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Location Update versus Paging
Trade-Off in Cellular Networks: An
Approach Based on Vector Quantization

Abhishek Roy, Member, IEEE, Archan Misra, Member, IEEE, and Sajal K. Das, Senior Member, IEEE

Abstract—In this paper, we propose two information-theoretic techniques for efficiently trading off the location update and paging
costs associated with mobility management in wireless cellular networks. Previous approaches always attempt to accurately convey a
mobile’s movement sequence and hence cannot reduce the signaling cost below the entropy bound. Our proposed techniques,
however, exploit the rate distortion theory to arbitrarily reduce the update cost at the expense of an increase in the corresponding
paging overhead. To this end, we describe two location tracking algorithms based on spatial quantization and temporal quantization,
which first quantize the movement sequence into a smaller set of codewords and then report a compressed representation of the
codeword sequence. Although the spatial quantization algorithm clusters individual cells into registration areas, the more powerful
temporal quantization algorithm groups sets of consecutive movement patterns. The quantizers themselves are adaptive and
periodically reconfigure to accommodate changes in the mobile’s movement pattern. Simulation study with synthetic and real
movement traces for both single-system and multisystem cellular networks demonstrate that the proposed algorithms can reduce the
mobile’s update frequency to 3-4 updates/day with reasonable paging cost, low computational complexity, storage overhead, and

codebook updates.

Index Terms—Location management, update, paging, spatial and temporal quantization, information theory.

1 INTRODUCTION

HE goal of this paper is to design a common adaptive

location management technique that enables each
individual mobile node (MN) to tune its mobility-related
signaling load under a unified cellular access infrastructure.
Such individualized adaptation of the signaling load is
becoming increasingly important due to heterogeneity at
various levels such as 1) devices (automobiles, personal
medical monitors, laptops, cell phones, and so on), 2) con-
verged applications like voice-over-IP, instant messaging, on-
demand TV, and so forth, and 3) access technologies like 3G
cellular, 802.11, and WiMax. In particular, we desire an MN
to able to efficiently trade off the overheads associated with
the two fundamental mobility-related operations, namely,

1. location update, whereby the MN proactively reports
its current coordinates to the network, and

2. paging, where the network searches for the MN in a
set of cells to which its location uncertainty can be
confined.
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We use the term “trade-off” since the paging and update
costs are mutually conflicting: A decrease in one results in a
nonlinear increase in the other. In general, the precise
degree of trade-off depends on the application require-
ments and characteristics of individual MNs. For example, a
car may choose a higher update rate to obtain a smaller call
setup latency (via a smaller network paging load). On the
other hand, a wearable device might aim for very low
update costs to conserve its battery.

In this paper, we thus envision a user-specific location
management framework where the update and paging
policies adapt to the movement and calling patterns of
individual devices. Unlike existing per-user update (for
example, distance based [1], dead reckoning [24], and
velocity based [42]) and paging schemes (for example,
profile based [32]), we propose a model-independent
information-theoretic framework that can be tied to funda-
mental mathematical bounds. Although per-user schemes
are known to result in lower signaling overheads than
conventional registration-area-based static schemes, their
practical adoption in large networks has been stymied by
concerns on both computational and storage complexities.
As telecommunications technologies evolve, per-user
schemes are expected to become more attractive, especially
if they can significantly reduce the signaling load across
billions of heterogeneous MNs. In the nearer term, intelli-
gent per-user location tracking may be deployed in small
and medium-sized cellular networks such as smart homes/
offices and campus local area networks (LANSs). This paper
takes a step in this direction, theoretically establishing the
performance benefits of MN-specific trade-off between
paging and location update costs and quantifying the
resultant computational and storage complexities.



1.1 Our Contributions

Based on the information theory, we present two algorithms
that permit a close-to-optimal trade-off between an indivi-
dual MN’s location update and paging costs by adapting
these costs to the MN’s movement pattern. Our approach is
model independent in the sense that it makes no a priori
assumptions on the movement behavior of an MN. We
simply view the update process as one where the MN
communicates its movement history by using techniques
for a universal compression of individual sequences [18] to
reduce the signaling overhead for any arbitrary movement
statistics. In particular, we generalize the LeZi-Update [7]
scheme, where an MN wuses the Lempel-Ziv (LZ78)
algorithm [43] to develop an online codebook for its
observed movement pattern, which is nothing but a
stochastic random sequence, and transmits the encoded
sequence to the network. LZ78 can asymptotically achieve
the lower bound, called entropy (see [12] for details),
associated with the random sequence. As a corollary of
Shannon’s result [38], it is impossible for an MN to
accurately (that is, without introducing errors) transmit its
actual movement sequence with an overhead smaller than
this entropy.

However, for certain mobile sources, even the entropy
bound may not be low enough. For example, an entropy
bound of 20-30 updates/day may be a significant load for a
device such as an Active Badge [22]. To reduce the MN’s
update rate below the entropy bound, we propose that an
MN exploit the rate distortion theory [12] by introducing
distortion in the update process, that is, by transmitting only
a quantized (or lossy) version of its true movement pattern.
We present two related but distinct forms of quantization:

e Spatial. The MN groups contiguous cells into a
spatial cluster and reports its movement pattern (via
intermittent location updates) only at cluster-level
granularity.

e Temporal. The MN adaptively groups the movement
sequences, where each sequence consists of a set of
consecutive cells visited by the MN. It then reports to
the network the movement pattern at the granularity
of these “pattern-groups.”

In both of these schemes, the MN observes its own changing
cellular coordinates, stores this movement history locally,
and intermittently updates the network with a coordinate
sequence (that is, a segment of its recent movement history).
Under spatial quantization, each coordinate represents a
spatial cluster similar to conventional registration areas
(RAs), whereas, under temporal quantization (TQ), each
coordinate represents a group of cell sequences. A novelty
of our work is that the mapping from the raw location or
movement sequences to the update coordinates is itself
dynamically modified in response to changes in the MN’'s
movement behavior. At the network end, the MN's reported
movement sequence is stored efficiently in a user-specific
data structure called a trie. To compute a paging sequence,
the network uses this information to estimate the MN's
residence probabilities in various cells.

The rest of the paper is organized as follows: Section 2
reviews the relevant related work. Section 3 introduces the
mathematical notations and principle of using an adaptive
vector quantization (VQ) for location tracking. Section 4
focuses on the spatial quantization approach, whereby

groups of cells are clustered into RAs for a single cellular
network. Section 5 explains the TQ approach, where
movement sequences over time are clustered into common
codewords. Subsequently, Section 6 presents the modifica-
tions to the spatial and TQ approaches required for a
multisystem cellular network. Section 7 presents the
simulation and experimental results on the effectiveness
of our algorithms in trading off between the paging and
update costs. We study their performance by using both
synthetically generated movement profiles and real-life
traces from an 802.11-based campus LAN [13]. Section 8
concludes the paper with pointers to future research.

2 RELATED WORK

There exists a great deal of prior work on efficient location
update and paging schemes in cellular networks. In general,
the update schemes can be classified as local (where the
update logic is distinct for different MNs) and global (where
all MNs perform updates in an identical fashion). Moreover,
both classes of update schemes can be either static (where
the update strategy does not evolve dynamically with time)
or dynamic. The current personal communication systems
(PCS) networks use a static global scheme where the
network is divided into zones called RAs such that the
location uncertainty of an MN is confined to its current RA.
Blanket paging [34] is then used within the last reported RA
to locate the MN. Clearly, the larger the size of an RA, the
lower the update rate (or cost) and the higher the paging
cost. The reporting-center-based approach [3] is another
static global scheme where an MN proactively updates its
location only when visiting certain designated cells.

