability- 

based user equilibrium model adopts the concept of TTB. To simplify the notation, we 

use UE and RUE to represent the conventional UE model and the reliability-based user 

equilibrium model, respectively. Conceptually, the TTB model (Lo, Luo, and Siu, 2006) 

and DRUE model (Shao et al., 2006) are all RUE model, since they all share the common 

 
 
 

Table 5.3 Equilibrium results of the METE model 
 
Route # Route flow Mean travel time Travel time budget Mean-excess travel time

1 499.68 20.43 24.06 25.40 
2 47.82 21.47 24.34 25.40 
3 452.50 20.75 24.15 25.40 
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Figure 5.10 Analysis of the reliability and unreliability aspects of travel time variability 

on travelers’ route choice decision. 
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route choice criterion despite that the original sources of travel time variation are 

different. The equilibrium results of the three models are demonstrated in Table 5.4 and 

Figure 5.11 - Figure 5.13, where the x-axis represents different equilibrium models, the 

y-axis represents the mean travel time, TTB and mean excess travel time of each route 

under the equilibrium state of each individual model, respectively. 

From the table and figures, it is clear that the three user equilibrium models give 

quite different equilibrium flow patterns. In the following, we further investigate the 

differences among these three models. First, we examine the results under the 

conventional UE model (see Figure 5.11). In the equilibrium state, two used routes (route 

1 and 3) with equal and minimum mean travel times have positive flows, while the 

unused route (route 2) with a higher mean travel time carries no flow. However, as we 

discussed above, the route choice model under the mean travel time cannot account for 

the risk associated with the travel time variation. Therefore, it shows that, under the 

equilibrium state of the conventional UE model, though route 2 has the highest mean 

travel time, it actually has the second lowest TTB and the lowest mean excess travel time. 

This is because the travel time variance of route 2 is the lowest among the all three routes. 

Therefore, under the consideration of reliability aspects of travel time variability, the 

travelers on route 1 are willing to switch to route 2 or 3. When more travelers shift to  

 
 
 

Table 5.4 Equilibrium route flows of different user equilibrium models 
 

Route # UE RUE METE 
1 532.40 517.77 499.68
2 0.00 13.23 47.82
3 467.60 469.00 452.50
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route 2 and 3, according to the relationship of travel time and flow, the mean travel time, 

the TTB on those two routes will increase accordingly. A new equilibrium will reach 

when the TTB for all three routes become equal. 

 
 
 

UE RUE METE

20.6

20.8

21

21.2

21.4

21.6

R
ou

te
 M

ea
n 

Tr
av

el
 T

im
e

 

 

Route 1
Route 2
Route 3

 
 

Figure 5.11 Mean travel times of different user equilibrium models. 
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Figure 5.12 Travel time budgets of different user equilibrium models. 
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Figure 5.13 Mean-excess travel times of different user equilibrium models. 
 
 
 

Similarly, in the equilibrium state of the RUE model (see Figure 5.12), the 

travelers on each route can acquire the same travel time reliability under the same TTB, 

i.e., all of them can ensure the same confidence level of on-time arrival (90% in this 

example). However, as mentioned in the previous sections, the RUE model is unable to 

account for the unreliable impacts beyond the TTB, thus the travelers do not have an 

assessment of the possible risk involved in the 1-α (i.e., 10%) unreliability of the 

distribution tail. Therefore, by taking both the reliability and unreliability aspects into 

consideration, travelers on route 1 and route 3 are willing to switch to route 2 in order to 

avoid the higher risk in their original route while still ensure the same confidence level of 

punctual arrival. Finally, travelers will reach a equilibrium under the METE model, 

where the mean excess travel times in all three routes are equal (see Figure 5.13). From 

the three figures, the trend of the changing of flow, mean travel time, TTB and METT 

can be easily discovered. 
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Medium-size network 
 

In this section, the proposed model and solution procedure are demonstrated using 

the Sioux Falls network (Leblanc, 1973), which is a medium-sized network with 24 

nodes, 76 links, and 550 OD pairs (see Figure 5.14). The working route set of the 

network are from Bekhor, Toledo, and Prashker (2008), where the routes are generated 

by using a combination of the link elimination method (Azevedo et al., 1993) and the 

penalty method (De La Barra, Perez, and Anez, 1993). The total number of routes is 3441, 

the maximum number of routes generated for any OD pair is 13, and the average number 

of routes is 6.3 per OD pair. 

In this experiment, we assume the travel time variability comes from the day-to-

day travel demand fluctuations. Here, the stochastic travel demands are assumed to 

follow a lognormal distribution, which is a nonnegative, asymmetrical distribution and 

has been adopted in the literature as a more realistic approximation of the stochastic 

travel demand to examine the uncertainty of the four-step travel demand forecasting 

model (Zhao and Kockelman, 2002). The PDF of the lognormal distribution is given as 

follows. 

 ( )
( )2

2
ln
21| ,

2

x

f x e
x

µ
σµ σ

σ π

− −

= , 0x∀ > , (5.46) 

where x  is the random variable, µ  and σ  are the distribution parameters, and the 

mean and variance are 22σµ += em and ( )2 22 1v e eµ σ σ+= − , respectively. Under some 

commonly adopted assumptions, the distribution of the random route travel time can be 

analytically derived (Chapter 6). For simplicity, the VMT of route flows are assumed to 

be 0.3, the stopping criterion ε is set to be 5e-3, and the initial route flow for a given OD 
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Figure 5.14 Sioux Falls network. 
 
 
pair is set to be the OD demand divided by the number of routes connecting this OD. 

Then, the route-based traffic assignment algorithm is tested on a personal computer with 

2.4 G Pentium-IV processor and 768M RAM. 

The MAD algorithm terminates after 70 iterations and the CPU time is 24.52 

seconds. The convergence of the MAD algorithm in terms of the RMSE is shown in 

Figure 5.15. 
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Figure 5.15 Convergence curve of the MAD algorithm. 
 
 
 

To further demonstrate the convergence of the proposed solution procedure, 

without loss of generality, we examine two routes connecting OD pair (1, 10). The link 

sequence of Route 1 and Route 2 are 2 – 6 – 9 – 13 – 25 and 2 – 6 – 10 – 32, respectively. 

The evolution of the route flow and the route METT during the iteration process are 

represented in Figure 5.16 and Figure 5.17. 

From the figures, we can see that the algorithm quickly converges to the required 

solution precision. The METE solution is achieved as the RMSE approaches zero after 70 

iterations. At the same time, the METTs of used routes for a given OD pair are getting 

closer to each other during the iteration process. Furthermore, it can be observed that the 

fluctuation of the RMSE is more frequent and larger at the early iterations, and getting 

smaller along with the iteration process. It demonstrates that the proposed algorithm has 

the ability to reach a stable equilibrium solution. 
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Figure 5.16 Evolution of the route flows for OD pair (1, 10) during the iteration process. 
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Figure 5.17 Evolution of the route METTs for OD pair (1, 10) during the iteration 

process. 
 
 
 

Conclusions and Future Research 
 
 

In this study, we proposed a mean-excess traffic equilibrium model under 

stochastic travel times. The new model explicitly considers both reliability and 



 

173
unreliability aspects of travel time variability in the travelers’ route choice decision 

process. The new model is formulated as a variational inequality (VI) problem. 

Qualitative properties, such as equivalence and existence of the solution, were also 

rigorously proved. A route-based traffic assignment algorithm based on the modified 

alternating direction method was adopted to solve the proposed model. Numerical 

examples are also provided to highlight the essential ideas of the model and the to 

demonstrate the proposed algorithm. 

Many further works are worthy of exploring based on the proposed METE model. 

In the computational point of view, more efficient algorithms for finding the nonadditive 

METT routes and solving the proposed model need to be developed and tested on larger-

scale networks. From the behavioral aspect, empirical studies need to be performed to 

obtain a better understanding of the travelers' risk preference and attitudes to travel time 

variation. Furthermore, in this study, the travelers were assumed to have perfect 

knowledge about the travel time distribution. This assumption could be relaxed by 

incorporating a perception error in the METT of each route. Thus, during the equilibrium 

process, travelers try to minimize their perceived METT, which is then corresponding to 

an SUE counterpart to the METE model. Note that, in reality, different user classes may 

have different attitudes towards risk or perception differences when making their route 

choice decisions. Therefore, further extensions could be to incorporate multiple user 

classes corresponding to traveler’s different risk preferences or perception errors into the 

model. 

Finally, by incorporating the specific sources of travel time variation, such as link 

capacity degradation and traffic control devices, into the consideration of the proposed 
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modeling approach, the METE model can be regarded as a fundamental component of 

high level transportation system risk assessment framework. That is, the proposed model 

can be extended for network design problem (NDP), where the functions of the METT 

(e.g., total mean travel time of the whole network or OD mean travel time between 

specific OD pairs) as system risk measures are to be minimized or act as constraints by 

optimally determining the design variables subject to a budgetary constraint. To design a 

more reliable/robust network by developing appropriate risk assessment measure and 

efficient solution algorithm remains an important and active research topic in the future. 
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CHAPTER 6 

 
COMPARATIVE ANALYSIS OF THREE USER EQUILIBRIUM  

MODELS UNDER STOCHASTIC DEMAND1 

Abstract 
 
 

Recent empirical studies on the value of time and reliability reveal that travel time 

variability plays an important role on travelers' route choice decision process. It can be 

considered as a risk to travelers making a trip. Therefore, travelers are not only interested 

in saving their travel time but also in reducing their risk. Typically, risk can be 

represented by two different aspects: acceptable risk and unacceptable risk. Acceptable 

risk refers to the reliability aspect of acceptable travel time, which is defined as the 

average travel time plus the acceptable additional time (or buffer time) needed to ensure 

more frequent on-time arrivals, while unacceptable risk refers to the unreliability aspect 

of unacceptable late arrivals (though infrequent) that have a travel time excessively 

higher than the acceptable travel time. Most research in the network equilibrium based 

approach to modeling travel time variability ignores the unreliability aspect of 

unacceptable late arrivals. This paper examines the effects of both reliability and 

unreliability aspects in a network equilibrium framework. Specifically, the traditional 

user equilibrium model, the demand driven travel time reliability-based user equilibrium 

model, and the α-reliable mean-excess traffic equilibrium model are considered in the 

investigation under an uncertain environment due to stochastic travel demand. Numerical 

                                                 
1 Co-author by Zhong Zhou and Anthony Chen 
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results are presented to examine how these models handle risk under travel time 

variability. 

 
Introduction 

 
 

In real life, travel time is uncertain. The sources contributing to travel time 

variability could be exogenous and/or endogenous, which often lead to non-recurrent 

congestion (Chen et al., 2002, Al-Deek and Emam, 2006) and recurrent congestion 

(Heydecker, Lam, and Zhang, 2007), respectively.  Recent empirical studies (Brownstone 

et al., 2003; Liu, Recker, and Chen, 2004) revealed that travelers actually consider travel 

time variability as a risk in their route choice decisions. They are interested in not only 

travel time saving but also risk reduction. However, the traditional user equilibrium (UE) 

model neglects travel time variability in the route choice decision process. It uses only 

the expected travel time as the sole criterion for making route choices, which implicitly 

assumes all travelers to be risk-neutral.  

To model the route choice decision process under travel time variability, various 

models have been proposed. Mirchandani and Soroush (1987) were the first to propose 

the generalized traffic equilibrium model that incorporates both probabilistic travel times 

and variable perceptions in the route choice decision process. Under the assumptions that 

travelers are highly pessimistic about the travel time variability and behave in a very risk-

averse way, Bell and Cassir (2002) provided a risk-averse traffic equilibrium model 

formulated as a non-cooperative, mixed-strategy game. Based on the concept of schedule 

delay, Watling (2006) proposed a late arrival penalized user equilibrium (LAPUE) model 

by incorporating a schedule delay term to the disutility function to penalize late arrival 
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under fixed departure times. Lo, Luo, and Siu (2006) proposed a probabilistic user 

equilibrium model to account for the effects of within budget time reliability due to link 

degradation. By considering daily travel demand variation, Shao et al. (2006) proposed a 

demand driven travel time reliability-based user equilibrium (DRUE) model. The key 

concept adopted in these models (Lo, Luo, and Siu, 2006; Shao et al., 2006) is the travel 

time budget (TTB), which is defined as the average travel time plus an extra time as an 

acceptable travel time, such that the probability of completing the trip within the TTB is 

no less than a predefined reliability threshold (or a confidence level α). The concept of 

TTB is analogous to the Value-at-Risk (VaR), which is by far the most widely applied 

risk measure in the finance area. However, it has been determined that VaR is not even a 

weakly coherent measure of risk (Artzner et al., 1999). Models using VaR are unable to 

deal with the possibility that the losses associated with the worst scenarios are 

excessively higher than the VaR, and reduction of VaR may lead to stretch of tail 

exceeding VaR (Yamai and Yoshiba, 2001). In the same spirit, TTB may also be an 

inadequate risk measure, which could introduce overwhelmingly high trip times to 

travelers if it is used solely as a route choice criterion in the network equilibrium based 

approach. 

Furthermore, to describe travelers' route choice decision process under travel time 

variability, considering only the reliability aspect may not be adequate to describe 

travelers’ risk preferences. On the one hand, FHWA (2006) documented that travelers, 

especially commuters, do add a 'buffer time' to their expected travel time to ensure more 

frequent on-time arrivals when planning a trip. It represents the reliability aspect in the 

travelers' route choice decision process. On the other hand, the impacts of late arrival and 
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its explicit link to the travelers' preferred arrival time were also examined in the literature 

(Noland, 1999) and appreciated as the ‘value’ of unreliability (Watling, 2006). It 

represents travelers' concern of the unreliability aspect of travel time variability in their 

route choice decision process, where trip time longer than they expected would be 

considered as ‘unreliable’ or ‘unacceptable’ (Cambridge Systematics et al., 2003). 

