22 research outputs found

    Isolation Enhancement between Indoor Repeater Antennas with Chip Resistor Embedded FSS

    Get PDF
    The isolation enhancement between the donor antenna and the service antenna for indoor repeater systems is presented by using a frequency-selective surface (FSS). A unit cell of the proposed FSS consists of a quarter-wavelength resonator, a chip resistor, an FR4 substrate, and a ground plane. Applying the unit cells of the proposed FSS embedded a chip resistor on the side walls of each reflector for indoor WCDMA repeater antennas and aligning them along with the cross-polarization of each antenna, the isolation is improved by about 13 dB at the WCDMA band

    Design of isofrequency reconfigurable repeaters

    Get PDF
    The advances in the communications systems has brought new requirements and challenges in terms of compactness and efficient systems that looking for increase the signal coverage area. The reconfigurable antennas are a promising solution for the communication systems when looking to improve the channel capacity and/or to extend the signal coverage. The main advantages of the reconfigurable antennas are the capabilities to change their frequency, polarization and radiation beam steering at a low cost. The reconfigurable antennas can be designed to operate in a determined changing environment keeping good electromagnetic characteristics. The design of reconfigurable RF repeaters is a relevant application of this reconfigurable antenna principle. This thesis is devoted to study and propose new repeater architectures in which a set of reconfigurable parasitic elements as part of the repeater are used for reducing the electromagnetic coupling between the Rx and Tx antennas. It is shown that the use of the parasitic elements as a reconfigurable mechanism gives the flexibility to adapt the repeater electromagnetic characteristics to changing environments while keeping a good system performance. The determination of the minimum number of parasitic elements is an important parameter and it is determined by a modal analysis to define the minimum number of parasitic elements able to fulfill specific repeater electromagnetic characteristics. In order to validate the analytical results, different reconfigurable repeater prototypes controlled electronically are manufactured. A reconfigurable repeater prototype that is using eight reconfigurable parasitic elements has been designed for operating at different scatterer environments. The repeater reconfigurable capabilities are studied to evaluate the repeater performance in realistic indoor locations. Finally, in order to obtain a repeater with reconfigurable frequency isolation capabilities between the Rx and Tx antennas over a wide frequency range, a repeater prototype based on a pixeled layer as reconfigurable mechanism has been designed and measured

    Miniaturized Radio Repeater Design for Enhanced Ad-hoc Wireless Communication.

    Full text link
    In complex communication channel environments the radio-link coverage at microwave frequencies is mainly restricted by the exorbitant path-loss between communication nodes due to non-line-of-sight propagation and multi-path communication. Radio repeaters are commonly used to enhance the signal coverage, but the current systems are bulky and power hungry as the received signal is down-converted, amplified and retransmitted at a different frequency. This thesis deals with development of a low-power subwavelength radio repeater that can handle multiple channels simultaneously without requiring a specific communication protocol. First, a metamaterial-based electromagnetic band-gap isolator is introduced, which prohibits substrate mode propagation between two low-profile miniaturized antennas. This isolator achieves 24dB of isolation improvement between the transmit and receive antennas that are a quarter-wavelength apart and allows for 32dB of active amplifier gain between the antennas. Also using a novel near-field cancellation technique an electromagnetic null-plane between two antennas of a transmit array is created, which reduces the mutual coupling by -86dB. This radio repeater can achieve more than 50dB of active amplification. Lastly, a dual-channel radio repeater with a radar cross section of more than 26dBsm for both channels is developed.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/97901/1/yjsong_1.pd

    RF Energy Harvesting Study Using Various Metamaterial Patch Structure

    Get PDF
    The E-field absorbance performance of various metamaterial absorber structure is presented. The study started from the simulation of various design patch of metamaterial absorber. The performances are measured from the reflection coefficient, percentage of absorption, value of E-field and the surface current for circle, square and hexagon patch design of metamaterial absorber. From the simulation, it is shown that the circle patch design shows the most reliable design for harvest energy with the absorption of 99.85% and highest E-field concentration of 2.07 × 105 V/m

    Low-frequency Antennas, Transparent Ground Planes, and Transponders for Communication Enhancement in Unfavorable Environments