For local update strategies, the simplest schemes require
the MN to generate an update after a specific threshold in
time, distance, or movement has elapsed. In the distance-
based approach [1], an MN updates only after moving
sufficiently away from its last updated cell. In the time-
based approach [4], an MN updates its location periodically,
whereas, in the fractional movement-distance scheme [21],
the MN updates only after a fixed number of cell transitions
outside the proximity of its last update. Variations of these
approaches include the dynamic timer-based approach [1],
[33]. (In [33], the time-period between successive updates is
varied based on the average time between an MN’s cell
crossings, whereas, in [1], the location update process
attempts to trade off between the update and paging costs
and thus varies based on the call arrival rate.) A dynamic
programming formulation varying the time between suc-
cessive location updates was proposed in [27] to optimize
the joint expected paging and location update costs.

Profile-based approaches represent an important class of
local dynamic update schemes, where the network uses the
past history of an MN to build its movement profile. In
particular, this approach of using short or long-term
movement histories of an MN to modify both the update
and paging strategies was first proposed in [40]. Subse-
quently, a concrete profile-based scheme was analyzed in
[32], where the MN would update its location only if it
visited a cell not within its current profile. This profile was
constructed from its past movement history and stored
inside the network, which could then compute the
residence probability of the MN in different cells. The



LeZi-Update approach [7], upon which our work in this
paper is based, can be considered as a path-based and model-
independent implementation of the profile-based approach
as it generates location updates only when the MN’s path
since the last update turns out to be unique. Alternative
model-based approaches for location update include the
one where the MN’s velocity is used to adapt its update
rate [25] or the one where the MN’s velocity is grouped
into a set of different classes and updates are generated
whenever the MN movement speed changes from one class
to another [42].

To minimize the paging overhead, several sequential
paging strategies have been proposed in the literature as an
alternative to the current blanket paging approach. They
include such techniques as recently registered cell first [26],
in which the MN is first paged in the cell where it last
generated an update, shortest distance first [23], in which
cells are paged progressively in expanding concentric rings
centered at the cell of last update, and those using residence
probabilities to page more probable cells first [35]. An
important result in [35] shows that, in the absence of delay
bounds, the paging cost within a single network is
minimized by searching cells in the decreasing order of
the MN’s residence probabilities. Alternative approaches to
paging involve the use of an MN'’s location profile [32] or
velocity information [8], [42] to alter the residence prob-
abilities within the paging region. More recent user-specific
paging algorithms include the sectional paging technique
[41] that assumes knowledge of the MN’s movement
direction and the concurrent paging [19] and Bloom-filter-
based [29] techniques, where the last two try to optimize the
simultaneous paging of multiple MNs (assuming a finite
number of paging channels).

A comparative study of the trade-off between paging
and update costs for different types of movement and call
arrival patterns was first performed in [4]. For distance-
based updates, a distance threshold of three cell crossings
was shown to result in an “acceptable balance” between
location update and paging costs. The performance of all
the above schemes has also been analyzed in [5], which
proposed a family of topology-based update strategies where
the MN’s update decision depended only on its recent
movement history. The D-MIP paging approach [9] is a rare
adaptive paging scheme where an MN periodically
computes its optimal paging area. The optimization is,
however, static and aims at minimizing the cumulative
paging and location update overhead. The trade-off
between paging and update costs for a category of
hierarchical location tracking strategies has been studied
in [10] under the assumption of specific Markovian move-
ment and calling patterns. More recent research has focused
on minimizing the sum of the location and paging costs via
optimal partitioning of cells into RAs. In [14], simulated
annealing is used to derive an optimal clustering of cells
into RAs. However, the optimization technique is offline
and aims at minimizing the combined paging and location
update costs. In contrast, our focus is to allow arbitrary
trade-offs between paging and update costs.

The next section presents the proposed VQ-based frame-
work for studying the trade-offs between the paging and
update costs.

TABLE 1
Most Common Mathematical Symbols

Xxn Random infinite sequence representing M /N’s movement

( X™: the sequence in a multi-system network)
" A random infinite sequence representing the

actual values sent to the network
Xn The nt? element of sequence X"
Yn The nt" element of sequence Y™
C Set of cells in a cellular network
S Set of symbols (codewords) that an M N transmits.
N Number of codewords in S (i.e., size of the codebook)
RA; The group of cells mapped to the ith codeword Q;.
corc(i,j) | A cell in the network (with spatial coordinates ¢ and j)
Q(c(%,7)) | The codeword to which cell ¢(z, j) is mapped;
om Codebook (quantizer) after mth iteration of Lloyd’s algo.
o(c) The M N’s residence probability in cell ¢

3 THE PRINCIPLE OF VQ-BASED MOBILITY
MANAGEMENT

To understand our basic approach, let us first focus on the
case of a single (homogeneous) cellular network consisting
of a set C = {a,b,c,...} of cells. By viewing these cells as
symbols, it is easy to see that, as an MN moves across cell
boundaries, its movement can be expressed as a random
(possibly infinite) sequence X" = {X1,X5,..., X, ...} in the
symbolic space, where each element X; is a symbol in the
alphabet C. Here, we assume that each cell in a provider
network has a distinct identifier (in Section 7.8, we will
discuss the resulting storage and computational overheads).
For ease of reference, Table 1 lists the mathematical symbols
most commonly used in this paper. A “bar” will usually
represent the vector version of the corresponding symbol.
For example, RA; represents a set of movement sequences
that are mapped to the ith codeword Q;, and X,, represents
the vector-valued location of the MN (at time n) in a
multisystem (heterogeneous) network.

We make only the very loose assumption that the MN’s
movement is a sample path of an underlying random
process with some (unknown and piecewise stationary)
distribution. A key aspect of our update strategy is that the
MN does not report each cell transition instantaneously;
rather, it reports subsequences of X" after varying intervals.
As a practical example, the sequence {a,b,a,c,b,c,...}
implies that the MN actually moved from cell a to b, back
to a, and so on. The MN may update this sequence in
batches as {(a,b), (a,c,b),c,...}. The stochastic process x,
which is a collection of all possible sequences X", is then
associated with an entropy bound defined by

H(y) = lim H(X,| X1, Xo,. ..

n—oo

>Xn,71)a

where the entropy H(A) of any discrete random variable A,
with probability mass function p()), is defined by
H(A) = =3 \cp 0(A) logy 0(A). As explained earlier, H(x)
is a lower bound on the signaling (in bits) needed on the
average by an MN to convey the evolution of X" to a
receiver (that is, the network controller) and is a measure of
the “uncertainty” in the MN’s movement pattern. The LeZi-
Update [3] algorithm uses the well-known, and widely
used, adaptive LZ78 [43] compression technique to com-
press this cell-level movement sequence, thus achieving
asymptotic closeness to the entropy bound H().



We aim to reduce the MN’s update cost (the number of
bits needed to inform the network of its movement)
arbitrarily below the entropy bound. To reduce this over-
head, the MN must transmit not the real sequence X" for
n — oo but, instead, some other inaccurate or distorted
sequence Y". In practical terms, this means that the MN
will actually not convey its true movement sequence X" =
{a,b,a,c,b,c,...} to the network but will instead update the
network with an alternate movement sequence, say,
Y™ ={a,¢ccc,b,a,...}, called the distorted sequence, since
some loss of accuracy occurs in replacing X" by Y". An
element (or sequence) of Y is also called the codeword for
the corresponding element (or sequence) of X". Typically,
the MN expresses multiple possible sequences with the
same sequence Y". It is this reduction in the number of
distinct patterns or symbols reported by the MN that lowers
the update overhead. To determine the “best” symbol that
should replace an element of X" resulting in Y, we first
define a metric to quantify the cost of replacement. This
metric is typically called the distortion measure and expresses
the “distance” between the original sequence X" and the
reported sequence Y" for any value of n.