Recently, Zhou and Chen (Chapter 7) proposed a new model called the α-reliable 

mean-excess travel time (METT) user equilibrium model or the mean-excess traffic 

equilibrium (METE) model for short that explicitly considers both reliability and 

unreliability aspects of travel time variability in the route choice decision process. This 

new model hypothesizes that travelers are willing to minimize their METT defined as the 

conditional expectation of travel times beyond the TTB. The METT can be regarded as a 

combination of the buffer time measure that ensures the reliability of on-time arrival most 

of the time, and the tardy time measure that represents the unreliability impacts of 

excessively late trips (Cambridge Systematics et al., 2003). It simultaneously addresses 

both questions of "how much time do I need to allow?" and "how bad should I expect 

from the worse cases?" Therefore, travelers' route choice behavior can be considered in a 

more accurate and complete manner in a network equilibrium framework to reflect their 

risk preferences under an uncertain environment. Furthermore, the definition of METT is 

consistent with the conditional value-at-risk (CVaR) in the literature (Rockafellar and 

Uryasev, 2002) for risk optimization. It has been recognized as a good alternative 

measure of risk due to its coherent mathematical characteristics, and it is suitable for 

modeling flexible travel time distributions. 

The reminder of the paper is organized as follows. In section 2, three user 
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equilibrium models under travel time variability (i.e., the traditional UE model, the 

DRUE model, and the METE model) are presented for the comparative analysis. 

Equilibrium conditions are described for the case that travel time variability is induced by 

stochastic travel demand. In section 3, numerical results are presented to examine how 

these models handle risk under travel time variability. Finally, conclusions and 

recommendations for future research are given in section 4. 

 
Models and Formulation 

 
 

Consider a strongly connected network [N, A], where N and A denote the sets of 

nodes and links, respectively. Let R and S denote a subset of N for which random travel 

demand rsQ  is generated from origin Rr ∈  to destination Ss ∈ , and rsP denote the set of 

paths from origin r to destination s. Since travel demand is random, travel time on path 

rsPp ∈  between origin r to destination s is also a random variable rs
pT . Similar to Lo, 

Luo, and Siu (2006), all travelers are assumed to have knowledge of the variability of 

path travel time acquired from past experiences and incorporate this information along 

with their risk-preferences into their route choice decisions. Therefore, to study the user 

equilibrium problem under an uncertain environment, a key factor is to understand the 

travelers’ route choice decision process under travel time variability. 

 
Route choice criteria under an 
uncertain environment 
 

According to Mirchandani and Soroush (1987), travelers making route choice 

decisions under an uncertain environment can be categorized into three groups according 

to their attitudes toward risk (i.e., risk-prone, risk-neutral and risk-averse). In the 
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traditional UE model, travelers are assumed to be risk-neutral since they make their route 

choice decisions solely based on the expected travel time. However, recent empirical 

studies (Brownstone et al., 2003; Liu, Recker, and Chen, 2004) revealed that most 

travelers are actually risk-averse. They are willing to pay a premium to avoid congestion 

and minimize the associated risk. 

By considering the travel time reliability requirement, travelers are searching for a 

path such that the corresponding travel time budget allows for on-time arrival with a 

predefined confidence level α (Shao et al., 2006). Meanwhile, they are also considering 

the impacts of excessively late arrival (i.e., the unreliable aspect of travel time variability) 

and its explicit link to the travelers' preferred arrival time in the route choice decision 

process (Watling, 2006). Therefore, it is reasonable for travelers to choose a route such 

that the travel time reliability (i.e., acceptable travel time defined by TTB) is ensured 

most of the time and the expected unreliability impact (i.e., unacceptable travel time 

exceeding TTB) is minimized. This trade-off between the reliable and unreliable aspects 

in travelers' route choice decision process can be represented by the mean-excess path 

travel time (Zhou and Chen, 2008) defined as follows. 

Definition 1. (Mean-Excess Travel Time) The mean-excess travel time ( )rs
pη α  for a path 

rsPp ∈  between origin r to destination s with a predefined confidence level α is equal to 

the conditional expectation of the travel time exceeding the corresponding path travel 

time budget ( )rs
pξ α , i.e.,  

 ( ) ( )[ | ]rs rs rs rs
p p p pE T Tη α ξ α= ≥ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.1) 

where rs
pT  is the random travel time on path p from origin r to destination s, E[⋅] is the 
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expectation operator, and ( )rs

pξ α  is the minimum travel time budget on path p from 

origin r to destination s defined by the travel time reliability chance constraint at a 

confidence level α in Eq. (6.2) (Chen and Ji, 2005): 

 ( ) ( ){ }min | Prrs rs
p pTξ α ξ ξ α= ≤ ≥ , (6.2) 

 ( ) ( )rs rs
p pE T γ α= + ,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.3) 

where ( )rs
pγ α  is the extra time added to the mean travel time as a ‘buffer time’ to ensure 

more frequent on-time arrivals at the destination under the travel time reliability 

requirement at a confidence level α. It should be noted that Eq. (6.3) is exactly the 

definition of the TTB (Shao et al., 2006). 

According to the definition above, it is easy to see that if the path travel time 

distribution ( )rs
pTf  is known, the METT can be represented as: 

 ( ) ( )
( )

( )1
1 rs rs

p p

rs rs rs rs
p p p p

T

T f T d T
ξ α

η α
α ≥

=
− ∫ . (6.4) 

Moreover, Eq. (6.1) can be restated as: 

 ( ) ( ) ( ) ( )|rs rs rs rs rs rs
p p p p p pE T Tη α ξ α ξ α ξ α⎡ ⎤= + − ≥⎣ ⎦ . (6.5) 

Therefore, the METT can be decomposed into two individual components. The 

first component is exactly the TTB of path p, which reflects the reliability aspect of 

acceptable risk allowed by the travelers at a confidence level α. The second component 

can be regarded as a kind of “expected delay” for choosing the current path to reflect the 

unreliable aspect of unacceptable risk (i.e., trip time exceeding the acceptable travel time 

defined by TTB). Clearly, as a new route choice decision criterion, the METT 
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incorporates both reliable and unreliable factors into the route choice decision process, 

while other existing route choice criteria consider only one aspect (e.g., travel time 

budget) or consider neither aspect at all (e.g., mean path travel time). It addresses both 

questions of "how much time do I need to allow?" and "how bad should I expect from the 

worse cases?" Both questions relate particularly well to the way travelers make decisions.  

By adopting the METT as a route choice criterion, Zhou and Chen (Chapter 7) 

provided the mean-excess traffic equilibrium (METE) conditions as follows. 

Definition 2.: Let η  denote the METT vector ( ), ,
Trs

pη… … , rsπ  denote the minimal METT 

between O-D pair (r, s), and f denote the path-flow vector ( ), ,
Trs

pf… … . The α-reliable 

mean-excess traffic equilibrium state is reached by allocating the O-D demands to the 

network such that no traveler can improve his/her mean-excess travel time by unilaterally 

changing routes. In other words, all used routes between each O-D pair have equal 

mean-excess travel time, and no unused route has a lower mean-excess travel time, i.e. 

the following conditions hold: 

 
*

*
*

0 ) 0
( ) , , ,

0   ) 0

rs
prs rs rs

p rs
p

    if  (f
f p P r R s S

if  (f  
η π

⎧ = >⎪− ∀ ∈ ∈ ∈⎨≥ =⎪⎩
. (6.6) 

Then the METE model can be formulated as a variational inequality problem 

VI(f,Ω) as follows. 

Find a vector *f ∈Ω , such that 

 * *( ) ( ) 0Tf f fη − ≥ , f∀ ∈Ω , (6.7) 

where Ω represents the feasible path set defined by Eqs. (6.11) - (6.13). 
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It can be proved that the VI formulation is equivalent to the METE model, and 

there exists at least one equilibrium solution (Chapter 7). In the next section, we will 

derive the analytical form of the path travel time distribution from the given travel 

demand distribution. 

 
Path travel time distribution 
 

Assume the random travel demand rsQ  has mean rsq  and variance rsε . Then, the 

path flow rs
pF , and link flow aV  are also random variables, which consequently induce 

the random path/link travel times. Let ∆ = [ rs
paδ ] denote the path-link incidence matrix, 

where 1=rs
paδ  if path p from origin r to destination s uses link a, and 0, otherwise. Then, 

we have the following relationships: 

 , ,
rs

rs rs
p

p P

Q F r R s S
∈

= ∀ ∈ ∈∑ , (6.8) 

 ,
rs

rs rs
a p pa

r R s S p P

V F a Aδ
∈ ∈ ∈

= ∀ ∈∑∑ ∑ , (6.9) 

 0, , ,rs rs
pF p P r R s S≥ ∀ ∈ ∈ ∈ , (6.10) 

where (6.8) is the travel demand conservation constraint; (6.9) is a definitional constraint 

that sums up all path flows that pass through a given link a; and (6.10) is a non-negativity 

constraint on the path flows.  

Furthermore, let rs
pf  and av be the mean path flow and mean link flow, 

respectively. Then, we have 

 ∑
∈

∈∈∀=
rsPp

rs
p

rs SsRrfq ,, , (6.11)
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,δ , (6.12)

 SsRrPpf rsrs
p ∈∈∈∀≥ ,,,0 , (6.13) 

From the assumption of stochastic travel demand, the variance-to-mean ratio (VMR) of 

the travel demand is  

 
rs

rs
rsVMR

q
ε= ,    ,r R s S∀ ∈ ∈ , (6.14) 

Let the variance of path flow rs
pF  be ,

rs
p fε . In the following, we assume: (i) the 

path flows follow the same type of probability distribution as the corresponding OD 

demand; (ii) the VMR of path flows are equal to that of the corresponding OD demand; 

(iii) the path flows are mutually independent. Then, we have: 

 ,

rs
rs rs rs rs
p f p p rsf VMR f

q
εε = ⋅ = ⋅ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.15) 

Note that, in reality, the path flows may be correlated. How to relax this assumption 

would be of interest for further study. 

 
Let aε  be the variance of the link flow aV .  From Eq. (6.9), we have: 

 2
, ,( ) ,

rs rs

v rs rs rs rs
a p f pa p f pa

r R s S r R s Sp P p P

a Aε ε δ ε δ
∈ ∈ ∈ ∈∈ ∈

= = ∀ ∈∑∑ ∑ ∑∑ ∑ , (6.16) 

 ,
rs

rs
rs rs

p pars
r R s S p P

f a A
q
ε δ

∈ ∈ ∈

= ⋅ ∀ ∈∑∑ ∑ . (6.17) 

Therefore, the path/link flow distribution can be derived with known travel 

demand distribution. 
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The case of lognormal travel 
demand distribution 
 

Though the normal distribution has been used in the literature (Chen, Subprasom, 

and Ji, 2003; Shao et al., 2006) for modeling the stochastic travel demand, it may not be 

appropriate to reflect the real world situations. To better model the uncertain 

environment, in this study, we are particularly interested in the lognormal distribution, 

which is a nonnegative, asymmetrical distribution and has been adopted in the literature 

as a more realistic approximation of the stochastic travel demand to examine the 

uncertainty of the four-step travel demand forecasting model (Zhao and Kockelman, 

2002). The probability density function of the lognormal distribution is given as follows. 

 ( )
( )2

2
ln
21| ,

2

x

f x e
x

µ
σµ σ

σ π

− −

= , 0x∀ > , (6.18) 

where x  is the random variable, µ  and σ  are the distribution parameters, and the mean 

and variance are 22σµ+= em and ( )2 22 1v e eµ σ σ+= − , respectively. Based on the 

assumptions above, the distribution parameters of the random path flows can be derived 

as follows (Aitchison and Brown, 1957): 
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⎜ ⎟= − +
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,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.19) 
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ε
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⎛ ⎞
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⎜ ⎟
⎝ ⎠

,    , ,rsp P r R s S∀ ∈ ∈ ∈ . (6.20) 

Consequently, the path flows also follow the lognormal distribution: 

 ( )rs
fp

rs
fp

rs
p LNF ,, ,~ σµ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ . (6.21) 
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According to the path-link relationship in Eq. (6.9), the distribution parameters of the 

random link flows can be approximated (Fenton, 1960) as follows: 

 ( ) 2

1ln ln 1
2

v
v a
a a

a

v
v
εµ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
,    a A∀ ∈ , (6.22) 

 ( )2

2ln 1
v

v a
a

av
εσ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
,    a A∀ ∈ , (6.23) 

 ( )v
a

v
aa LNV σµ ,~ ,    a A∀ ∈ . (6.24) 

Now, consider the strictly increasing link travel time function  

 ( )a a aT Vλ= ,    a A∀ ∈ , (6.25) 

where the mean and variance of link travel time can be represented as: 

 ( ) ( ) ( )| ,v v
a a a a at E T x f x dxλ µ σ

+∞

−∞
= = ∫ ,    a A∀ ∈ , (6.26) 

 ( ){ }2t
a a aE T E Tε = −⎡ ⎤⎣ ⎦  
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a a a a a ax f x dx x f x dxλ µ σ λ µ σ

+∞ +∞

−∞ −∞
= −∫ ∫ , a A∀ ∈  (6.27) 

Assume ( )a aVλ  to be the standard Bureau of Public Road (BPR) function as below: 

 ( ) 0 1 ,
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a
a a a a
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⎜ ⎟= = + ∀ ∈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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where 0
at  is the link free-flow travel time, aC  is the link capacity, n and β are parameters. 