    Full text link
    The communication environment has a major influence on the performance of wireless networks. Unlike antennas, receivers, processors, and other components of a typical wireless system, the designer has almost no control over the communication channel. Therefore, it is imminent that the adverse effects of the communication channel such as path-loss, multi-path, lack of a clear line of sight, and interference are among the most limiting factors in designing and operating wireless networks. Recent investments in infrastructures such as cell-phone towers, communication satellites, routers, and networking devices have been aimed at reducing the aforementioned adverse effects. However, wireless ad hoc networks (WANET) cannot rely on pre-existing infrastructures such as access points or routers. In this thesis, a number of solutions are presented to enhance communication and navigation in harsh environments. 1) At lower frequencies, the defects of the communication channel are less prominent, which has led militaries to use UHF and VHF frequency bands for communication. A number of optically transparent UHF antennas are developed and embedded in the windows of military vehicles to reduce their visual signature. 2) Direction finding at low frequencies using baseline method results in an exorbitantly large array of sensors. However, a vector sensor consisting of three orthogonal two-port loop antennas can be used. A simple and accurate circuit model for the two-port loop antenna is developed for the first time that can be used for direction of arrival estimation over a wide range of frequencies and angles. 3) Using a conventional radio repeater with ad-hoc systems requires a communication protocol and decreases the throughput by a factor of two for every repeater in the chain. A full-duplex repeater, capable of simultaneously transmitting and receiving at the same frequency, is developed for the 2.4 GHz ISM band.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143898/1/manikafa_1.pd

    Diseño de una infraestructura para dar cobertura de telefonía móvil 2G y 3G en el interior de una línea de metro

    Get PDF
    En la actualidad el 99% del territorio Español dispone de cobertura de telefonía móvil. Aún y así, en las grandes ciudades, aún existen algunas zonas con características particulares donde es necesario realizar diseños especiales para ofrecer servicio. Algunas de estas zonas que aun presentan un déficit de cobertura son aquellas infraestructuras situadas en el subsuelo tales como parkings o túneles de la red ferroviaria o de metro. Este déficit es debido a su naturaleza subterránea donde las ondas electromagnéticas emitidas por las estaciones base situadas en el exterior no pueden penetrar. Estas zonas requieren que se proporcione una solución indoor, ya sea repitiendo la señal desde fuera hacia dentro o mediante la implantación de nuevas estaciones base en su interior. De esta forma, este proyecto realiza el diseño de la infraestructura necesaria para ofrecer cobertura en el interior de la red de metro. Se analizan las problemáticas de este tipo de infraestructuras y que soluciones están aportando hoy en día las operadoras. Al mismo tiempo se presenta el diseño de las etapas radio y de transporte de la señal de telefonía móvil

    Diseño de una infraestructura para dar cobertura de telefonía móvil 2G y 3G en el interior de una línea de metro

    Get PDF
    En la actualidad el 99% del territorio Español dispone de cobertura de telefonía móvil. Aún y así, en las grandes ciudades, aún existen algunas zonas con características particulares donde es necesario realizar diseños especiales para ofrecer servicio. Algunas de estas zonas que aun presentan un déficit de cobertura son aquellas infraestructuras situadas en el subsuelo tales como parkings o túneles de la red ferroviaria o de metro. Este déficit es debido a su naturaleza subterránea donde las ondas electromagnéticas emitidas por las estaciones base situadas en el exterior no pueden penetrar. Estas zonas requieren que se proporcione una solución indoor, ya sea repitiendo la señal desde fuera hacia dentro o mediante la implantación de nuevas estaciones base en su interior. De esta forma, este proyecto realiza el diseño de la infraestructura necesaria para ofrecer cobertura en el interior de la red de metro. Se analizan las problemáticas de este tipo de infraestructuras y que soluciones están aportando hoy en día las operadoras. Al mismo tiempo se presenta el diseño de las etapas radio y de transporte de la señal de telefonía móvil

    Application and design manual for High Performance RF products

    Get PDF
    design work much easier NXP’s RF Manual – one of the most important reference tools on the market for today’s RF designers – features our complete range of RF products, from low to high power signal conditioning & high speed data converters. What’s new

    Adaptive Suppression of Interfering Signals in Communication Systems

    Get PDF
    The growth in the number of wireless devices and applications underscores the need for characterizing and mitigating interference induced problems such as distortion and blocking. A typical interference scenario involves the detection of a small amplitude signal of interest (SOI) in the presence of a large amplitude interfering signal; it is desirable to attenuate the interfering signal while preserving the integrity of SOI and an appropriate dynamic range. If the frequency of the interfering signal varies or is unknown, an adaptive notch function must be applied in order to maintain adequate attenuation. This work explores the performance space of a phase cancellation technique used in implementing the desired notch function for communication systems in the 1-3 GHz frequency range. A system level model constructed with MATLAB and related simulation results assist in building the theoretical foundation for setting performance bounds on the implemented solution and deriving hardware specifications for the RF notch subsystem devices. Simulations and measurements are presented for a Low Noise Amplifer (LNA), voltage variable attenuators, bandpass filters and phase shifters. Ultimately, full system tests provide a measure of merit for this work as well as invaluable lessons learned. The emphasis of this project is the on-wafer LNA measurements, dependence of IC system performance on mismatches and overall system performance tests. Where possible, predictions are plotted alongside measured data. The reasonable match between the two validates system and component models and more than compensates for the painstaking modeling efforts. Most importantly, using the signal to interferer ratio (SIR) as a figure of merit, experimental results demonstrate up to 58 dB of SIR improvement. This number represents a remarkable advancement in interference rejection at RF or microwave frequencies