Definition 1. For any value of n, the distortion is measured as a
distance between the original sequence X" and the reported
sequence Y" through an appropriate function d,(.) that
satisfies

d,(X"Y") = 0, if X" =Y" .
> 0 otherwise. S

For our location management application, the distance
function d,(.) refers to the sum of the distance between
individual elements (cells) of X" and Y™" (see Section 4.2).

Given any such distortion function d(.) and the statistics
of the stochastic process x, one can compute a distortion rate
function D(R). Intuitively, if the MN is constrained to
transmit no more than R bits per cell transition, then the
distortion between any transmitted sequence Y", n — oo,
and the real movement sequence X" is at least D(R).
Clearly, D(R) is a decreasing function, with D(H(x)) =0
implying that, if the update rate equals the MN’s entropy,
then the network can receive the MN’s accurate movement
history.

The MN can lower its update cost arbitrarily by choosing
a progressively smaller R, thus incurring a larger D. To
generate such a distorted sequence from X", the MN uses
an approach based on VQ [20]. A vector quantizer @ of
dimension k and size N is a mapping from a vector (or
“point”) in k-dimensional space ®* into a finite set S
containing NN points, called codewords. A VQ implementa-
tion consists of an encoder (£) that maps a point in ®* to an
indexed set 7 and a decoder that maps 7 to the set S. We
assume that both the transmitter (MN) and the receiver
(network controller) have the same codebook. An MN first
replaces its actual symbol sequence with the corresponding
codeword and then transmits only the codeword’s index:
The network recovers the codeword by looking up the
index in the same codebook.

Definition 2 [20]. The basic rate (Rg) of a vector quantizer Q) is
given by Ry =logy N, where N =|S| is the size of the
codebook.

Note that VQ is a very appealing and widely used
technique due to the fundamental result [20] that for any
given rate Ry, as the block size k — oo, there exists a vector
quantizer of dimension k and size N =2fef, with a
resulting distortion very close to the ideal distortion rate
bound Dg < D(Rg) + € for any € > 0. For a more practical
approach that reduces the complexity and yet achieves
good performance for small values of k, we combine VQ
with entropy (lossless) coding. Thus, the MN first generates
Y", a sequence of codewords belonging to the set S, and
then transmits the LZ78- compressed representation of this
sequence to the decoder (the network). It is well known [17]
that the cascading of a vector quantizer with a conventional
(lossless) entropy coding algorithm yields a transmission
rate very close to the optimal rate distortion bound.

Our proposed spatial and TQ algorithms differ primarily
in the choice of k. In spatial quantization, ¥ = 1, and each
independent location sample is quantized separately to
generate the corresponding codeword. On the other hand,
in TQ, k > 1, and multiple consecutive location samples are
represented by a common codeword. To allow the
quantizer to dynamically change in response to changes
in the MN’s movement statistics, we shall use an adaptive
version (AVQ) of the well-known Lloyd’s nearest neighbor
quantizer [20]. The Lloyd’s algorithm is a standard iterative
technique for VQ that converges by alternately 1) given a
codebook, computing the partitioning of cells into code-
words based on a nearest neighbor partitioning and 2) given a
partitioning, defining a new set of codewords as the centroid
of the current partitions.

In our schemes, the MN is thus responsible for four
functions: tracking its own movement, storing its entire
movement history efficiently (in compressed form) on its
local disk, adaptively updating its quantizer, and transmit-
ting the LZ-encoded updates to the network. The network
controller receives the encoded updates, as well as mod-
ifications, to the quantizer codebook, and thus reconstructs
and stores the MN’s (quantized) movement history.

4 SPpPATIAL QUANTIZATION APPROACH

Spatial quantization reduces the granularity of each reported
symbol to a coarser value. Mathematically, the spatial
quantization uses a VQ of dimension k£ = 1 such that each
symbol is independently mapped to its nearest codeword.
Each codeword can be viewed as a representation for a
cluster of “adjacent” cells, similar to an RA. However, the
number and set of cells that constitute an RA are adaptive,
and the MN does not transmit an update at every RA
crossing. As a practical illustration of this approach, assume
that the set C of cells is partitioned into N disjoint sets,
where each set is the logical equivalent of an RA. Let &
represent the quantized set {RA;, RAs,...,RAy}, where
the quantization process () essentially maps each symbol in
C to a unique symbol in S. Let Q(z) : « — S denote the
mapping from a cell x to its corresponding RA and let
cell(RA;) denote the set of cells comprising the RA RA;.

4.1 Location Update

We present two slightly different versions of the spatial-
quantization-based update algorithm (nonadaptive ver-
sions of such algorithms were presented in [37]). Fig. 1
illustrates a possible spatial quantization strategy, where A,



Cell borders within RAs
RA —borders

Fig. 1. Symbolic abstraction of cellular networks.

J, and M are RAs consisting of cells {a,h}, {j,1}, and {0},
respectively.

In the first approach, called LeZi-RA, if the MN’s cell-
level movement sequence is denoted by

"ajlojhajlojajlojajo. ..,
then the MN generates the quantized RA-level sequence
Y'="A,J,J,M,J,A,A,J,J,J,M,J, A J,J,MJAJM,..."

The online incremental Lempel-Ziv parsing results in
YA, IM,JA AT T, JMJ,AJJ, MJA,...” Eventually,
the MN transmits the resulting sequence Y as an optimally
coded sequence “C(w;)C(w2)C(ws)...,” where w;s are
nonoverlapping distinct segments of RA sequences and
C(w) is the encoding for segment w. At the network
(receiver) side, this compressed sequence is decoded to
recover the sequence Y". The network uses Y to infer the
MN’s movement and determine the paging sequence.

The second approach, called RA-LeZi, is motivated by the
observation that an MN would typically move across
several consecutive cells belonging to the same cluster.
Thus, it removes identical consecutive symbols in the
quantized sequence, generating new values for Y" only
when the MN changes its current RA. Thus, the lossy
quantization now results in the sequence

"A I M I A T M AT M A T MY

A subsequent application of the incremental parsing results
in the phrase sequence

"A,J M, JA JM, JAJ, MJ, AT, M ..

As in the LeZi-RA scheme, the LZ78 entropy coding scheme
is then used to generate and transmit the codewords to the
receiver side. Although the removal of consecutive iden-
tical (quantized) symbols reduces the update sequence, a
subsequent LZ78 compression further reduces the number
of bits transmitted by the MN.

Both of the above algorithms have been described under
the assumption that the quantizer has already been defined;
that is, the mapping of cells to the constituent RAs is
already available at both the MN and the decoder. We now
explain how this quantizer is formed and updated.

4.2 Efficient Quantizer Design

We first define a distortion function by assuming that the
cells of the network are organized in any arbitrary layout,
except that they are now identified by two coordinates (4, j),

where i and j refer to the coordinate values along the x and
y axes. It is important to note that our coordinate system is
virtual and does not assume or use any geometric location
information available in the base stations. We also do not
assume the cells to be regular or have the same size, and we merely
define a logical coordinate space that helps us cluster adjacent
cells in the same RA. As we would like the RAs to be
compact, we shall arbitrarily define the distance (in this
logical coordinate system) between cells (i1, 1) and (i2, j2)
to be the euclidean distance. When a ¢(4, j) is substituted by
its quantized measure Q(c(¢,j)), the resulting distortion
Dy (.) is then

Dw(cv Qc) =

(i) = Qeli)’] x ole),

where p(c) is the MN’s residence probability in cell ¢(3, j).