Using Eqs. (6.24) - (6.28), and performing some calculus manipulations, the mean and 

variance of link travel time based on the BPR function can be derived as follows.  
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a a an n nt a

a n
a

t e e
C
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Using the path-link incidence relationship, the random path travel time can be expressed 

as: 

 rs rs
p a pa

a
T T δ=∑ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ . (6.31) 

To facilitate the presentation of the essential ideas, we assume the link travel times are 

independent. Hence, the mean and variance of rs
pT  can be written as: 

 rs rs
p a pa

a
t t δ=∑ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.32) 

 ,
rs t rs
p t a pa

a
ε ε δ=∑ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.33) 

According to the Central Limit Theorem, for paths consisting of many links, the 

random path travel times tend to the normal distribution regardless of what the 

underlying link travel time distribution is (Lo and Tung, 2003; Shao et al., 2006): 

 ( )( )2

,~ ,rs rs rs
p p p tT N t σ ,    , ,rsp P r R s S∀ ∈ ∈ ∈ , (6.34) 

where 
 , ,

rs rs
p t p tσ ε= ,    , ,rsp P r R s S∀ ∈ ∈ ∈ . (6.35) 

Note that, in reality, the link travel times may not be independent due to the 

network topology or the sources of variations. Therefore, the effects of the covariance of 

link travel times should be considered in future research. A recent attempt in this 

direction can be found in Lam, Shao, and Sumalee (2008).  

Assume the confidence level is α, then the METT, according to Eq. (6.4), can be 

expressed as 
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Equivalently, based on Eq. (6.5), the METT can also be expressed as follows. 

 ( ) ( ) ( ) ( )
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1
1

rs rs rs rs rs
p p p p pT d Tη α ξ α ξ α

α

+∞
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where ( )rs
pξ α  is exactly the TTB of path p under a confidence level α, which can be 

expressed  as a function of mean and standard deviation of path travel time: 

 ( ) ( ) rs
tp
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p

rs
p t ,

1 σααξ ⋅Φ+= − . (6.38) 

Following some calculus manipulations, the METT can be further expressed as: 
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By substituting Eq. (6.38) into Eq. (6.39), we can see that the METT can be 

further decomposed into three individual terms: the first term is the mean travel time, the 

second term is the “buffer time” that the travelers allowed to ensure the travel time 

reliability requirement, and the third term accounts for the expected impacts from the 

excessively late trips (i.e., bad days with extremely high travel times). Thus, it is clear 

that the three user equilibrium models (i.e., UE, DRUE and METE) can be distinguished 

by considering different combinations of the three terms. If only the first term is 

considered, it generates the UE model in which the travel time variability is disregarded 

in the route choice decision process and is unable to reflect the travelers' risk preference. 

In this model, travelers will be late about half of the time and early the other half of the 

time if they plan their trips based on the average travel time. If the first two terms are 
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considered, it generates the DRUE model that only accounts for the acceptable risk 

defined by the travelers' reliability requirement at a confidence level α. In this model, if 

travelers plan their trips based on TTB with a confidence level α (e.g., 90th percentile of 

travel time), they will be late about two working days per month (assuming there are 20 

working days per month). These late trips with unacceptable travel times experienced and 

suffered by the travelers (i.e., bad days) are the ones they remember the most. Finally, if 

all three terms are considered, it generates the METE model, which accounts for the 

travelers' risk preference on both acceptable and unacceptable risks. In this model, 

travelers consider the possibility that the unacceptable travel times in the tail are 

excessively higher than the TTB, and add the mean-excess time (third term) to minimize 

the risk of encountering those bad days. Among the three UE models considered in this 

comparative analysis, the METE model is the most conservative one. 

 
Numerical Results 

 
 

Since the METT is nonadditive in general (i.e., the path cost is not simply the sum 

of the link costs that constitute that path), the METE model can be regarded as a 

nonadditive user equilibrium problem and a path-based traffic assignment algorithm is 

needed (Lo and Chen, 2000; Chen, Lo, and Yang, 2001; Zhou and Chen, 2006). 

Recently, Zhou and Chen (Chapter 7) developed a modified alternating direction method 

for solving the METE model. The algorithm has several good features that enable it for 

solving large-scale problems. 

To illustrate the differences among the three user equilibrium models (i.e., UE, 

DRUE and METE models), a simple network with 10 nodes, 11 links, and two OD pairs 
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is adopted (Figure 6.1) for demonstration purpose. The travel demands of both OD pair 

are assumed to follow the lognormal distribution. For OD pair (1, 9), the two associated 

paths given in node sequence are as follows: path 1:  1 -> 3 -> 6 -> 9 and path 2:  1 -> 4 -

> 7 -> 9. For OD pair (2, 10), the two associated paths are: path 3: 2 -> 4 -> 7 -> 10 and 

path 4:  2 -> 5 ->8 ->10. The link travel time function adopted in this study is the BPR 

function (Eq. (6.28)) with parameters β = 0.15 and n = 4. The link characteristics are also 

provided in Figure 6.1. 

 
Comparison of the equilibrium results 
 

In the first set of results, we assume the confidence level of all travelers is 90%, 

the lognormal distribution of OD pair (1,9) has mean 1,9 45q = , VMR1,9=0.1, and the 

lognormal distribution of OD pair (2, 10) has mean 2,10 40.5q =  and VMR2,10=0.2. The 

equilibrium results of the three user equilibrium models are provided in Table 6.1 and 

Figure 6.2, where the x-axis represents the different equilibrium measures, y- axis  

 
 
 

 
 
Figure 6.1 Small network. 
(Annotation: Link # (link free flow travel time in minutes, link capacity in veh/min)) 
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represents the different models, and z-axis represents the corresponding measurement 

values of the given model and measurement combination. For simplicity, only the results 

of path 1 and path 2 are presented in the figure, and the mean travel time, travel time 

budget and mean-excess travel time are abbreviated by MTT, TTB, and METT, 

respectively. 

First, from the table, we can see that the mean path flows sum up to the mean OD 

travel demands and the corresponding equilibrium measures of all used paths for each 

OD pair are equal and minimal. They demonstrate the validity of the results. Second, it is 

clear that the three user equilibrium models give different equilibrium path-flow patterns 

(albeit the differences are small in this example). The reason for the difference is based 

on the different criteria used to represent travelers’ risk preference in their route choice 

decisions (see Figure 6.2). For example, when the traditional UE model is adopted, at  

 
 
 
Table 6.1 Equilibrium results of different user equilibrium models 
 

Model Path # Path flow 
(veh/min) MTT (min) TTB (min) METT (min) 

1 26.46 11.76 12.50 12.77 
2 18.54 11.76 11.93 11.99 
3 13.69 13.56 13.71 13.77 

UE 

4 26.81 13.56 14.88 15.37 
1 25.85 11.43 12.11 12.36 
2 19.15 11.91 12.11 12.18 
3 14.92 13.72 13.92 13.99 

DRUE 

4 25.58 12.79 13.92 14.33 
1 25.67 11.33 12.00 12.24 
2 19.33 11.95 12.16 12.24 
3 15.27 13.77 13.98 14.06 

METTUE 

4 25.23 12.58 13.66 14.06 
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equilibrium state, the mean path travel times of path 1 and path 2 are equal.However, at 

the same time, path 2 has a lower TTB than that of path 1. Therefore, travelers using path 

1 have incentives to switch from path 1 to path 2, in order to acquire a higher reliability 

of punctual arrival if the DRUE model is adopted. Similarly, in both UE and DRUE 

models, at the equilibrium state, path 2 have a lower METT than that of path 1. This 

means that if the travelers are concerned about both the reliability and unreliability 

aspects in their route choice decisions, they are willing to switch from path 1 to path 2 in 

order to keep the preferred confidence level of on-time arrival, and at the same time, 

minimize the impacts of the possible delay exceeding the TTB.  

 
 
 

MTT

TTB

METT

UE

DRUE

METE

11

11.5

12

12.5

 

Path 1
Path 2

 
 

Figure 6.2 Comparisons of the equilibrium measures of different user equilibrium 
models. 
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Finally, the relations among different equilibrium route choice criteria are graphically 

illustrated in Figure 6.3. For simplicity, we only show the equilibrium results of path 1 

and path 2 under the METE model. The dashed line represents the probability density 

function, while the solid line represents the cumulative distribution function. From the 

figure, we can observe that for each path, the TTB is always greater than the MTT due to 

the consideration of the travel time reliability requirement at a confidence level α. At the 

same time, the METT is always higher than the TTB, since it takes into account of the 

unreliability impacts represented by the shaded area of the tail with a probability 1-α. 
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Figure 6.3 Comparison among different route choice criteria (path 1 and path 2). 
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Analysis of the variations of demand 
level and confidence level 
 

Without loss of generality, we assume all travelers’ travel time requirement given 

in terms of a confidence level is 90%, the base OD demands are 1,9 30q = , 2,10 27q = , 

VMR1,9=0.1, and VMR2,10=0.2. Here, we examine the link flow variation on link 6 at the 

equilibrium state of the METE model under different demand levels: ( )1,9 2,10,q q qλ= ⋅ , 

where λ = 1.0, 1.1,…, 2.0 is the multiplier that represents the demand level from 1 to 11, 

respectively. Figure 6.4 graphically depicts the probability density functions of the flow 

distribution on link 6 with respect to different demand levels. From the figure, we can 

observe that an increase of the mean and variance of OD demands leads to an increase of 

the mean (v) and variance (ε) of the link flow distribution. Therefore, Figure 6.4 indeed 

illustrates that the link flow is actually random due to the stochastic travel demand. 

In the following, the effect of demand variations on the equilibrium results for 

each model is explored. Since the results of both OD pairs are similar, only the results of 

OD pair (1, 9) are shown in Figure 6.5. It is clear that the MTT, TTB, and METT 

increase as the demand level increases and METT ≥ TTB ≥ MTT. Furthermore, the 

differences among them get larger when the demand level increases. Due to the 

congestion effect, all of the measures have a higher rate of increase at higher demand 

levels than that at lower demand levels. This implies that the consideration of both 

reliability and unreliability aspects of travel time variability may has a more significant 

effect on travelers' route choice decision under heavier congestion levels, and the price 

for maintaining the travel time reliability requirement and avoiding the unreliability 

impacts are also higher. For example, knowing that the congestion is severe, travelers 
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Figure 6.4 Link flow distributions of link 6 under different demand levels. 
 
 
 
have to depart earlier to ensure more frequent on-time arrival and to minimize the 

associated risk of encountering excessively high delay. 

Now, we fix the OD demand to be 1,9 54q = , 2,10 48.6q = , VMR1,9=0.1, and 

VMR2,10=0.2, and examine the effect of different confidence levels. Based on the 

discussions in the previous sections, it is reasonable to assume that all travelers are risk-

averse under an uncertain environment. Therefore, we only consider the situation that the 

travelers' confidence level 50%α ≥ . Here, only the results of OD pair (1, 9) are 

examined in Figure 6.6. From the figure, the following observations can be drawn: 

The equilibrium MTT remains unchanged for all confidence levels. This is because 

the UE model does not account for travel time variability in the route choice decision 

process. 

The equilibrium TTB and METT are both increasing as the confidence level 

increases. This is to be expected since travelers need to budget extra time in order to  
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Figure 6.5 Equilibrium results under different demand levels. 
 
 
 

satisfy a higher travel time reliability requirement given by the increasing α value 

The METT is always higher than the TTB. As the confidence level approaches 1.0, 

the two measures get closer to each other. This phenomenon is consistent with the 

TTB and METT definitions and can be derived from the relationship given in Eq. 

(6.39).  

At the confidence level 0.5, the MTT and TTB are identical, which implies the DRUE 

model is equivalent with UE model. However, the METT given by the METE model 

is still higher than the MTT since it accounts for the risk beyond the MTT. 

 
Finally, we examine the effect of various combinations of demand level and 

confidence level. As defined in the previous experiments, the demand levels are from 1 to 

11, and the confidence levels are from 0.5 to 0.9. For demonstration purpose, we only 

show the surface of the equilibrium METT of OD pair (1,9) in Figure 6.7. When the 

demand level is low, the METTs for all confidence levels are similar. In this low demand 
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Figure 6.6 Equilibrium results under different confidence levels. 
 
 
 
scenario, since travel time variability is low, travelers only need to add a small amount of 

extra time (buffer time + excess travel time) to improve travel time reliability and to 

minimize the risk of encountering unacceptable travel time beyond TTB. The dominate 

factor is the mean travel time. When the demand level is high, the METT increases in a 

nonlinear fashion as the confidence level increases. This means travelers need to set aside 

a larger amount of extra time to ensure both reliability and unreliability aspects of the 

larger travel time variability induced by the higher demand levels. For example, the 

METT value of the demand-confidence level combination (11, 0.9) is about 27% higher 

than the combination (8, 0.8). Overall, Figure 6.7 provides a complete picture of the trend 

of the equilibrium METT results with respect to various combinations of the demand 

level and confidence level. 
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Conclusions 

 
 

In this study, three different user equilibrium problem models under stochastic 

demand were examined. With the day-to-day demand fluctuations, the path/link travel 

times are also stochastic. The traditional UE model ignores the travel time variation in the 

travelers’ route choice decision process. Thus, it may not be able to reflect travelers' risk 

preference under an uncertain environment. By considering the reliability aspect of 

stochastic travel time, the DRUE model assumes that all travelers minimize their TTB, 

such that a predefined confidence level of on-time arrival can be satisfied. However, the 

DRUE model does not assess the magnitude of the unacceptable travel times exceeding 

the TTB. Hence, it is possible that the travelers in the DRUE model will encounter 

unacceptable travel times in some bad days. In addition to the travel time reliability 

requirement defined by TTB, the METE model further considers the possible risk 
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Figure 6.7 Equilibrium results under various demand-confidence level combinations. 
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associated with the travel times beyond the TTB. The analytical form of the METT is 

derived, which reveals the relationships among the different route choice criteria adopted 

in the three user equilibrium models for the comparative analysis conducted in this study. 