    Design of indoor communication infrastructure for ultra-high capacity next generation wireless services

    Get PDF
    The proliferation of data hungry wireless devices, such as smart phones and intelligent sensing networks, is pushing modern wireless networks to their limits. A significant shortfall in the ability of networks to meet demand for data is imminent. This thesis addresses this problem through examining the design of distributed antenna systems (DAS) to support next generation high speed wireless services that require high densities of access points and must support multiple-input multiple-output (MIMO) protocols. First, it is shown that fibre links in DAS can be replaced with low-cost, broadband free-space optical links, termed radio over free-space optics (RoFSO) links. RoFSO links enable the implementation of very high density DAS without the need for prohibitively expensive cabling infrastructure. A 16m RoFSO link requiring only manual alignment is experimentally demonstrated to provide a spurious-free dynamic range (SFDR) of > 100dB/Hz^2/3 over a frequency range from 300MHz- 3.1GHz. The link is measured to have an 802.11g EVM dynamic range of 36dB. This is the first such demonstration of a low-cost broadband RoFSO system. Following this, the linearity performance of RoFSO links is examined. Because of the high loss nature of RoFSO links, the directly-modulated semiconductor lasers they use are susceptible to high-order nonlinear behaviour, which abruptly limits performance at high powers. Existing measures of dynamic range, such as SFDR, assume only third-order nonlinearity and so become inaccurate in the presence of dominant high-order effects. An alternative measure of dynamic range called dynamic-distortion-free dynamic range (DDFDR) is then proposed. For two different wireless services it is observed experimentally that on average the DDFDR upper limit predicts the EVM knee point to within 1dB, while the third-order SFDR predicts it to within 6dB. This is the first detailed analysis of high-order distortion effects in lossy analogue optical links and DDFDR is the first metric able to usefully quantify such behaviour. Next, the combination of emerging MIMO wireless protocols with existing DAS is examined. It is demonstrated for the first time that for small numbers of MIMO streams (up to ~4), the capacity benefits of MIMO can be attained in existing DAS installations simply by sending the different MIMO spatial streams to spatially separated remote antenna units (RAU). This is in contrast to the prevailing paradigm of replicating each MIMO spatial stream at each RAU. Experimental results for two representative DAS layouts show that replicating spatial streams provides an increase of only ~1% in the median channel capacity over merely distributing them. This compares to a 3-4% increase of both strategies over traditional non-DAS MIMO. This result is shown to hold in the multiple user case with 20 users accessing 3 base stations. It is concluded that existing DAS installations offer negligible capacity penalty for MIMO services for small numbers of spatial streams, including in multi-user MIMO scenarios. Finally, the design of DAS to support emerging wireless protocols, such as 802.11ac, that have large numbers of MIMO streams (4-8) is considered. In such cases, capacity is best enhanced by sending multiple MIMO streams to single remote locations. This is achieved using a novel holographic mode division multiplexing (MDM) system, which sends each separate MIMO stream via a different propagation mode in a multimode fibre. Combined channel measurements over 2km of mode-multiplexed MMF and a typical indoor radio environment show in principle a 2x2 MIMO link providing capacities of 10bit/s/Hz over a bandwidth of 6GHz. Using a second experimental set-up it is shown that the system could feasibly support at least up to a 4x4 MIMO system over 2km of MMF with a condition number >15dB over a bandwidth of 3GHz, indicating a high degree of separability of the channels. Finally, it is shown experimentally that when a fibre contains sharp bends (radius between 20mm and 7.2mm) the first 6 mode-groups used for multiplexing exhibit no additional power loss or cross-coupling compared with unbent fibre, although mode-groups 7, 8 and 9 are more severely affected. This indicates that at least 6x6 multiplexing is possible in standard installations with tight fibre bends.For their financial support, I would like to thank the Rutherford Foundation of the Royal Society of New Zealand, the Cambridge Commonwealth Trust and the EPSRC
    corecore