Both variants of our spatial quantization algorithm start
with an initial codebook containing the set of RAs
constructed by assuming a uniformly distributed residence
probability in each cell. As the MN’s movement history
becomes gradually available, the composition of RAs is
gradually modified to reflect the true movement statistics. To
make the time (7) between two successive codebook
modifications a function of the MN’s mobility pattern, the
codebook is modified only when a new LZ78-coded update
is actually generated by the MN. In other words, whenever
the MN quantized location changes from RA" to RA""!
(thus generating the Y, th element of Y™), it checks if the
sequence Yji,...,Y,+; (where Y} resulted in the previous
update) has not been encountered before. If so, the MN
must perform an update to the system, as well as
recompute the quantizer codebook. Initially, when update
sequences are small (that is, the user’s profile is building
up), the codebook gets frequently updated. After the
codebook is adequately cognizant of the user’s mobility
profile, updates and codebook modifications occur with
decreasing frequency.

The quantizer codebook is computed using the Lloyd’s
nearest neighbor algorithm [20], with the iterative process
terminating when the percentage change in the cumulative
distortion falls below a threshold e. The algorithm essen-
tially clusters points in a 2D space, obtaining as the
codeword the centroid of the corresponding Voronoi region
(see [20] for details). Formally, the codebook is represented
by the set of codewords {Q,}, i =1,..., N, with all cells in
the region such that RA, maps to the codeword @,
satisfying the following conditions:

RAk = {C : Dw(C, Qk) < Z)LU(C7 Q[); Vi 75 k}, (3)

where

ZceRAk C(Za]) X Q(C)
Z(:eRAk o(c) .

Intuitively, (3) indicates that the ith codeword Q;(.) is the
centroid of RAy,; that is, the (x,y)-coordinates of the codeword is
a weighted mean of the (x,y)-coordinates of the constituent cells.

Whenever there is a change in the encoder, the MN
communicates the new codebook to the network, transmit-
ting only the changes to the Voronoi regions for efficiency.

Qk(%]) =




1. m=1, DY(QM™) =0, dictionary:= NULL, @, := NULL;
2. Construct an initial codebook Qp, = {RA™};
3. loop
4. Wait for symbol (cell) z,;
5. Quantize z, to get Y, = Q,(z.);
6. if (w.Y, in dictionary)
7. W= w.Y,;
8. else
9. for (each cell ¢) do
10. Estimate Qmt1 using centroid condition
c(r)pe
Qu) = e
R, Pe
11. Find optimal partition using condition
RAp ={c: Dw(CJyVQk) < Du(e, Qi); V1 # k}
12. DEHQ) = 0, Y e L(eli) — Q)2
+ (e()) = Qi (1)) }pe
13. if (—Dw %}&gw @) > e)
14. Set m:=m-+1 and go to 5;
15. end-for;
16. Compute differential codebook-updates
¥"+1,A?H4) using the two relations:
6+l = RATHL _ RAm, ATHL = RA™ — RATTY,
17. Transmit differential update to the decoder;
18. Encode index < w >,Y,;
19. add w.Y, to dictionary;
20. w := NULL;
21. end-if;
22. forever;

Fig. 2. Encoder of spatial quantization.

Formally, let RA! represent a codeword region (RA) at
time ¢ and let RA""! represent the same region at time ¢ + 1,
where t denotes the instant when the codebook is modified.
Then, the MN transmits the differential information (55“,
A1) of RA,, where §, denotes the cells that newly map to
the ith codeword, and A, denotes the previous cells that no
longer map to this codeword:

S = RA™' — RA'={c:c€ RA™ and c¢ RA'}

RA! = RA["' = {c: c € RAl and c¢ RAI"'}.
(4)

Upon reception of (6!, Al*1), the decoder can reconstruct
its own RA information RA!*!. As an example, consider the
layout of Fig. 1. Now, assume that the Lloyd algorithm
results in the new partitions given by A = {a,h}, J = {j},
and M = {l,0}. The encoder can then compute &4/ = {I}
(since earlier, M = {o}) and A4 ={l} (since earlier,
J=1{j,1}) and transmit it to the decoder. The decoder
refreshes the codebook to get Q4! = {o} U{l} — 0 = {l,0}
(and Q"' = {0}). Fig. 2 describes the LeZi-RA encoder (the
RA-LeZi algorithm has an intermediate step, between
steps 5 and 6, to remove the self-transitions). Fig. 3 describes
the corresponding decoder logic.

t+1
Az

4.3 The Paging Process

The system stores the received sequence in a trie and then
uses the observed movement pattern to construct the cell-
level residence probabilities. Fig. 4 shows a sample repre-
sentation of the different phrases (v) and their frequencies
in the trie, where the frequencies are updated for every
prefix of every suffix of ¢ [7]. Using the Prediction by Partial
Match (PPM) blending algorithm [11], the network first

1. Initialize dictionary:= NULL
2. Construct an initial codebook

Qm ={RA™ :1=1,...,N};
3. loop
4. Receive differential codebook information
(5;77-{-1 ’ A?H_l) i

5. Update the codebook using:

RAM™TL = pAm ygmtl _ Amtl,
6. Decode the entropy-coded phrase;
7. add phrase to dictionary;
8. Increment frequency for every prefix

of every suffix of phrase;
8. forever

Fig. 3. Corresponding decoder at the system.

computes the unconditional probabilities for each of the
symbols in the trie. Each element of the trie represents a
cluster of cells in the spatial quantization. Thus, to compute
the unconditional cell residence probabilities, the computed
probability of each trie element (or RA) is then distributed
equally among the constituent cells. For example, the
unconditional probability o(RA,) is distributed among these
cellsas p(x) = ﬂgﬁ") Vz € cell(RA,). The MN is then paged in
the decreasing order of cell residence probabilities. The
complete algorithm is described in Fig. 5.

4.4 Dynamically Adjusting the Update Rate (R)

In the description above, the number (V) of codewords was
assumed to be a known constant. Although the nominal
update rate (per generated symbol) of an N codeword
quantizer is log, N, the actual update rate (in terms of bits
per unit time) depends on the actual movement pattern of
the MN, which directly affects the symbol generation rate.
Now, an MN may actually wish to control its average
update rate. Since the movement frequency of the MN
cannot be predicted a priori, the average update rate may
be controlled by dynamically (over medium time scales)
altering the value of N and recomputing the codebook.
Accordingly, N, which is the size of the codebook or the
number of distinct clusters, is a slowly varying parameter
that an MN adaptively varies to control its update rate. Let
pr be the target (desired) update rate and let py,, be the
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Fig. 4. Trie with spatial quantization in a single-system network.




Initialize ¢:=0, Pr[t)]:=0, h:= highest order
Initialize escape probability Prf>:: 1
While (i < h)

Search for v at order h—i

if (¢ found)

Compute (h —i)th order probability (Prp_;[¢])
else
Prp_;[¢] =0

end-if

0. Compute the escape probability
F%g?y at order (h—1)
11. Estimate the combined probability as
Priy] := Priy] + 2] Pri® x Pr_[y]
12. ii=i+1
13. end-while
14. Compute the probability of individual RAs
based on their relative weights in the phrase
15. Probe RAs in decreasing order of
normalized residence probabilities

16. Within each RA, page its cells in any random order
(as their residence probabilities are identical)

WO ooJ0 U wh &

Fig. 5. Paging with spatial quantization in a single-system network.

observed (current) update rate for a codebook of size Ny
Since the rates are proportional to log, N, we update the
new size of the codebook according to

Nipew = L(Ncurr)ﬂ,/L (5)

where v = p\”T is the ratio of the desired to the current
rates. By combining VQ with an adaptive choice of the size
of the codebook, we essentially allow the MN to determine the
near-optimal strategy of the location update that adheres to its
desired update rate.