The limited numerical results showed that the three models are indeed different and 

highlighted the essential ideas of the METE model, which is to consider both reliability 

and unreliability aspects of handling travel time variability in the route choice decision 

process. 

Due to the complex situations in the real world, no UE model is sufficient in 

capturing all aspects of the travelers’ risk-taking behavior in the route choice decision 

process, and whether the UE, DRUE or METE model is the most realistic is an open 

question. It is worthwhile to explore this issue through empirical studies given the 

potential differences identified in this comparative analysis. Further work includes 

extending the METE model to account for perception error to reflect that travelers may 

not have perfect knowledge of the travel time distributions. Finally, developing efficient 

path-based algorithms for solving the METE model in large-scale networks is also 

important in implementing these advanced route models for practical applications. 
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CHAPTER 7 

 
A STOCHASTIC α-RELIABLE MEAN-EXCESS TRAFFIC EQUILIBRIUM MODEL  

WITH PROBABILISTIC TRAVEL TIMES AND PERCEPTION ERRORS1 

Abstract 
 
 

This paper proposes a novel stochastic mean-excess traffic equilibrium model that 

considers both reliability and unreliability aspects of travel time variability and 

perception errors within the travelers’ route choice decision processes. In the model, each 

traveler not only considers a travel time budget for ensuring on-time arrival at a 

confidence level α, but also accounts for the impact of encountering worst travel times in 

the (1-α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of 

the travel time variability, the travelers’ route choice decisions are based on the perceived 

travel time distribution rather than the actual travel time distribution. In order to compute 

the perceived mean-excess travel time, an approximation method based on moment 

analysis is developed. The proposed model is formulated as a variational inequality (VI) 

problem, and solved by a route-based algorithm based on the modified alternating 

direction method. Numerical examples are also provided to illustrate the proposed model 

and solution procedure. 

 
Introduction 

 
 

Traffic equilibrium problem is one of the most critical and fundamental problems 

in transportation. Given the travel demand between origin-destination (O-D) pairs (i.e., 

                                                 
1 Co-authored by Zhong Zhou and Anthony Chen 
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travelers), and travel cost function for each link of the transportation network, the traffic 

equilibrium problem determines the equilibrium traffic flow pattern and various 

performance measures of the network. Route choice model is inherently embedded in the 

traffic equilibrium problem to model individual route choice decisions between various 

O-D pairs, while congestion is explicitly considered through the travel cost functions. 

Recently, travel time variability has been emerged as an important topic due to its 

significant impacts on travelers’ route choice behavior as observed by many empirical 

studies (Abdel-Aty, Kitamura, and Jovanis, 1995; Small et al., 1999; Brownstone et al., 

2003; Liu, Recker, and Chen, 2004; de Palma and Picard, 2005). These studies revealed 

that travelers indeed consider travel time variability as a risk in their route choice 

decisions since they do not know exactly when they will arrive at the destination. Thus, 

they are interested in not only travel time saving but also risk reduction when making 

their route choice. However, the traditional user equilibrium (UE) neglects travel time 

variability in the route choice decision process. It adopts the expected travel time as the 

sole criterion for making route choices. Thus, it implicitly assumes all travelers to be risk-

neutral. Moreover, it is well recognized that travelers may not have perfect knowledge 

about the network condition. Therefore, it is reasonable to incorporate the travelers’ 

perception error into the route choice decision process. However, similar to the UE 

model, the traditional stochastic user equilibrium (SUE) model also neglects the effect of 

travel time variability in the route choice decision process. It adopts the expected 

perceived travel time as the sole criterion for making route choices; and hence, it also 

implicitly assumes all travelers are risk-neutral. 

Typically, travel time variability can be represented by two different aspects: 
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reliability aspects and unreliability aspects. The reliability aspect represents the 

acceptable travel time (or travel time budget) that normally defined as the average travel 

time plus the acceptable additional time (or buffer time) needed to ensure the likelihood 

of on-time arrivals. FHWA (2006) documented that travelers, especially commuters, do 

add a “buffer time” to their expected travel time to ensure more frequent on-time arrivals 

when planning a trip. On the other hand, the unreliability aspect of travel time variability 

represents the late trips whose travel times are excessively higher than the acceptable 

travel time. Based on the empirical data collected on the Netherlands freeways, travel 

time distributions are not only very wide but also heavily skewed with long tail (van Lint, 

van Zuylen, and Tu, 2008). The implication of these positively skewed travel time 

distributions has a significant impact on travelers facing the unreliability aspect of travel 

time variability (i.e., unacceptable risk due to unacceptable travel times). For example, it 

has been shown that about 5% of the “unlucky drivers” incur almost five times as much 

delay as the 50% of the “fortunate drivers” on densely used freeway corridors in the 

Netherlands. Therefore, to address the travelers’ route choice behavior under an uncertain 

environment, both reliability and unreliability aspects of travel time variability need to be 

considered simultaneously. 

To consider the reliability aspect of travel time variability, the concept of travel 

time budget (TTB) has been adopted in the literature. TTB is defined as the average 

travel time plus an extra time (or buffer time) such that the probability of completing the 

trip within the TTB is no less than a predefined reliability threshold α. Uchida and Iida 

(1993) used the notion of effective travel time (i.e., mean travel time + safety margin) to 

model network uncertainty in the traffic assignment model. The safety margin is defined 
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as a function of travel time variability, which serves as a measure of risk averseness in 

their risk-based traffic assignment models. Lo, Luo, and Siu (2006) proposed a 

probabilistic user equilibrium (PUE) model to account for the effects of within budget 

time reliability (WBTR) due to degradable links with predefined link capacity 

distributions. By assuming travel time variability is induce by the travel demand 

fluctuation instead of capacity degradation, Shao et al. (2006) proposed a demand driven 

travel time reliability-based user equilibrium (DRUE) model. Later, Shao et al. (2008) 

further extended this approach to model the rain effects on road network with random 

demand, where the link free-flow travel time and link capacity are treated as a function of 

the rain intensity. The framework of the above reliability-based traffic equilibrium 

models can be depicted in Figure 7.1. 

 
 
 

  
 

Figure 7.1 Framework of the reliability-based traffic equilibrium models. 
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On the other hand, to account for the unreliability aspect of travel time reliability  

(i.e., unacceptable travel times), a general adopted concept to consider the unreliability 

effect is schedule delay (SD). It is defined as the difference between the chosen time of 

arrival and the official work start time (Small, 1982), used in conjunction with a disutility 

function to model the travel choice decision (Noland et al., 1998; Noland, 1999). Watling 

(2006) proposed a late arrival penalized user equilibrium (LAPUE) model by 

incorporating a schedule delay term to the disutility function to penalize late arrival for a 

fixed departure time. Siu and Lo (2007) showed that there is a relationship between the 

risk aversion coefficient of the TTB model and the SD cost. These models can be 

represented by Figure 7.2 

However, note that both reliability-based and unreliability-based traffic 

equilibrium models above only consider one aspect of travel time variability (i.e., either  
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Figure 7.2 Framework of the unreliability-based traffic equilibrium models. 



   
   

212
the reliability aspect using the concept of TTB or the unreliability aspect using the 

concept of SD). To adequately describe travelers’ route choice decision process under 

travel time variability, both reliability and unreliability aspects should be explicitly 

considered. Recently, Zhou and Chen (Chapter 5) proposed a α-reliable mean-excess 

traffic equilibrium (METE) model, where each traveler attempts to minimize his/her 

mean-excess travel time (METT), which is defined as the conditional expectation of the 

travel time exceeding the TTB. As a route choice criterion, METT can be regarded as a 

combination of the buffer time measure that ensures the reliability of on-time arrival, and 

the tardy time measure that represents the unreliability impacts of excessively late trips 

(Cambridge Systematics, et al., 2003). It incorporates both reliability and unreliability 

aspects of travel time variability to simultaneously address both questions of "how much 

time do I need to allow?" and "how bad should I expect from the worse cases?" 

Therefore, travelers' route choice behavior can be considered in a more accurate and 

complete manner in a network equilibrium framework to reflect their risk preferences 

under an uncertain environment.  This model can be shown as Figure 7.3. 

To account for both reliability issues and travelers’ perception error, Siu and Lo 

(2006) extended the PUE model to consider two types of uncertainty in travelers’ daily 

commutes, i.e. uncertainty in the actual travel time due to random link degradations and 

perception error variations in the TTB due to imperfect information. Shao, Lam, and Tam 

(2006) also extended the DRUE model to incorporate the randomness of link travel time 

from the daily demand variation and travelers’ perception error on the TTB. Similar to 

the traditional logit-based SUE models (Dial, 1971; Fisk, 1980), they assume the 

commonly adopted Gumbel variate as the random error term. This random error term is 
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Figure 7.3 Framework of the α-reliable mean-excess traffic equilibrium model. 
 
 
 

added to the TTB to construct the perceived travel time budget (PTTB) as shown in 

Figure 7.4. According to Mirchandani and Soroush (1987), this kind of perception error is 

regarded as “deterministic”, because it is independent of the stochastic travel time (i.e., 

actual travel time distribution). 

Though a commonly adopted logit form can be acquired by this approach, it may 

not reflect the travelers’ perception of the random travel time appropriately. Under travel 

time variation, as discussed by Mirchandani and Soroush (1987), it is more rational to 

assume that the traveler’s perception error is also dependent on the random travel time, 

i.e., the travelers’ route choice decisions are based rather on the perceived travel time 

distribution than on the actual travel time distribution. Therefore, in order to explicitly 

consider both reliability and unreliability aspects of travel time variability and to reflect 

the travelers' perception error in the route choice decision process, we propose the  
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Figure 7.4 Framework of reliability-based traffic equilibrium models with deterministic 
perception error. 

 
 
 
stochastic α-reliable mean-excess traffic equilibrium model, or stochastic mean-excess 

traffic equilibrium (SMETE) model for short. The new model extends the METE model 

by further incorporating the travelers’ perception error. In this model, travelers are 

assumed to make their route choice decision based on the perceived mean-excess travel 

time (PMETT) of each alternative route, which is determined by the perceived travel time 

distribution considering both distributions of the random route travel time and the 

perception error. In order to compute the PMETT of each route in the stochastic network, 

an approximation method based on moment analysis (i.e., conditional moment generation 

function used to derive the perceived link travel time, Cornish-Fisher Asymptotic 

Expansion to estimate the PTTB, and Acerbi and Tasche Approximation to estimate the 

PMETT based on the PTTB) is developed in this paper. The framework of this novel 

model is illustrated in Figure 7.5. This is the first attempt to integrate the traveler's 



   
   

215
perception error, travel time reliability and unreliability into a unified network 

equilibrium framework. It provides a more complete manner for considering travelers' 

route choice decisions to reflect their risk preferences under an uncertain environment 

and the potential applicability for solving practical problems. 

The remainder of the paper is organized as follows. In Section 2, the concept of 

PMETT is introduced and the stochastic mean-excess traffic equilibrium model is 

proposed. The model is formulated as a general variational inequality (VI) problem. 

Qualitative properties of the model and formulation are also provided. In Section 3, a 

route-based algorithm based on the modified alternating direction method is provided to 

determine the equilibrium flow pattern. In Section 4, illustrative examples are presented 

to demonstrate the characteristics of the proposed model and its comparison to other 

related user equilibrium models. Finally, conclusions and recommendations for future 

research are given in Section 5. 

 
Model and Formulation 

 
 
Definition and assumptions 
 

Consider a strongly connected network [N, A], where N and A denote the sets of 

nodes and links, respectively. Let R and S denote a subset of N for which travel demand 

rsq  is generated from origin r R∈  to destination s S∈  and let rs
pf  denote the flow on 

route rsp P∈ , where rsP is a set of routes from origin r to destination s. Let aT  represent 

the random travel time on link a A∈ , which is parameterized by link flow av . 

Consequently, the travel time on route rsPp ∈  between origin r to destination s is also a 
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Figure 7.5 Framework of the stochastic mean-excess traffic equilibrium model. 
 
 
 
random variable that can be expressed as 

 rs rs
p a pa

a A
T T δ

∈

=∑ , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.1) 

where ∆ = [ rs
paδ ] denotes the route-link incidence matrix, 1=rs

paδ  if route p from origin r 

to destination s uses link a, and 0, otherwise. 

Normally, travelers, especially commuters, are able to learn the travel time 

variability through their past experiences. Then, they incorporate this knowledge into 

their daily route choice decisions and reach a habitual equilibrium (Lo and Tung, 2003; 

Lo, Luo, and Siu, 2006). However, due to the imperfect knowledge or information about 

the network condition, travelers’ perception errors have to be incorporated into their route 

choice decision process. Therefore, under an uncertain environment, it is reasonable to 
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assume that travelers make their route choice decisions based on the perceived travel time 

distribution rather than the actual one. This can be illustrated in Figure 7.6, which shows 

a hypothetical travel time distribution and the corresponding travel time distribution 

perceived by travelers. Due to the differences between the actual travel time distribution 

(depicted in dot line) and the perceived travel time distribution (depicted in solid line), 

the travelers’ route choice decisions could be quite distinct. 

In the following, we give specific assumptions on the perception error used to 

develop the stochastic mean-excess traffic equilibrium model with probabilistic travel 

times and perception errors: 

Assumption 1. The perception error distribution of an individual traveler for a segment of 

road with unit travel time is ( )2,N µ σ , where ( )2,N µ σ denotes a normal distribution 

with mean µ and variance 2σ . 

 
 
 

Travel Time 
Distribution

Perceived Travel 
Time Distribution

 

Figure 7.6 Actual travel time distribution and perceived travel time distribution. 



   
   

218
Assumption 2. Traveler’s perception errors are independent for nonoverlapping route 

segments. 

Assumption 3. Travelers’ perception errors are mutually independent over the population 

of travelers. 

Note that, in our assumptions above, the parameters µ and 2σ of the normal 

distribution ( )2,N µ σ are predefined and deterministic. This is distinct from the 

assumptions proposed by Mirchandani and Soroush (1987), where the parameters µ and 

2σ  are also stochastic variables with given distributions. Though the stochastic 

parameters µ and 2σ  have the advantage to represent characteristics (e.g., income) that 

vary from one individual to another, it requires the models to be appropriately 

aggregated. Such aggregation adds complexity to the model and may significantly 

increase the computational overhead. For example, the Monte Carlo simulation, which is 

known as a time-consuming procedure, has been adopted by Mirchandani and Soroush 

(1987) to take account for the randomly distributed parameters ( µ and 2σ ) in the 

estimation of perceived route disutility. Therefore, in order to facilitate the representation 

of the essential ideas, in this study, we assume all travelers come from a single group and 

have similar attributes. This kind of aggregation simplifications has been widely adopted 

in various travel demand models, such as mode choice, destination choice, and route 

choice models (see, e.g., Sheffi, 1985; Oppenheim, 1995). Therefore, based on the 

assumptions in this study, computational intensive simulation can be avoided, and 

efficient moment-based analysis of the perceived travel time distribution and new route 

choice criteria can be derived. 
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According to Assumptions 1 to 3, the traveler’s perception error on route p and 

link a can be denoted as | rs
p

rs
p T

ε  and |
aa Tε , which are conditional on the stochastic 

route/link travel time rs
pT  and aT , respectively. Then, the perceived travel time rs

pT  ( aT ) 

can be rationally assumed as the actual travel time rs
pT  ( aT ) plus the perception error 

| rs
p

rs
p T

ε  ( |
aa Tε ), and the following equation is satisfied 

 | , , ,rs
p

rs rs rs rs
p p p T

T T p P r R s Sε= + ∀ ∈ ∈ ∈  (7.2) 

 ( )|
a

rs
a a T pa

a A
T ε δ

∈

= +∑  (7.3) 

 rs
a pa

a A
T δ

∈
=∑  (7.4) 

From the above equations, it is easy to see that travelers’ perceived travel time is 

in fact dependent on the actual travel time. In other words, the perceived distribution of 

the travel time is conditional on the actual distribution of the stochastic travel time. This 

distinguishes our approach from the logit-based SUE approach adopted in the recent 

developed reliability-based traffic equilibrium models (Siu and Lo, 2006; Shao, Lam, and 

Tam, 2006), where the perception error term is independent of the stochastic travel time, 

because it was assumed to be an independently and identically distributed (IID) Gumbel 

variate. 

In the next section, we will see how the travelers hedge against travel time 

variability and make their route choice decisions to reach a long term habitual 

equilibrium state while recognizing the perception of actual travel time distribution is 

subject to error.  
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Route choice criterion under an 
uncertain environment 
 

According to Mirchandani and Soroush (1987), travelers making route choice 

decisions under an uncertain environment can be categorized into three groups according 

to their attitudes toward risk (i.e., risk-prone, risk-neutral and risk-averse). In the 

traditional UE and SUE models, travelers are assumed to be risk-neutral since they make 

their route choice decisions solely based on the (perceived) expected travel time. 

However, recent empirical studies (Brownstone et al., 2003; Liu, Recker, and Chen, 

2004; de Palma and Picard, 2005) revealed that most travelers are actually risk-averse. 

They are willing to pay a premium to avoid congestion and minimize the associated risk.   

By considering the travel time reliability requirement, travelers are searching for a 

route such that the corresponding TTB allows for on-time arrival with a predefined 

confidence level α (Shao et al., 2006). Meanwhile, they are also considering the impacts 

of excessively late arrival (i.e., the unreliable aspect of travel time variability) and its 

explicit link to the travelers' preferred arrival time in the route choice decision process 

(Watling, 2006). Therefore, it is reasonable for travelers to choose a route such that the 

travel time reliability requirement (i.e., acceptable travel time defined by TTB) is ensured 

most of the time and the expected unreliability impact (i.e., unacceptable travel time 

exceeding TTB) is minimized. This trade-off between the reliable and unreliable aspects 

in travelers' route choice decision process was represented by the mean-excess route 

travel time defined by Zhou and Chen (Chapter 5) as follows: 

Definition 1. (Mean-Excess Travel Time) The mean-excess travel time ( )rs
pη α  for a route 

rsPp ∈  between origin r to destination s with a predefined confidence level α is equal to 
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the conditional expectation of the travel time exceeding the corresponding route travel 

time budget ( )rs
pξ α , i.e.,  

 ( ) ( )[ | ]rs rs rs rs
p p p pE T Tη α ξ α= ≥ , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.5) 

where  E[⋅] is the expectation operator, and ( )rs
pξ α  is the travel time budget on route p 

from origin r to destination s defined by the travel time reliability chance constraint at a 

confidence level α in Eq. (7.6): 

 ( ) ( ){ }min | Prrs rs
p pTξ α ξ ξ α= ≤ ≥ , (7.6) 

 ( ) ( )rs rs
p pE T γ α= + , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.7) 

where ( )rs
pγ α  is the extra time added to the mean travel time as a ‘buffer time’ to ensure 

more frequent on-time arrivals at the destination under the travel time reliability 

requirement at a confidence level α. Note that Eq. (7.7) is exactly the definition of the 

TTB defined by Chen and Ji (2005), Lo, Luo, and Siu (2006), and Shao et al. (2006). 

To incorporate the travelers’ perception error, similar to definition 1 above, we 

can define the perceived mean-excess travel time ( )rs
pη α  as follows: 

Definition 2. (Perceived Mean-Excess Travel Time) The perceived mean-excess travel 

time ( )rs
pη α  for a route rsPp ∈  between origin r to destination s with a predefined 

confidence level α is equal to the conditional expectation of the perceived travel time 

exceeding the corresponding perceived route travel time budget ( )rs
pξ α , i.e.,  

 ( ) ( )[ | ]rs rs rs rs
p p p pE T Tη α ξ α= ≥ , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.8) 
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where rs

pT  is the perceived travel time on route p between origin r to destination s , and 

and ( )rs
pξ α is the perceived travel time budget (PTTB), defined by 

  ( ) ( ){ }min | Prrs rs
p pTξ α ξ ξ α= ≤ ≥  (7.9) 

 ( ) ( )rs rs
p pE T γ α= + , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.10) 

where ( )rs
pγ α  is the perceived “buffer time” added to the perceived mean travel time to 

ensure the predefined travel time reliability at a confidence level α.  

According to the definition above, it is easy to see that if the perceived route 

travel time distribution ( )rs
pf T  is known, the perceived mean-excess travel time 

( )rs
pη α can be represented as: 

 ( ) ( )
( )

( )1
1 rs rs

p p

rs rs rs rs
p p p p

T

T f T d T
ξ α

η α
α ≥

=
− ∫ . (7.11) 

Moreover, Eq. (7.11) can be restated as: 

 ( ) ( ) ( ) ( )|rs rs rs rs rs rs
p p p p p pE T Tη α ξ α ξ α ξ α⎡ ⎤= + − ≥⎣ ⎦ . (7.12) 

Therefore, the PMETT can be decomposed into two individual components. The 

first component is exactly the PTTB of route p, which reflects the perceived reliability 

aspect of acceptable risk allowed by the travelers at a confidence level α. The second 

component can be regarded as a kind of “perceived expected delay” for choosing the 

current route to reflect the perceived unreliable aspect of unacceptable risk (i.e., 

perceived trip time exceeding the acceptable travel time defined by PTTB). Clearly, as a 

new route choice decision criterion, the PMETT incorporates reliable and unreliable 

aspects of the travel time variability and perception error into the route choice decision 



   
   

223
process. It addresses both questions of "how much time do I need to allow?" and "how 

bad should I expect from the worse cases?" according to the travelers’ perception of the 

actual travel time distribution (i.e., knowledge of network conditions). Both questions 

relate particularly well to the way travelers make decisions. 

 
Perceived mean-excess route travel time 
 

In the literature, several possible travel time distributions have been suggested to 

describe the travel time variation under an uncertain environment. For example, 

exponential and uniform travel time distributions were adopted in Noland and Small 

(1995) for studying the morning commuting problem. A family of distributions known as 

the “Johnson curves” was studied by Clark and Watling (2005) to model the total 

network travel time under random demand. Gamma type distributions were tested by Fan 

and Nie (2006) in the stochastic optimal routing problem. Multivariate normal 

distribution was considered by Lo, Luo, and Siu (2006), Siu and Lo (2006), Shao et al. 

(2006), and Shao, Lam, and Tam (2006), where the link travel time variation was 

introduced by link capacity degradation or demand fluctuation. A mixture of normal 

distribution was suggested in Watling (2006). In this study, the SMETE model and its VI 

formulation are proposed in a generic sense, that is, flexible travel time probability 

density functions are allowed. They provide a simple, convenient representation of risk, 

which fits quite well to the way that travelers' assess their trip times and risks, and make 

their route choice decisions accordingly.  

To determine the PMETT of a route, the cumulative density function (CDF) is 

required. However, in real application, this information is generally unknown. Under 



   
   

224
certain special assumption (such as the normal distribution), the route travel time 

distribution can be derived from the given distribution of the link travel time 

distributions. However, in reality, even the link travel time distributions are given, it may 

still be difficult to analytically derive the route travel time distribution. This becomes 

much more complicated when the travelers’ perception error is incorporated and the 

perceived travel time distribution needs to be derived. To overcome this difficulty, an 

approximation scheme is adopted in this study, such that we are able to estimate the 

PMETT without the need to know the explicit form of the perceived route CDF.  

From assumption 1, the perception error for an unit travel time, denoted by 1|tε = , 

is a sample from ( )2,N µ σ . Moreover, according to assumption 2, the travel time on link 

a is the sum of independent unit travel times. Therefore, the conditional perception error 

for link a with deterministic travel time 0
at  is normally distributed as: 

 ( )0
0 2 0| ,

a a
a a aT t

N t tε µ σ
=
∼  (7.13) 

with conditional moment generating function (MGF) 

 ( )
0

2 0 2
0

| exp
2a T ta a

a
a

t sM s t sε
σµ

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

 
2

0exp
2a

sst σµ
⎡ ⎤⎛ ⎞

= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (7.14) 

where s is a real number. 

Then, the MGF of the perceived travel time aT  of link a for an individual traveler is 

 ( ) ( )exp
a aTM s E sT⎡ ⎤= ⎣ ⎦  
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 ( ){ }exp a aE s T ε⎡ ⎤= +⎣ ⎦  

 ( ) ( ){ }|exp exp |
a a T aaT a a TE sT E sε ε⎡ ⎤= ⎣ ⎦  

 ( ) ( ){ }|exp
a a TaT aE sT M sε= , (7.15) 

where [ ]xE ⋅ denotes the expectation with respect to random variable x. Substituting 

(7.14) to (7.15), we have 

 ( )
2

exp 1
2aa T aT

sM s E sT σµ
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + +⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
 (7.16) 

 
2

1
2aT

sM s σµ
⎡ ⎤⎛ ⎞

= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (7.17)  

Thus, by taking the first derivative of the MGF above and evaluating at s = 0, we can 

easily acquire the first moment (i.e., mean) of the perceived travel time distribution 

 ( ) [ ]1a aE T E Tµ⎡ ⎤ = +⎣ ⎦ , (7.18) 

where ( )aE T  is the mean of the random travel time aT . Similarly, the second to fourth 

moments of the perceived travel time distribution can be derived from the corresponding 

order of derivative evaluated at s = 0 

 ( ) [ ]22 2 2( ) 1 ( )a a aE T E T E Tµ σ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦⎣ ⎦  (7.19) 

 ( ) ( )33 3 2 2( ) 1 ( ) 3 1 ( )a a aE T E T E Tµ µ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦⎣ ⎦  (7.20) 

 ( ) ( )4 24 4 2 3 4 2( ) 1 ( ) 6 1 ( ) 3 ( )a a a aE T E T E T E Tµ µ σ σ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ . (7.21) 

Consequently, the second to fourth central moments of the perceived travel time 

distribution can be represented as follows. 
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 ( ) ( ) ( )222 2( ) ( )a a a a aE T E T E T E Tλ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (7.22) 

 ( ) ( )33 3 2 3( ) 2 ( ) 3 ( ) ( ) ( )a a a a a a aE T E T E T E T E T E Tλ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 (7.23) 

( ) ( )44 ( )a a aE T E Tλ ⎡ ⎤= −⎢ ⎥⎣ ⎦
 

 4 2 2 3 43 ( ) 6 ( ) ( ) 4 ( ) ( ) ( )a a a a a aE T E T E T E T E T E T⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ . (7.24) 

Let ( )1
aκ , ( )2

aκ , ( )3
aκ  and ( )4

aκ  represent the first to fourth cumulants of the perceived link 

travel time distribution, respectively. It is well known that the cumulants can be derived 

from the (central) moments as below: 

 ( )1
a aE Tκ ⎡ ⎤= ⎣ ⎦ , ( ) ( )2 2

a aκ λ= , ( ) ( )3 3
a aκ λ= , ( ) ( ) ( )( )24 4 23a a aκ λ λ= − . (7.25) 