5 TQ APPROACH

One of the drawbacks of the spatial quantization approach
is that it does not exploit the correlation within movement
sequences. If the codewords can represent certain temporal
sequences rather than simply spatial clusters, then it will
almost certainly outperform the spatial quantizer [12]. This
correlation can be easily captured by VQ. In this case, a
contiguous block of data (cell locations) from the infinite
sequence X" is captured (in an online fashion) and
quantized into a designated set of N codewords. Of course,
the paging algorithm (Fig. 5) must now be modified to
reflect the fact that each received codeword represents one of
the several movement sequences that map to the codeword.

5.1 Location Update Strategy

As before, the mobility of the user in the cellular network is
represented by the sequence of cells X" = {X;, Xs,...}.
Now, instead of quantizing each individual sample, we
group k consecutive samples into a single block and then
quantize the entire block. In other words, we consider
nonoverlapping k-length subsequences of X,,, which can be
represented by X(k) = {2y, Zmi1,. .., Tmik}. Bach of these
k-length subsequences forms an input vector of dimension k.
Every such vector X (k) is quantized (approximated) to a code
vector @ with the objective of achieving minimum distortion.
We thus form Voronoi regions in k-dimensional space, where
each Voronoi region (V;), with its component input vectors,

is represented by a code vector. Each codeword Q; for i €
{1,...,N} thus represents a set of k-clement vectors X.
Returning to our original example from Section 4.1, if the
user’s movement is given by “ajlojhajlojajlojajo...,” then
for k=2, the symbols are grouped into blocks (vectors)
)gl = {a7j}l Xp = {l70}/ Xd = {ja h}/ Xy = {]7 CL}, X5 = {j7l}/
X6 =o0,7}, .... The new vector sequence now becomes
XleX:5X1X2X4X5X6X1 e NOW, let the Voronoi regions
RA; and RA, consist of the set of vectors {X;, X5, X,} and
{X3, X5, X5} and be represented by the code vectors Q; and
@9, respectively. Thus, the corresponding update sequence
Y™ now becomes Q1Q1Q2Q1Q1Q1Q2Q2Q1.

For a distortion measure, we utilize the weighted
euclidean distance, where the distance between any
vector X; and its quantized estimate Q; is the sum of the
distance between the components of X; and Q;. The weight
is the user’s normalized residence probability in the particular
k-dimensional vector (subsequence), that is, the probability of
the MNs exhibiting the particular movement sequence. The
quantization process itself uses the multidimensional
version of Lloyd’s algorithm to partition the underlying
vectors among the set of computed codewords and transmit
the codebook updates whenever necessary. Equations (2)
and (3) are thus modified to account for the vectors X, its
probability py, code vectors Q, and the corresponding
regions V in the k-dimensional space as follows:

Dy (X, QL) = ||IXi- QHQ x 0(X;),
R;4k = {X . D11:(X7 Qk) S Dw(Xa Q_Z)aVZ 7é k}a (6)
Or = ZXGRA X x Q(X)

> xera, 0(X)

Fig. 6 provides a pseudocode for the encoder of the TQ-
based location update scheme (AVQ followed by entropy
coding). As in Section 4.4, the MN can adjust its location
update rate by appropriately changing N, the number of
distinct codewords permitted. The corresponding decoding
operation at the network side is almost the same as in Fig. 3,
with the only change that each individual symbol now
represents a vector of dimension k. In general, the TQ-based
update strategy outperforms the scalar (spatial) quantiza-
tion approach, as shown in a recent result [31].

Result 1. For any simple distortion measure within [0, 00), in the
worst case, the cascading of the VQ (TQ) with dimension
k > 2 and entropy coding results in a transmission rate very
close to the rate distortion bound and arbitrarily lower than
that achieved by a similar scalar quantizer (k = 1) such as the
spatial quantizer described in Section 4.1.

5.2 Paging Scheme

The paging process associated with the TQ scheme starts
with a similar traversal on the probability trie to obtain the
unconditional residence probabilities o(Y) of the individual
code vectors Y. Since the trie also contains the probabilities
of different input vectors X associated with every code
vector Y, we now distribute o(Y) among the vectors X
belonging to the same region 2 in such a way that every
vector X, receives a fraction of p(Y;) inversely proportional
to its distance d(X;,Y;) from the code vector (Y;) of that
region. The residence probability of each individual cell

(symbol) z; is computed by distributing the probability



1. set m=1, DY(RA") =0, dictionary:=NULL, w; :=NULL;
2. Construct an initial codebook QO = {RA]'};
3. loop
4. Get a sequence of cells {Xi,X»,...,Xn, n — 00};
5. Group k-cells to get a block X = {X1,Xa,...,Xz};
6. Quantize X to get Yi;
7. if (0.Y; in dictionary)
8. W= w.Y;;
9. else
10 for (each code-vector) do
11. Estimate the new codebook Q™t! using:
= ZR’A. Xo(X
QM v —<—4t——;
‘ ZR’A,- e(X)
12. Find optimail partition using condition:
RAp = {X : Du(X, Q") < Du(X,Q7"); VL # k}
13. DX, Q) = IIXs — Yill? x o(X4),
AL
: w i w (Qi
14. if < DGy > €
Set m:=m+1 and go to Step 7;
15. end-if;
16. End-for;
17. Compute the differential updates (SZ"JA,A;”JA)
in codebook using two relations:
§mHl = RAPT — RATY, AT = RAT — RATTY;
18. Transmit differential update to decoder;
19. Encode index< w >, Yi;
20. Add @.Y; to dictionary;
21. w := NULL;
22. end-if;
23. forever;

Fig. 6. Encoder of TQ-based location update.

mass of the vectors among its component cells and
normalizing it with the number of occurrences of cells in
the entire temporal domain. Formally, we can say that

] V) - .
d(gjéj,)yi)’ VX € Vis o) =Y ofX)).  (7)

vX;

As in the case of the spatial quantization in a single cellular
network, the network now issues paging requests in the
decreasing order of g,, with ties broken randomly.

6 ADAPTIVE LOCATION MANAGEMENT IN A
MuLTISYSTEM NETWORK

The single-system network analyzed in the last two
sections is a generic representation of a variety of cellular
networks, including the second-generation (2G) and third-
generation (3G) wide-area cellular networks, as well as
extended campus-wide Wireless LANs (WLANSs), where
each MN has only one active radio interface. However, our
model of quantization-based trade-off can also be extended
to a multisystem heterogeneous integrated network archi-
tecture (as shown in Fig. 7) introduced in [28]. Such a
network captures the emerging vision of the so-called
fourth-generation (4G) wireless environments, where an
MN may possess multiple physical or software-defined
radio interfaces and seamlessly switch between or concur-
rently use loosely coupled multiple cellular access systems,
typically owned by multiple service providers, with
varying coverage areas (indoor/outdoor), transmission
ranges, and bandwidth. For example, an MN could be
using a wide-area cellular interface to transmit voice and a
separate WLAN infrastructure to transmit data for a single

Horizontal Roaming

Campus Area Network (WILAN / Bluetooth)

Fig. 7. A typical multisystem heterogeneous cellular network.

collaboration application. Location management in such a
loosely coupled multisystem network gives rise to the
following additional challenges:

e From a location update perspective, an MN’s move-
ment may now result in cell changes in more than
one subnetworks. Moreover, as infrastructures such
as WLAN hotspots provide only discontinuous
coverage, an MN may often be outside the coverage
area of some subnetworks.

e For paging, the subnetworks must accommodate the
possibility of an MN actively communicating on one
interface (with one subnetwork) but being in passive
mode on other interfaces. In particular, the paging
process should exploit the possibility of “indirect
paging,” where the overhead of multiple paging
messages in a subnetwork can be avoided by
requesting the MN to register through some other
subnetwork where the MN is currently active [28].

Mathematically, we can model such a network as consist-
ing of  independent subnetworks { SU, SUs, - - -, SU, }. Each
subnetwork SU; consists of a set of |SU;| cells such that C/
represents its jth cell. To allow for the subnetwork with
discontinuous coverage areas, let each subnetwork have a
separate virtual cell ¢ representing the disconnected state.
Also, let PG; denote the paging cost/message and LU; denote
the update cost/message in SU;.

At any instant, the MN’s location may be represented by
a vector-valued random variable X of dimension 7, where
the ith element in the vector represents the current cell in
the subnetwork SU;. As an example, if n=3, then the
vector = [C?,C3,Cy] implies that the MN is currently in
a location formed by the intersection of the cells C}
(belonging to SU;), C3 (belonging to SUs), and Cj (the
entire set of dead zones, that is, physical areas with no
connectivity, in SUsz). The movement of the MN can then be
viewed as a stochastic vector-valued random sequence
x ={X",n — oo}. The MN must keep the network in-
formed of the evolution of the random vector sequence x,
where each vector is of dimension 7.

6.1 Spatial Quantization

For spatial quantization, we split the entire set of location
tuples X into N disjoint sets. Thus, each set or RA consists of
one or more 7-element vectors. Partitioning the entire vector



space into N disjoint sets essentially forms N quantized
regions {91,79,...,9n} such that the quantization process
maps every vector X to its nearest possible region ;. Every
quantized region ¥ is now represented by the correspond-
ing codeword U. Formally, the mapping is given by
U=Q(V):V — 49, In other words, the user’s location
information is now transmitted in a quantized form.

The update algorithm is then a logical modification of
the single-system update algorithm presented in Sec-
tion 4.1, with Lloyd’s iterative codebook construction
algorithm now applied to points in the 7-dimensional
space. At the decoder (network) end, the trie-traversal
approach outlined earlier in Fig. 5 is used to first construct
the probabilities for various symbols in the trie. Each
symbol now represents a particular combination of
location tuples. Thus, the trie traversal provides uncondi-
tional residence probabilities o(U) of the code vector U
representing a particular region ¢ (that is, a group of
n-element cell tuples). This probability is now equally
distributed among all the 7-dimensional vectors X consti-
tuting that region. Next, to estimate unconditional prob-
abilities for each cell within its own subnetwork, we treat
each element of a vector-valued symbol X as having the
corresponding probability mass and then normalize these
values over all the elements (cells) in the system (an
approach detailed in [28]). Formally,

o(X) = é’E)U(:) VX € Ui, (8)
qu(i) = Z o(Xk), (9)
k: L,’S'(r)EXk

where $(X) represents the type [12] or number of elements
of X. Although (8) computes the probabilities of individual
cell tuples, (9) subsequently computes the probability of a
particular cell by adding the probabilities for all the tuples
that it is a member of.

Given the unconditional residence probabilities for each
cell, the network then computes the paging sequence (by
using the heuristic defined in [36]) in the decreasing order
of the conditional residence probabilities, that is, iteratively
selecting the cell that has the highest residence probability,
conditional on the MN being simultaneously absent in all
previous cells of the paging sequence.

6.2 TQ

Recall that the user’s mobility in a multisystem cellular
network is an n-valued vector sequence. The TQ of this
vector sequence involves the grouping of %k contiguous
vector samples X into a block I' and then the partltlonm%
of the resulting 7 X k-dimensional space of (U~ |Si|)

possible k-element vectors into a set of N distinct reglons
At a fundamental level, the quantization approach is very
similar to the TQ of a single-system network, except that
each element X of each vector is itself vector valued. Thus,
the MN uses a similar approach to obtain the code vectors
(by minimizing the weighted distortion measure), performs
LZ78 compression, and transmits the compressed and
coded sequence to the network. The paging process also
uses similar trie-traversal schemes to compute uncondi-
tional probabilities of k-length code vectors. This prob-
ability of a code vector is now distributed among the

vectors of its region in proportion to its normalized
probability mass. The greedy paging process and the
residence probability estimation of individual cells in each
subnetwork are computed using (8), as in the last section.

7 PERFORMANCE STUDY

Our spatial quantization and TQ algorithms are designed to
illustrate the fundamental trade-offs in any abstract cellular
environment. Our focus is not to develop specific protocols
for a specific technology like 3G systems or the universal
mobile telecommunication system (UMTS) but, rather, to
illustrate the benefits accruing from a per-user trade-off of
location versus paging costs. We use both simulated
movement models and real-life data [13] to quantify the
performance benefits of our proposed algorithms vis-a-vis
the existing location management scheme in PCS networks
and the previously proposed nonadaptive LeZi-Update
algorithm [7]. In particular, we study the potential reduc-
tion in the update cost versus the corresponding increase in
the paging cost, as well as the storage and computational
overhead on the MN. To study the performance of our
algorithms, we implemented a discrete-event simulator,
which takes as input a network topology and movement/
calling trace and computes the resulting update and paging
loads. The Lloyd quantizer is assumed to converge when
the fractional change in distortion is less than € = 0.05.

7.1 Simulation Parameters

For simulations with synthetic data, we generated a trace of
a single user’s movement and calling patterns according to
an underlying statistical distribution:

1. The single-system topology is a grid consisting of
500 cells, representing a large campus network or a
city-wide wireless mesh environment, with the
degree of connectivity (number of neighboring cells)
varying between 2 and 3 for the corner cells,
between 3 and 5 for “edge” cells, and between 4
and 8 for “inner” cells.

2. The multisystem cellular network consists of three
distinct subnetwork types: satellite (largest cell size),
wide-area cellular (intermediate cell size), and
WLAN (multiple disconnected hot spots). The
relative update costs for WLANs and satellite net-
works are respectively set to three and 10 times that
of the PCS network. Similarly, the relative paging
costs of PCS and satellite networks are set to four
and nine times that of the WLANS.

3. An MN is assumed to have randomly chosen
“home” and “work” places. Although the home cell
stays the same, each user’s work cell changes once
every T € {14,28,42} days. The MN movement
pattern differs between weekdays and holidays/
weekends. The residency time in a cell is normally
distributed (negative values are ignored).

4. The call arrival process is Markov-modulated with
three distinct states, each with its own Poisson
arrival rate ¢ and normally distributed holding
times, with mean p and variance o. The states
represent weekday day-times (¢ =0.2 calls/hour,
¢ =10 minutes, and o =3 minutes), weekday
evenings (¢ = 0.3 calls/hour, =20 minutes, and
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Fig. 9. Paging in single-system cellular PCS networks.

o =5 minutes), and weekends ({ = 0.5 calls/hour,
1 = 30 minutes, and ¢ = 7 minutes). The simulation
results are computed over a continuous period of
12 weeks.

7.2 Performance in Single-System Cellular Network
We first investigate the update and paging overheads in a
single-system cellular PCS network with a codebook size of
N = 5. Fig. 8 shows that the proposed spatial-quantization-
based and TQ-based update schemes result in a signifi-
cantly lower update cost, compared to the existing RA-
based update strategy or the LeZi-Update scheme. More
precisely, the update costs of our spatial and temporal
schemes are only ~ 8 percent and ~ 6 percent, respectively,
of the existing RA-based strategy and ~ 50 percent and
~ 39 percent, respectively, of the existing LeZi-Update
scheme. Furthermore, the TQ scheme outperforms the
spatial scheme by capturing the movement patterns (or
temporal correlations) in blocks of samples. Note that the
“update” cost also includes the overhead due to the
transmission of any changes to the codebook. With these
simple-to-implement approaches, the MN generates only five
to six updates a day, in contrast to static non-user-specific
RA-based schemes, where the update rate is ~ 30/day.
The savings in the update cost comes at the expense of a
higher network paging cost. Fig. 9 demonstrates that the
paging costs incurred by the spatial quantization and TQ
schemes are bounded by ~ 1.8 times and ~ 2.1 times that
of the profile-based paging cost incurred in LeZi-Update.