To facilitate the presentation of the essential ideas, in this study, we assume the link 

travel times are independent. Therefore, from the additive property of the cumulants, we 

have 

 ( )( ) ( )i irs rs
p a pa

a A
κ κ δ

∈

=∑ , , , , 1, 2,3,4rsp P r R s S i∀ ∈ ∈ ∈ = . (7.26) 

Note that, in reality, the link travel times may not be truly independent due to the 

network topology or the sources of variations. Therefore, how to relax this assumption 

would be of interest for further study. Now, we are able to utilize the following Cornish-

Fisher Asymptotic Expansion (Cornish and Fisher, 1937) to estimate the PTTB ( )rs
pξ α  

as below: 

 ( ) ( ) ( )rs rs rs rs
p p p p pE T V Tξ α ξ α ψ α⎡ ⎤ ⎡ ⎤≈ = + ⋅⎣ ⎦ ⎣ ⎦ , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.27) 
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where rs

pE T⎡ ⎤⎣ ⎦  and rs
pV T⎡ ⎤⎣ ⎦  denote the expected value and standard deviation of the 

perceived route travel time rs
pT , respectively, which are obtained from 

 ( )( )1rs rs
p pE T κ⎡ ⎤ =⎣ ⎦ , , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.28) 

 ( )( ) 1 22rs rs
p pV T κ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦

, , ,rsp P r R s S∀ ∈ ∈ ∈ , 

and 

 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )( ) ( )

21 1

31 1

31 1 2

1/ 6 1

1/ 24 3

1/ 36 2 5 ,

p p

p

p

S

K

S

ψ α α α

α α

α α

− −

− −

− −

⎡ ⎤= Φ + Φ −⎢ ⎥⎣ ⎦
⎡ ⎤+ Φ − Φ⎢ ⎥⎣ ⎦
⎡ ⎤− Φ − Φ⎢ ⎥⎣ ⎦

 (7.29) 

where ( )1−Φ ⋅  is the inverse of the standard normal CDF, while pS  and pK  are the 

theoretical skewness and excess kurtosis of the perceived route travel time distribution, 

respectively, which are obtained from 

 
( )( )

( )( )

3

3/ 22

rs
p

p
rs
p

S
κ

κ
=
⎡ ⎤
⎢ ⎥⎣ ⎦

, , ,rsp P r R s S∀ ∈ ∈ ∈ , (7.30) 

 
( )( )

( )( )

4

22

rs
p

p
rs
p

K
κ

κ
=
⎡ ⎤
⎢ ⎥⎣ ⎦

, , ,rsp P r R s S∀ ∈ ∈ ∈ . (7.31) 

Note that, if only the perceived reliable aspect of travel time variability is 

considered, i.e. the user equilibrium is based on the PTTB, the approach above can be 

considered as an extension of Shao, Lam, and Tam (2006) and Siu and Lo (2006). That 

is, instead of adding a Gumbel random term as the perception error to the TTB, where the 

TTB itself is computed based on the actual travel time distribution and the Gumbel 
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distributed perception error is independent of the stochastic travel time, we compute the 

PTTB according to the perceived travel time distribution, which integrates the 

distribution of the uncertain travel time and perception error together.  

In order to consider both reliability and unreliability aspects of the uncertain 

travel time, and to incorporate the travelers’ perception error, the PMETT is adopted as a 

new route choice criterion in this study. However, it is generally difficult to directly 

estimate the PMETT using Eq. (7.11), because the analytical form of the perceived route 

travel time distribution ( )rs
pf T  is generally unknown. According to Proposition 3.2 in 

Acerbi and Tasche (2002), the PMETT can be redefined as the following equivalent 

form: 

 ( ) ( )11
1

rs rs
p p d

α
η α ξ τ τ

α
=

− ∫ . (7.32) 

Consequently, we have 

 ( ) ( ) ( )11
1

rs rs rs
p p p d

α
η α η α ξ τ τ

α
≈ =

− ∫ . (7.33) 

Note that the integral in the right-hand side of the Eq. (7.33) can be readily 

computed by many efficient numerical methods, e.g. adaptive algorithms under various 

quadrature rules (Stoer and Bulirsch, 2002). Thus, from the analysis above, we are able to 

estimate the PMETT without the need to know the explicit form of the perceived route 

CDF. 

 
SMETE conditions and VI formulation 
 

By adopting the PMETT as a route choice criterion, the stochastic mean-excess 

traffic equilibrium (SMETE) conditions can be described as an extension of the User 
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Equilibrium principle (Wardrop, 1952) as follows: 

Definition 3. Let η  denote the PMETT vector ( ), ,
Trs

pη… … , rsπ  denote the minimal 

PMETT between O-D pair (r,s), and f denote the route-flow vector ( ), ,
Trs

pf… … . The 

stochastic α-reliable mean-excess traffic equilibrium state is reached by allocating the O-

D demands to the network such that no traveler can improve his/her perceived mean-

excess travel time by unilaterally changing routes. In other words, all used routes 

between each O-D pair have equal perceived mean-excess travel time, and no unused 

route has a lower mean-excess travel time, i.e. the following conditions hold: 

 
*

*
*

0 ) 0
( ) , , ,

0   ) 0

rs
prs rs rs

p rs
p

    if  (f
f p P r R s S

if  (f  
η π

⎧ = >⎪− ∀ ∈ ∈ ∈⎨≥ =⎪⎩
, (7.34) 

where rsπ  is the minimum PMETT between OD pair (r, s). 

 
Then, the SMETE model can be formulated as a variational inequality problem 

VI(f,Ω) as follows. 

Find a vector *f ∈Ω , such that 

 * *( ) ( ) 0Tf f fη − ≥ , f∀ ∈Ω , (7.35) 

where Ω represents the feasible route set defined by Eqs. (7.36) - (7.38) 

 , ,
rs

rs rs
p

p P

q f r R s S
∈

= ∀ ∈ ∈∑ , (7.36)

Aafv
Rr Ss Pp

rs
pa

rs
pa

rs

∈∀=∑∑ ∑
∈ ∈ ∈

,δ , (7.37) 

 0, , ,rs rs
pf p P r R s S≥ ∀ ∈ ∈ ∈ , (7.38) 

where (7.36) is the travel demand conservation constraint; (7.37) is a definitional 
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constraint that sums up all route flows that pass through a given link a; and (7.38) is a 

non-negativity constraint on the route flows.  

The following Propositions give the equivalence of the VI formulation and the 

SMETE model as well as the existence of the equilibrium solutions. 

Proposition 1. Assume the perceived mean-excess route travel time function ( )fη is 

positive, then the solution of the VI problem (7.35) is equivalent to the equilibrium 

solution of the SMETE problem. 

Proof. Note that *f is a solution of the VI problem if and only if it is a solution of the 

following linear program 

 ( )*min
T

f
f fη

∈Ω
 (7.39) 

By considering the primal-dual optimality conditions of (7.39), we have 

 ( )* *( ) 0, , ,rs rs rs rs
p pf f p P r R s Sη π⋅ − = ∀ ∈ ∈ ∈ , (7.40) 

 *( ) 0, , ,rs rs rs
p f p P r R s Sη π− ≥ ∀ ∈ ∈ ∈ , (7.41) 

and Eq. (7.38). It is easy to see the SMETE condition (7.34) is satisfied. This completes 

the proof.              € 

Proposition 2. Assume the mean-excess route travel time function ( )fη is positive and 

continuous, then the SMETE problem has at least one solution. 

Proof. According to Proposition 1, we only need to consider the equivalent VI 

formulation. Note that the feasible set Ω is nonempty, convex. Furthermore, according to 

the assumption, the mapping ( )fη is continuous. Thus, the VI problem (7.35) has at least 

one solution (Facchinei and Pang, 2003). This completes the proof.         € 
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Note that, in this study, the travelers are assumed to be risk-averse and concerned 

with both reliability and unreliability components introduced by travel time variation. 

Considering the relationship of the perceived link/route travel time (Eq. (7.2) -(7.4)), the 

assumptions of the perception error distribution (Assumptions 1 – 3), and the definition 

of the PMETT (Eq.(7.11)), it is reasonable to give the positive and continuous 

assumption of the function ( )fη  as in the above propositions. Consequently, the validity 

of the VI formulation and the existence of the solution are ensured. 

 
Solution Procedure 

 
 

In the SMETE model, the PMETT is nonadditive in general, i.e., the route cost is 

not simply the sum of the costs on the links that constitute that route. Therefore, a number 

of well-known algorithms developed for the traditional traffic assignment problem, such 

as the Frank-Wolfe algorithm, cannot be applied to solve the SMETE model. In order to 

deal with the nonadditive route cost structure, a route-based algorithm is needed 

(Bernstein and Gabriel, 1997; Chen, Lo, and Yang, 2001; Gabriel and Bernstein, 1997; 

Lo and Chen, 2000). 

By exploring the special structure of the SMETE model, a modified alternating 

direction (MAD) algorithm (Han, 2002) is adopted in this study for solving the VI 

problem in Eq. (7.35). The MAD algorithm is a projection-based algorithm, whose main 

idea can be briefly summarized as below. 

First, we attach a Lagrangian multiplier vector y to the demand conservation 

constraints Eq. (7.36). Therefore, the VI problem (7.35) can be reformulated as the 

following equivalent VI problem, denoted by VI(F,K). 
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Find Kω∗ ∈ , such that  

 * *( ) ( ) 0,TF Kω ω ω ω− ≥ ∀ ∈ , (7.42) 

where  

 
f
y

ω ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 
( )

( )
Tf y

F
f q

ηω
⎛ ⎞− Λ

= ⎜ ⎟Λ −⎝ ⎠
, n kK R R+= × , (7.43) 

where Λ denotes the OD-Route incidence matrix, q denotes the demand vector 

( ), ,
Trsq… … , n represenst the total number of routes, and k is the total number of OD 

pairs. 

This transformation makes the MAD algorithm attractive, because a projection on 

the new feasible region K is much easier than on the original set Ω. Furthermore, a self-

adaptive stepsize updating scheme is embedded in the algorithm, where the stepsize is 

automatically decided according to the information of the previous iterations (i.e., route 

flows and PMETT). These features make the MAD algorithm efficient and robust. For 

more detailed steps about the MAD algorithm, we refer to (Han, 2002; Zhou, Chen, and 

Han 2007). 

The remaining complication is how to generate the route set in real applications. 

Two approaches proposed by Lo and Chen (2000) and Chen, Lo, and Yang (2001) can be 

considered here. The first approach works with a set of predefined routes, which could be 

derived from personal interviews and hence constitutes a set of likely used routes; the 

second approach is to use a heuristic column generation procedure to generate METT 

routes. Zhou and Chen (Chapter 3) proposed a heuristic algorithm for finding α-reliable 

mean-excess routes. This approach may be also extended to find routes with the 

minimum PMETT. To facilitate the presentation of the essential ideas, in the numerical 
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illustrations in this study, we assume a set of working routes is available in advance. 

Future work will be exploring and developing a more efficient algorithm for finding the 

minimum PMETT routes and combining it as a column generation procedure in the 

proposed solution procedure.  

 
Illustrative Examples 

 
 

The purpose of this section is to illustrate and appraise the essential ideas of the 

SMETE model and to compare it with some existing models. We will not evaluate the 

performance of the proposed algorithm, but only use it to obtain the equilibrium flow 

patterns. Therefore, only small illustrative examples are adopted to demonstrate the 

conceptual differences among the various traffic equilibrium models. 

There are two numerical examples in this study. The first example is to illustrate 

the detailed derivations and characteristics of the PMETT, and to examine the effects of 

the perception error in the mean-excess traffic equilibrium model. The second example is 

to analyze the sensitivities of the SMETE model. Specifically, we examine the impacts of 

the demand variation, confidence level, as well as the perception error variance on the 

SMETE model. 

In the following numerical examples, the travel time for each individual link is 

assumed to be calculated from the following Bureau of Public Road (BPR) function: 

 
2

0 1 0.15 ,a
a a

a

VT T a A
C

⎛ ⎞⎛ ⎞
⎜ ⎟= + ∀ ∈⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, (7.44) 

where aT , 0
aT , aV , and aC  are the travel time, free-flow travel time, flow, and capacity of 

link a, respectively. Note that the travel time variability may come from any combination 
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of the variables 0

aT  (random link free-flow travel time), aV  (random link flow induced by 

day-to-day travel demand variation), and aC  (link capacity subject to stochastic link 

degradation). For simplicity, following Mirchandani and Soroush (1987), we assume that 

the probabilistic link travel time aT  only comes from the randomness of the link free-

flow travel time 0
aT . Here, we assume the random link free-flow travel time follows the 

Gamma distribution, i.e., ( )0 ,aT k θΓ∼ , with the following PDF:  

 ( ) ( ) ( )

0
10 0, ,

atk

a a k

ef t k t
k

θ

θ
θ

−−
=

Γ
, (7.45) 

where k is the shape parameter, θ is the scale parameter, and ( )kΓ  is the gamma function 

of k. Gamma distributions are quite flexible to mimic a broad range of commonly used 

nonnegative probability distributions, such as exponential, Weibull, and Lognormal 

distributions, thus convenient for modeling a wide range of random processes. 

 
Example I 
 

As shown in Figure 7.7, the first example is a simple network with three parallel 

routes (here links and routes are identical). 

There is one OD pair (1, 2) with 1 unit demand. The link capacities are all 

assumed to be 1, and the mean and variance of each link free-flow travel time in minute 

is (11, 4), (9, 9), and (10, 6), respectively. In the following tests, without loss of 

generality, we assume the confidence level of all travelers is 90% and the perception 

error distribution of a unit travel time follows ( )0,0.2N . 