— - Update Cost in Spatial Quantization
—&— Update Cost in Temporal Quantization
—©— Paging Cost in Spatial Quantization
60 —— Paging Cost in Temporal Quantization b

Upate and Paging Costs
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Fig. 10. Variation in update paging costs with codewords.
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Fig. 11. Variation in update and paging costs over the 24-hour day.

However, the two proposed schemes still result in only
~ 17 percent and ~ 20 percent, respectively, of the existing
blanket paging cost associated with the RA-based updates
in current PCS systems.

The principal motivation of this work is to make the
location tracking scheme adaptive such that each MN
can independently adjust its location update cost based on
its individual preferences. In our quantization-based
approaches, the size of the codebook (N) and the block size k
(for TQ) are tuning knobs that each individual MN can use to
trade off between its update cost and the network’s paging
overhead. Fig. 10 shows that, for a fixed block size of k=5
with a decrease in the codebook size (IN), the update cost
associated with the spatial quantization or TQ decreases
nonlinearly, obviously at the expense of an increase in the
paging cost.

To further understand the behavior of our update
strategy, we plotted in Fig. 11 the variation in the update
rate over the course of a day. As we can see, the update rate
shows a spike during the hours of 7 and 9 a.m. (morning
rush hour) and 3 and 5 p.m. (evening rush hour). On the
other hand, the paging load is uniformly high between
8 a.m. and 6 p.m. when the user receives the largest fraction
of calls. This graph also shows that the relative performance
of the RA-LeZi, LeZi-RA, and TQ schemes remains un-
changed over the diurnal variations in the mobile user’s
behavior.

7.2.1 Performance Sensitivity

We have also investigated the sensitivity of our VQ-based
approach (in terms of both the location update and paging
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overhead) to changes in the call-mobility ratio. To illustrate
this, we simulated the behavior of the LeZi-RA, RA-Lezi,
and TQ algorithms for three different operating points:
1) low mobility, low call rate (L-M, L-C), 2) high mobility,
low call rate (H-M, L-C), and 3) high mobility, high call rate
(H-M, H-C). In the H-M scenarios, the average cell
residency is half of the L-M scenario. Similarly, the call
rate ( for the H-C scenario is twice that of the L-C case.
The (L-C, L-M) scenario uses the parameters outlined in
Section 7.1. Fig. 12 shows the average number of updates/
day (over the duration of the simulation) for the (L-M, L-C)
and (H-M, L-C) cases (only the L-C case is plotted, as the
location update frequency is essentially insensitive to the
call arrival rate). Clearly, whereas the number of updates/
day is expectedly higher for the H-M scenario, our
quantization algorithms quickly adapt to the movement
pattern and reduce the update load to less than five
updates/day across all mobility rates. Similarly, in Fig. 13,
only the H-M case is plotted, as the paging overhead is
largely independent of the rate of movement (depends only
on the movement statistic). We observe the progressive
reduction in the paging cost as the system learns the true
paths followed by the MN. In line with previous results, the
TQ approach results in the smallest update overhead but
highest paging overhead. Our results also demonstrate that,
unlike fixed-threshold schemes, the signaling overhead in
quantization-based approaches varies across users, depending on
their individual call and mobility rates.
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Fig. 14. Update cost in multisystem cellular networks.
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Fig. 15. Paging cost in multisystem cellular networks (simulated).

7.3 Performance on Multisystem Cellular Networks
In a multisystem heterogeneous cellular network, different
individual subnetworks have differential signaling costs for
update and paging. Hence, to get a fairer performance
comparison, the update and paging costs are computed by
weighing the actual number of update and paging
messages in a particular subnetwork S; with its correspond-
ing costs LU; and PG,. Fig. 14 demonstrates that our
proposed spatial-quantization-based and TQ-based update
strategies have update overheads of only ~ 25 percent and
~ 23 percent of the existing movement-based update
scheme and ~ 88 percent and ~ 79 percent of the lossless
compression strategy (that is, the multisystem LeZi-Update
[28]). These results demonstrate how lossy compression
techniques can reduce the update cost by an order of
magnitude compared to the RA-based strategy, even in a
heterogeneous cellular environment.

The corresponding effect on the total paging cost is shown
in Fig. 15. The proposed spatial and TQ strategies result in a
paging cost of only ~ 1.52 times and ~ 1.75 times more than
that of the paging cost provided by the near-optimal profile-
based greedy paging scheme. It should be noted that, even
with this increased uncertainty, these two schemes also
result in only ~ 17.8 percent and ~ 20.4 percent, respec-
tively, of the existing paging cost associated with movement-
based updates in multisystem cellular networks. This
reduction is due to the ability to customize the location
profile for each MN based on the observations of its true
movement pattern.
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7.4 Performance with Real Movement Traces

We have also studied the performance of our algorithms on
the real-life movement traces obtained from the Dartmouth
Campus environment [13]. Note that these traces are only
from a single-system extended 802.11 deployment (not a
wide-area cellular network). Earlier studies such as [39] on
WLAN traces have concluded that the MN’s movement can
be adequately described by relatively low-order Markov
chains. Fig. 16 demonstrates that the spatial-quantization-
based and TQ-based techniques result in only ~{ and ~ 1
of the update cost incurred in existing movement-based
updates and ~ £ and ~ 2 of the update traffic generated by
the LeZi-Update scheme. Thus, the strategies can achieve a
significantly lower update cost even in real movement
traces. Obviously, as Fig. 17 shows, whereas the resultant
paging costs are higher (almost two and three times that of
the optimal paging strategy), they are still only 40 percent of
the existing cluster paging scheme.

7.5 Storage Overhead

Two other important performance metrics that we study
for our adaptive algorithms are the storage and computa-
tional overhead. Let us first study the storage overhead of
the adaptive location management strategies which re-
quire an MN to maintain dictionaries for its observed
movement pattern. Intuitively, the storage overhead
depends on the codebook size and is different for the
proposed spatial quantization and TQ schemes. Fig. 18
compares the evolution of the maximum size of the
codebook at the MN’s encoder for our quantization
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Fig. 18. Storage overhead in location tracking.

TABLE 2
Average Number of Mathematical Operations per Day

System Cellular | Spatial | Temporal
LeZi Quant Quant
Single-System Cellular | 21783 22357 | 23783
Real IEEE 802.11 20359 21453 22343
Multi-System Cellular 40475 42389 44321

strategies over both the single-system and multisystem
wireless networks with varying numbers of codewords.
This figure reveals that, for single-system wireless net-
works, the spatial quantization and TQ schemes result in a
storage requirement of 1-3 Kbytes and 1.5-4 Kbytes for a
codebook size of 1-6 codewords. The storage requirement
for multisystem wireless networks is in the range of 4-
9 Kbytes and 5-11 Kbytes for the spatial quantization and
TQ schemes, respectively.

7.6 Computational Complexity and MN’s
Energy Cost

For practical use, the savings in communication costs on the
MN should not be entirely negated by its additional
algorithmic computational overhead. Clearly, the quantiza-
tion-based approaches increase the complexity of the MN,
which must 1) intermittently run the Lloyd quantization
algorithm and 2) store a more elaborate dictionary. To
study this issue, we computed the average number of
numerical operations performed daily by the MN for the
LeZi-Update and the spatial quantization and VQ algo-
rithms. Table 2 shows the results. Note that the spatial
quantization and TQ schemes respectively require only
~ 5 percent and ~ 10 percent more mathematical opera-
tions in all cases as compared with the existing LeZi-
Update algorithm that does not support quantization.

More important than the raw computational overhead
(on the MN) is the combined computation and communica-
tion costs. Recent studies (for example, [6]) have shown
how overly complicated algorithms on an MN can negate
the savings in the communication overhead by the added
penalty in the computational and memory overheads.
Although an exact enumeration of overheads is device-
specific, we can obtain a rough enumeration of the cost for
our algorithms by utilizing the microbenchmarks in [6]
(obtained using an 802.11b wireless card attached to a PDA
using a 22-MHz Strong ARM processor). The experiments in
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[6] revealed a computational cost of ~ 0.86nJ/operation and
a transmission cost of ~ 1uJ/bit. By combining these costs
with the update (Figs. 8 and 16) and computational traffic
(Table 2), we plot the approximate MN'’s total energy
consumption/day in Fig. 19 (for both the simulated data
and the Dartmouth traces). Here, we pessimistically assume
that the current RA-based update strategy incurs zero
computation cost. As the figure shows, the increase in the
computational complexity for our quantization algorithms
is more than compensated for by the reduced location
update overhead, resulting in almost L of the overall energy
consumption compared with the current RA-based location
update mechanism.

7.7 Codebook Update

We now study how frequently the codebook needs to be
updated. Clearly, a large number of codebook updates
would reduce the efficiency of the entire strategy by
adding extra overhead. However, as the system becomes
cognizant of the user mobility profiles, the update intervals
would get longer. Intuitively, in the steady state, the
codebook (with sufficiently long memory) associated with
a stationary process will remain fixed, resulting in a rate
asymptotically — 0. Fig. 20 reveals that the number of
codebook updates for both quantization schemes (for a
single-system cellular network) is initially ~ 7/day but
tends to 0 after a period of 30 days. For an integrated
multisystem network, the number of codebook updates is
initially ~ 14. However, as the system learns the MN'’s
movement pattern, this number reduces and saturates to
very low values of ~ 2.

7.8 Practical Networks and Overhead Implications
Although our quantization algorithms reduce the update
overhead via the per-user adaptation of RAs/codewords,
they impose additional storage and computational over-
head on both the MN and the network. In particular, the
MN stores its entire movement history locally until it runs out
of storage (at which point the trie is flushed and the entire
learning process restarts). We now provide some numerical
calculations to quantify the additional costs of the per-user
mobility management for two candidate networks: 1) a
wide-area national PCS cellular network with 10,000,000
users and 2) an extended-area campus network with
10,000 users.
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Fig. 20. Dynamics of codebook update.

Although the total number of cells for a national PCS
provider is not publicly available, data in [15], [16], and
[30] suggests that the tofal number of base stations (among
all providers) in the UK/Spain is 30,000-40,000. Extrapolat-
ing on the basis of population and considering the number
of distinct providers, we infer that a single US cellular
provider is likely to have not more than 100,000 distinct
cells. In current Global System for Mobile Communications
(GSM) systems, each distinct cell ID occupies 56 bits,
consisting of a 40-bit Location Area Identifier (LAI) and a
16-bit Cell Identifier (CI). Now, even if each RA were to
consist of only four cells, the number of distinct codewords
(25,000) could be encoded in 15 bits (2!° > 25,000), and the
maximum upper bound on the quantizer mapping (for the
entire US) would be 15 x 25,000 x 4 x 56 bits ~ 10.5 Mby-
tes corresponding to 25,000 RAs, each storing four cells.
Similarly, if the 802.11-based campus environment consists
of 200 access points (APs), each having a unique 48-bit ID,
and each RA has four cells (APs), then the storage
overhead on the client would be ~ 9.6 Kbytes.

The movement history itself is maintained in a single
hash-based trie. Even if a user visits 50 new cells/day (for
example, a highly unpredictable traveling salesman), his
quantized movement history over an entire year would still
be 128 Kbytes. Even allowing for the additional overheads
of indexing, the total storage overhead would thus be not
more than ~ 3-4 Mbytes/year, which is not significant,
since cell phones today come equipped with 1 to 2-Gbyte
drives. Similarly, in a campus environment, where a user is
assumed to switch 100 APs/day, the total annual move-
ment history could be stored in a trie of ~ 220 Kbytes. Note
that the MN’s movement is efficiently stored as a trie,
enabling easy insertion and retrieval, resulting in a constant
computational overhead for trie insertion or matching,
irrespective of the size of the cellular network.

The use of per-user profiles also significantly adds to the
storage and processing costs at the network end. The
processing overhead occurs only when the paging sequence
must be determined from a trie and can be performed by
specialized hardware or optimized software. For the
national cellular network, the storage overhead for each
user/year equals that of storing the movement trie and is
thus ~ 4 Mbytes. For 10,000,000 users, this translates into a
total storage requirement of 40,000 Gbytes (the correspond-
ing storage requirement for the campus network is a
relatively trivial 2.2 Gbytes). Clearly, even with distributed
storage, this is a significantly large storage requirement.



TABLE 3

Approximate Storage Overheads for Per-User Profiles

National network | Campus network
(10 million users, (10,000 users
100,000 cells) 200 cells)

Map storage 10 MB 9.6 KB

(overhead at M N)

Movement storage | 128 KB 220 KB

(overhead at M N)

Storage overhead

(at network) 40,000 GB 2.2 GB

Table 3 summarizes the main storage costs (at both the
MN and network) for both of our sample network scenarios.
Overall, our results show that online per-user adaptive
mobility management algorithms are already practical for
environments such as extended campuses and smart
homes/offices (where the scheme may be used for indoor
location management at room-level granularity). However,
the analysis demonstrates that, for large tier-1 cellular
providers, the usage of per-user movement profiles may impose
significantly high storage requirements. For large cellular
networks, one way to circumvent this storage challenge
may be to group users with similar movement statistics and
store their aggregate history in a single trie. Our work in
this paper may thus be viewed as an initial effort outlining
the techniques for an effective paging-versus-update trade-
off. In the future, we aim to develop such techniques for
groups of users, thus improving scalability.

8 CONCLUSION

In this paper, we have presented an effective framework
that trades off between the location update and paging costs
for wireless environments such as wide-area cellular
networks and extended campus networks. Unlike the
current static schemes, where the same RA and paging
sequence is applied to each MN, our approach creates per-
user movement histories, in effect customizing the location
update and paging sequence for each user to its observed
mobility pattern. We have proposed two schemes based on
the rate distortion theory, which view the trade-off as a
process of introducing distortion between an MN’s true and
reported movement sequences, thereby reducing the rate
(cost) of the location update. Both schemes utilize a
combination of adaptive MN-driven quantization of the
movement sequence, followed by an LZ78-based adaptive
compression. Simulation results demonstrated that the
proposed algorithms can reduce the update cost to very
low values (often 3-4 updates/day), with only modest
increases in the paging overhead. Our algorithms can be
implemented with relatively low storage overhead (at most
10-12 Mbytes) on the MN, even in large-scale cellular
networks, and can result in a five- or sixfold decrease in the
MN’s overall energy consumption. However, per-user
profiles may present a scalability concern in tier-1 (national)
cellular provider networks, where the individual profile of
millions of devices must be stored separately.

To make the schemes practical in large cellular environ-
ments, our future research will investigate how we can
extend the quantization approach to operate on the

aggregate movement patterns, thus freeing the network
from having to store MN-specific movement histories.
Similarly, future research may suggest alternative quantiza-
tion techniques, preferred from the standpoint of imple-
mentation efficiency and storage overhead. Finally, the
impact of privacy on these algorithms is also an open issue.
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