Estimation of the PMETT. First, we illustrate the proposed approximation scheme 
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for estimating the PMETT without the need to know the explicit form of the perceived 

route travel time distribution. Without loss of generality, we assume the initial flows on 

links 1 to 3 are 0.2, 0.2 and 0.6, respectively. If the travelers have perfect knowledge of 

the network condition, they will be able to perceive the travel time distribution accurately 

(i.e., no perception error). Therefore, according to Eq. (7.5) – Eq. (7.7), it is easy to 

compute the METT for each individual route as below: 

12
1 14.86η = , 12

2 15.05η = , 12
3 15.52η = . (7.46) 

However, due to the imperfect knowledge of the network condition, the travelers 

may not be able to perceive the actual travel time distribution exactly (see Figure 7.6). 

Hence, it is necessary to incorporate their perception error into the route choice decisions. 

Based on the assumption of Gamma distributed link free-flow travel time in Eq. (7.45) 

and the BPR link cost function in Eq. (7.44), the first to fourth moments of the link travel 

time distribution can be computed as follows. 

 
 
 

 
 

Figure 7.7 Simple network I. 
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 [ ]1 11.07E T = , [ ]2 9.05E T = , [ ]3 10.54E T = ; 

 2
1( ) 126.50E T⎡ ⎤ =⎣ ⎦ , 2

2( ) 91.08E T⎡ ⎤ =⎣ ⎦ , 2
3( ) 117.76E T⎡ ⎤ =⎣ ⎦ ; 

 3
1( ) 1492.45E T⎡ ⎤ =⎣ ⎦ , 3

2( ) 1007.93E T⎡ ⎤ =⎣ ⎦ , 3
3( ) 1390.10E T⎡ ⎤ =⎣ ⎦ ; 

 4
1( ) 18153.40E T⎡ ⎤ =⎣ ⎦ , 4

2( ) 12167.70E T⎡ ⎤ =⎣ ⎦ , 4( ) 17288.94aE T⎡ ⎤ =⎣ ⎦ . 

 Then, according to Eq. (7.18) – Eq. (7.21), the first to fourth moments of the 

perceived travel time distribution can be computed as below: 

 1 11.07E T⎡ ⎤ =⎣ ⎦ , 2 9.05E T⎡ ⎤ =⎣ ⎦ , 3 10.54E T⎡ ⎤ =⎣ ⎦ ; 

 2
1( ) 128.72E T⎡ ⎤ =⎣ ⎦ , 2

2( ) 92.89E T⎡ ⎤ =⎣ ⎦ , 2( ) 119.87aE T⎡ ⎤ =⎣ ⎦ ; 

 3
1( ) 1568.36E T⎡ ⎤ =⎣ ⎦ , 3

2( ) 1062.58E T⎡ ⎤ =⎣ ⎦ , 3
3( ) 1460.75E T⎡ ⎤ =⎣ ⎦ ; 

 4
1( ) 19959.52E T⎡ ⎤ =⎣ ⎦ , 4( ) 13388.14aE T⎡ ⎤ =⎣ ⎦ , 4( ) 18971.19aE T⎡ ⎤ =⎣ ⎦ . 

Consequently, according to Eq. (7.25), the first to fourth cumulants of the perceived link 

travel time distribution can be derived as: 

 ( )1
1 11.07κ = , ( )1

2 9.05κ = , ( )1
3 10.54κ = ; 

 ( )2
1 6.26κ = , ( )2

2 10.92κ = , ( )2
3 8.77κ = ; 

 ( )3
1 5.39κ = , ( )3

2 23.79κ = , ( )3
3 12.43κ = ; 

 ( )4
1 7.29κ = , ( )4

2 78.39κ = , ( )4
3 26.91κ = . 

Since the routes and links are identical in this special example, according to Eq. (7.26), 

we have 

 ( )( ) ( )12 i i
p aκ κ= , 1, 2,3; 1,2,3,4a p i∀ = = = . 
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By considering Eq. (7.30) and Eq. (7.31), the skewness and kurtosis of the perceived 

route travel time distribution can be derived as: 

 1 0.34S = , 2 0.66S = , 3 0.48S = ; 

 1 0.19K = , 2 0.66K = , 3 0.35K = . 

Based on the Cornish-Fisher (1937) Asymptotic Expansion in Eq. (7.27), the perceived 

travel time budget (PTTB) can be estimated as: 

 ( )12
1 0.9 14.35ξ = , ( )12

2 0.9 13.45ξ = , ( )12
1 0.9 14.45ξ = . 

Then, by adopting Eq. (7.33), we can finally obtain the PMETT of each route 

 ( )12
1 0.9 15.77η = , ( )12

2 0.9 15.61η = , ( )12
3 0.9 16.24η = . (7.47) 

Analysis of the PMETT. Second, we examine the characteristics of the PMETT. 

According to the definition of the PMETT, it can be decomposed into three different 

components, i.e., the perceived mean travel time (PMTT), the perceived buffer time 

(PBT), and the “perceived expected delay” (PED). This can be demonstrated more clearly 

in Figure 7.8. Here, the “perceived expected delay” describes the impacts from the 

unreliability aspect of travel time variability on travelers’ route choice decisions, and the 

summation of the other two components (PMTT and PBT) gives the PTTB that 

represents the travel time reliability requirement. 

From the figure, we can see that travelers on route 3 may experience a higher 

expected delay than those on route 1 when the 10% worse cases happened (i.e., (1-α) 

quantile of worse travel times in the distribution tail), even though these two routes has 

similar TTB. These worse cases may be due to various sources, such as severe incidents,  
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Figure 7.8 Analysis of the characteristics of PMETT. 

 
 
 

bad weather conditions and special events. Therefore, for travelers who are concerned 

with not only the travel time reliability, but also the unreliability of encountering worse 

travel times, they may prefer route 1 than route 3, which has a lower METT. 

The impacts on travelers’ route choice decision by considering both travel time 

reliability and unreliability can be further illustrated in Figure 7.9. It shows the 

percentages of each component (i.e., PMTT, PBT, and PED) corresponding to the 

PMETTs. From the figure, we can see that the unreliability aspect of travel time 

variability is as significant as the reliability aspect on travelers’ route choice decision. 

Here, the PEDs (represents unreliability aspect) occupy 9%, 14% and 11%, respectively, 

on the three routes. Furthermore, the results show that the sum of the reliability and 

unreliability aspects has nearly 30% – 42% impacts on travelers’ route choice decisions  
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Figure 7.9 Proportion of each component in the PMETTs. 
 
 
 
under an uncertain environment. Therefore, both reliability and unreliability aspects of 

travel time variability should be considered in the route choice model. 

Effects of the perception error. Third, we analyze the effects of the perception 

error. Initially, we compare the equilibrium results of the METE and SMETE models. 

The results are shown in Table 7.1. The column named ‘Route Flow’ gives the 

equilibrium route flow pattern of each model. The METT and PMETT columns provide 

the METT and the PMETT based on the equilibrium route flow pattern of each model, 

respectively. For example, the PMETT column of the METE model provides the PMETT 

of each route under the equilibrium route flows of the METE model given the same 

perception error distribution adopted in the SMETE model. Similarly, the METT column 

of the SMETE model shows the METT of each route under the computed equilibrium 

route flows of the SMETE model given no perception error. To check the validity of the 

results, we examine two conditions for each model: travel demand conservation 

constraints and equilibrium conditions. As expected, both conditions are satisfied: the 

route flows sum up to the OD travel demands and the corresponding equilibrium 

measures (METT for the METE model and PMETT for the SMETE model) of all used 
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routes for each OD pair are equal and minimal. From the table, it is clear that the 

perception error significantly affects the equilibrium route flow patterns. For example, if 

the perception error is incorporated, route 1 will have the highest PMETT value under the 

equilibrium route flows of the METE model. Therefore, travelers using route 1 have 

incentives to switch from route 1 to route 2 or route 3, if they have no accurate 

knowledge of the stochastic travel times, and have to make their route choice based on 

the perceived travel time distributions. On the other hand, under the equilibrium state of 

the SMETE model, if travelers are able to estimate the distribution of the stochastic travel 

time accurately, they will intend to switch from route 2 to other routes, in order to acquire 

a lower METT. 

Then, we compare the SMETE model with the traditional SUE model (Fisk, 

1980) and the reliability-based SUE model (Siu and Lo, 2006; Shao, Lam, and Tam, 

2006). The equilibrium results are shown in Figure 7.10, where we use SUE and RSUE to 

represent the traditional SUE model and the reliability-based SUE model, respectively. 

The values in the legend are the equilibrium measures for each model, e.g. the 

equilibrium PMETT for SMETE model is 15.81. 

 
 
 
Table 7.1 Examine the effects of perception error 
 

Model Route # Route Flow METT PMETT 
 1 0.37 15.08 15.99 
METE 2 0.23 15.08 15.65 
  3 0.40 15.08 15.80 
 1 0.24 14.90 15.81 
SMETE 2 0.36 15.25 15.81 
  3 0.41 15.09 15.81 
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Figure 7.10 Comparison of the different stochastic user equilibrium models. 
 
 
 

From the figure, we can see that the equilibrium route flow pattern obtained from 

the SMETE model is significantly different from those obtained by Fisk’s Logit SUE 

model and the reliability-based SUE model. In particular, the differences come from the  

following reasons: (1) the SMETE model explicitly considers both reliability and 

unreliability aspects of travel time variability, while the RSUE model only considers the 

reliability aspect of travel time variability and the traditional SUE model totally ignores 

the travel time variability. Therefore, the value of the equilibrium measure of the RSUE 

model (i.e. PTTB) is higher than the route travel time of the SUE model due to the extra 

buffer time added to ensure on-time arrival, and the equilibrium PMETT of the SMETE 

model is higher than the PTTB of the RSUE model due to its further consideration of the 

impacts of the unreliable late trips in the distribution tail; (2) the travelers’ perception 
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error in the SMETE model depends on the distribution of the stochastic travel time. But 

in the SUE and RSUE models, the perception error is independent of the actual travel 

time distribution, and is just considered as a separate term. In fact, comparing with the 

SUE and RSUE models, our model gives much less traffic flow on route 2, even it has 

the lowest mean route travel time. This is reasonable because the risk averse travelers 

would avoid these routes with higher travel time variation, if the expected travel time 

does not increase much. Therefore, the travelers would rather travel through route 1 and 

route 2 to get a higher confidence of on-time arrival, and at the same time, to avoid the 

possible delays that are excessively higher than the TTB in the (1-α) quantile of the 

distribution tail. 

 
Example II 
 

In this experiment, we use a second example to analyze the impacts of demand 

variation, confidence level, as well as the perception error variance on the proposed 

SMETE model. This simple network is shown in Figure 7.11, which consists of 4 nodes, 

5 links and 3 routes. Here the routes and links are no longer identical, and the route-link 

relationship is shown in Table 7.2. 

 
 
 

 
 

Figure 7.11 Simple network II. 
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Table 7.2 Route-link relationship of the test network 
 

Route # Link Sequence 
1 1-2 
2 1-3-5 
3 4-5 

 
 
 

Table 7.3 Link characteristics  
 

 Statistical measure of the link 
free-flow travel times ( 0

at ) (min) 
Link # Mean Variance 

Capacity ( aC ) 
(veh/min) 

1 2 5 600 
2 8 9 400 
3 2 1 400 
4 5 3 400 
5 5 3 600 

 
 
 

There is one OD pair (1, 4) with a demand of 1000 units. The mean and variance 

of the free-flow travel time and capacity for each link in the test network are listed in 

Table 7.3, and the corresponding route characteristics are listed in Table 7.4. 

Analysis of the variations of demand level and confidence level. In the following, 

we examine the effect of various combinations of demand level and confidence level. 

Based on the discussions in the previous sections, it is reasonable to assume that all 

travelers are risk-averse under an uncertain environment. Therefore, we only consider the 

situation that the travelers' confidence level 50%α ≥ . Without loss of generality, we test 

the confidence level from 0.6 to 0.99, and the demand level from 1 to 20 that represent 

the OD demand increasing from 500 to 2400 with an interval of 100. Here, we assume 

the perception error distribution of a unit travel time follows ( )0,0.1N . For 
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Table 7.4 Route characteristics 
 

 Statistical measure of the route 
free-flow travel times ( 0

at ) (min) 
Route # Mean Variance 

1 10 14 
2 9 9 
3 10 6 

 
 
 
demonstration purpose, we only show the surface of the equilibrium PMETT in Figure 

7.12. 

From the figure, it is clear that the PMETT increases as the demand level 

increases. Due to the congestion effect, the PMETT has a higher rate of increase at the 

higher demand levels than that at the lower demand levels. This implies that the 

consideration of both reliability and unreliability aspects of travel time variability may 

have a more significant impact on travelers' route choice decision under heavier 

congestion levels. At the same time, the price for maintaining the travel time reliability 

requirement and avoiding the unreliability impacts is also higher. For example, knowing 

that the congestion is severe, travelers have to depart earlier to ensure more frequent on-

time arrival and to minimize the associated risk of encountering excessively high delay. 

Furthermore, we can see that the equilibrium PMETT is increasing while the confidence 

level increases. This is to be expected since travelers need to budget extra time in order to 

satisfy a higher travel time reliability requirement given by the increasing α value. 

Analysis of the variations of perception error. Finally, we investigate the impacts 

of the variations of perception error. Here, the OD demand is fixed at 1000, confidence 

level is 90%, and the variance 2σ  of the perception error distribution (N(µ, σ2)) of a unit 

travel. 
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Figure 7.12 Equilibrium results under various demand-confidence level combinations. 
 
 
 
time increases from 0.1 to 1 with an interval of 0.1. The equilibrium PMETTs are 

presented in Figure 7.13. From the figure, we can see that the PMETT increases as the 

variance of the perception error  increases. This is to be expected because high variance 

of the perception error implies a larger variance of the perceived travel time distribution. 

Therefore, in order to reach the  specified travel time reliability requirement and to avoid 

unacceptable delay, higher PTTB as well as PMETT are required. 
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Figure 7.13 Analysis under different perception error distributions. 
 
 

 
Conclusions and Future Research 

 
 

In this study, a stochastic mean-excess traffic equilibrium (SMETE) model is 

proposed. The new model explicitly accounts for both reliability and unreliability aspects 

of travel time variability and perception errors within the travelers’ route choice decision 

process. A approximation method based on moment analysis is developed to estimate the 

perceived mean-excess travel time (PMETT). The proposed model is formulated as a 

variational inequality (VI) problem, which describes the stochastic mean-excess traffic 

equilibrium condition, where each and every traveler simultaneously attempts to 

minimize individual PMETT. A route-based algorithm based on the modified alternating 

direction method is adopted to solve the proposed model. Illustration examples with 

simple small networks are also investigated to highlight the essential ideas of the 

proposed model and demonstrate the solution procedure. 
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In order to facilitate the presentation of the essential ideas, we only consider one 

user class in this study. Further extensions could be to consider multiple user classes with 

various risk preferences or perception errors. Furthermore, more efficient algorithms for 

finding the nonadditive PMETT route and solving the proposed SMETE model need to 

be developed and tested on larger scale networks. Finally, the SMETE model can be 

incorporated into network design problems (NDP) as a fundamental component of high 

level transportation system risk assessment framework.  
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CHAPTER 8 

 
CONCLUSIONS AND RECOMMENDATIONS 

 In this chapter, the research in the previous chapters is concluded and the major 

contributions of the dissertation are pointed out. The limitations of the research and a few 

recommendations for future research are also provided.  

 
Conclusions 

 
 

Optimal path finding and traffic equilibrium problems are two fundamental and 

interrelated problems in transportation, in which the travelers’ route choice behaviors and 

risk preferences are inherently incorporated. They are the core of many surface 

transportation applications encountered by transportation professionals on a daily basis. 

Recent empirical studies on the value of time and reliability reveal that travel time 

variability, which is considered as a risk to travelers making a trip, plays an important 

role on travelers' route choice decision process. That is, travelers are not only interested 

in saving their travel time but also in reducing their risk at the same time when making 

their route choice decisions. Therefore, the objective of this dissertation is to develop 

models and algorithms for addressing travel time variability with applications from 

optimal path finding and traffic equilibrium problems. 

Typically, the risk from travel time variability can be represented by two different 

aspects: acceptable risk and unacceptable risk. Acceptable risk refers to the reliability 

aspect of acceptable travel time, which is defined as the average travel time plus the 

acceptable additional time (or buffer time) needed to ensure more frequent on-time 
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arrivals, while unacceptable risk refers to the unreliability aspect of unacceptable late 

arrivals (though infrequent) that have a travel time excessively higher than the acceptable 

travel time. By considering the reliability and unreliability aspects of travel time 

variability, two new optimal path finding models, i.e., the α-reliable path finding model 

and the α-reliable mean-excess path finding model, and two new traffic equilibrium 

models, i.e., the α-reliable mean-excess traffic equilibrium (METE) model and the 

stochastic α-reliable mean-excess traffic equilibrium (SMETE) model, are proposed in 

this study. Furthermore, the travelers’ perception error of the random travel time is also 

incorporated into the SMETE model. The following conclusions are made in each chapter 

of the dissertation. 

In Chapter 1, a brief introduction of the research background and an outline of the 

dissertation were given.  Chapter 2 provided the fundamentals of the optimal path finding 

problems and the traffic equilibrium problems. Chapter 3 proposed an adaptive α-reliable 

path finding model, which is to adaptively determine a reliable path from a given origin 

to a given destination under an uncertain environment, such that at each intermediate 

node (including the origin) the desired reliability threshold α is satisfied and its 

corresponding travel time budget (TTB) is minimum. The adaptive α-reliable path 

finding model has the ability to incorporate both travelers' anticipation and real-time 

traffic information into the route choice decision process. It provides travelers more 

flexibility to better arrange their schedule and activities. That is, during the traveling 

period, the more accurate estimation of their travel time budget can be acquired, and 

travelers’ route strategy can be dynamically adjusted. The problem was formulated as a 

chance constrained model, where the chance constraint represents the travel time 
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reliability requirement under dynamic programming framework. The properties of the 

proposed adaptive α-reliable path finding model were explored in relation with the 

stochastic on-time arrival path finding model. Then, a discrete-time solution algorithm 

was developed for finding the adaptive α-reliable path. The algorithm was successfully 

applied on a real-size network. Chapter 4 proposed an α-reliable mean-excess model for 

finding optimal path in stochastic networks. By using the new optimal path finding 

criterion, i.e. the mean-excess travel time (METT), which was defined as the conditional 

expectation of the travel time exceeding the TTB, this new model is able to account for 

not only the reliability aspect that the traveler wishes to arrive at his destination within 

the TTB, but also the unreliability aspect of encountering worst travel times beyond the 

TTB. The model is useful for practical uncertain environments, where the travel time 

distributions are generally nonnegative, asymmetric with long tails. The proposed model 

is formulated as a stochastic mixed-integer nonlinear programming. To solve this difficult 

problem, a double-relaxation scheme is developed to find the α-reliable mean-excess 

path. A 9-nodes small network and a medium-size network (Sioux Falls network) were 

adopted to demonstrate the features of the proposed model and the validity and efficiency 

of the solution procedure. The flexibility of the model and the efficiency of the solution 

procedure enable a fast and reliable path finding, which can be adopted in various real 

world applications, such as the route guidance systems in ATIS. Chapter 5 presented a 

mean-excess traffic equilibrium (METE) model. By adopting the METT as the route 

choice criterion, the new model incorporates both reliability and unreliability concerns of 

travel time variability of the travelers, and simultaneously addresses both questions: "how 

much time do I need to allow?" and "how bad should I expect from the worse cases?" 
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Therefore, it is able to capture the travelers’ risk preferences more completely and 

accurately, and better reflect the travelers’ route choice decision processes. The new 

model is described in a generic way, which allows flexible travel time distributions, and 

formulated as a variational inequality (VI) problem. Qualitative properties of the model, 

including the equivalence and the solution existence, were also rigorously proved. A 

solution approach incorporating a projection-based algorithm was suggested for solving 

the METE model. A small network and a medium-size network (Sioux Falls network) 

were presented to demonstrate the model and the algorithm. Chapter 6 provided a 

comparative analysis of three user equilibrium models under travel time variability (i.e., 

the traditional user equilibrium (UE) model, the demand driven travel time reliability-

based user equilibrium (DRUE) model, and the METE model), where the travel time 

variability was assumed to come from the day-to-day travel demand fluctuation. The 

METT was analytically derived, which reveals the relationships among the three different 

route choice criteria adopted in the three user equilibrium models for the comparative 

analysis conducted in this study. The limited numerical results showed that the three 

models are indeed different and highlighted the essential ideas of the METE model. 

Chapter 7 presented a novel stochastic α-reliable mean-excess traffic equilibrium 

(SMETE) model. As an extension of the METE model, the travelers' perception error is 

also incorporated into this model in addition to considering of both reliability and 

unreliability aspects of travel time variability. Furthermore, the distribution of the 

perception error is assumed to depend on the actual distribution of the random travel 

time. Therefore, the travelers’ route choice decisions are based on the perceived travel 

time distribution, which is composed of both distributions of the probabilistic travel time 
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and the perception error. Due to the difficulty of obtaining the analytical from of the 

perceived travel time distribution, a moment analysis-based approximation approach was 

proposed to estimate the perceived mean-excess travel time (PMETT). The SMETE 

model is formulated as a VI problem, which describes the conditions that govern the 

SMETE state, where each and every traveler simultaneously attempts to minimize 

individual PMETT. A route-based algorithm based on the modified alternating direction 

method was developed to solve the SMETE model. Illustrative examples with simple 

small networks were also investigated to highlight the essential ideas of the proposed 

model, and to demonstrate the approximation approach and the solution procedure. 

 
Contributions 

 
 

Due to the importance of optimal path finding and traffic equilibrium problems in 

the transportation field and the increasing interests on studying the travelers’ route choice 

decision under uncertain environments, this dissertation developed new optimal path 

finding and traffic equilibrium models by incorporating various aspects of travel time 

variability into the route choice consideration. The novel models and algorithms 

presented in this dissertation are expected to provide the following important 

contributions:  

1. The development of the adaptive α-reliable path finding problem based on the 

investigation of the reliability aspect of travel time variability. The new model is able 

to adaptively determine an optimal path under an uncertain environment, such that 

both travelers' anticipation and real-time traffic information can be incorporated into 

the travelers’ route choice decision process. The problem is formulated as a chance 
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constrained model, where the chance constraint represents the travel time reliability 

requirement under a dynamic programming framework. The properties of the 

proposed adaptive α-reliable path finding model are rigorously examined in relation 

with the stochastic on-time arrival path finding model. Therefore, a discrete-time 

solution algorithm can be developed and applied in a real size network. 

2. The development of the α-reliable mean-excess path finding model under the 

exploration of both reliability and unreliability aspects of travel time variability. A 

new optimal path finding index (i.e, METT) is proposed, which is able to capture the 

travelers’ risk preferences more completely and accurately. A double-relaxation 

solution procedure is developed to solve the stochastic mixed-integer nonlinear 

programming formulation of the model.  

3. The development of the METE model, where METT is adopted as the new route 

choice criterion. Therefore, the new model is able to incorporate both reliability and 

unreliability aspects of travel time variability and better reflect the travelers’ route 

choice decision process in a network equilibrium framework. The model is 

formulated as a VI problem and its qualitative properties are rigorously proved. A 

route-based solution procedure based on a projection-based algorithm is suggested to 

solve the proposed model. 

4. The comparison among three different traffic equilibrium models (UE, DRUE, 

METE) on stochastic network. The analytical form of the METT is derived, where 

the travel time variability is introduced by day-to-day travel demand fluctuation. It 

reveals the relationships among the three different route choice criteria adopted in 

these three user equilibrium models. The limited numerical results show that the three 
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models are indeed different and highlighted the essential ideas of the METE model. 

5. The development of the SMETE model, where both reliability and unreliability 

aspects of travel time variability, and traveler’s variable perception errors are all 

explicitly incorporated into a unified network equilibrium framework. A moment 

analysis-based approximation approach is proposed, which enables the estimation of 

PMETT without knowing the closed form of the perceived travel time distribution. 

Finally, a route-based algorithm based on the modified alternating direction method is 

developed to solve the proposed model.  

 
Limitations 

 
 
 This research has made several significant contributions, but there are some 

limitations that can be listed as below: 

1. In the adaptive α-reliable path finding model, the link travel time distributions are 

assumed to be independent. However, the link travel times could be correlated in 

practice. For example, in a transportation network, if the level of service of one link is 

affected, it is very likely that the adjacent links are also affected. 

2. In general, the double-relaxation algorithm proposed for solving the α-reliable mean-

excess path finding model is a heuristic approach. Therefore, the solution could be 

sub-optimal. In addition, the computational complexity of the algorithm has not been 

rigorously analyzed. 

3. In this study, the new traffic equilibrium models are proposed under a generic form, 

where the travel time variability was assumed to be exogenously defined by the 

system to facilitate the numerical experiments. In practice, the stochastic travel time 
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variation may be introduced by various sources either exogenously or endogenously. 

4. In the comparitive study, the random travel demands among the OD pairs are 

assumed to be independent. In reality, the OD demands could be correlated. 

5. Though the limited numerical results demonstrate the difference among the proposed 

and the existing traffic equilibrium models, due to the complex situations in the real 

world, no one model is sufficient in capturing all aspects of the travelers’ risk-taking 

behavior in the route choice decision process, and which model is the most realistic is 

an open question.  

6. The models proposed in this dissertation are assumed for a single user class and fixed 

demand. In reality, there could be multiple user classes and the travel demand could 

depend on the congestion level. 

 
Recommendations for Future Research 

 
 

There are some recommendations for future research of the optimal path finding 

and traffic equilibrium problems on stochastic networks: 

1. The adaptive α-reliable path finding problem presented in Chapter 3 could be 

extended by incorporating link correlation to capture dependences on multiple links. 

2. The computation complexity of the double-relaxation algorithm in Chapter 4 could be 

rigorously analyzed to obtain insights for future improvement. In additional, more 

larger networks should be used to study the efficiency of the algorithm.  

3. It is attractive to consider various sources of travel time variability, such as random 

link capacity degradation, weather, incidents and work zone, with the modeling 

scheme proposed in this dissertation.  
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4. The comparison of the different traffic equilibrium models under stochastic travel 

demand in Chapter 6 could be generalized by incorporating OD demand correlation.  

5. The new traffic equilibrium models presented in Chapter 5 and Chapter 7 could be 

further extended to consider multiple user classes, whose risk-taking behaviors are 

different. Furthermore, the travel demand in the traffic equilibrium problems could be 

elastic. That is, the demand will be a non-increasing function of the corresponding 

level-of-service. 

6. From the computational point of view, more efficient algorithms need to be 

developed to find the nonadditive (perceived) mean-excess travel time routes within 

the network equilibrium framework. Furthermore, these algorithms need to be tested 

on larger networks. 

7. Given that there are different equilibrium models under uncertainty, which model is 

the most realistic is an open question. Thus, it is worthwhile to conduct empirical 

studies to examine this open question. 
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