168 research outputs found

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d

    Design methods for 60GHz beamformers in CMOS

    Get PDF
    The 60GHz band is promising for applications such as high-speed short-range wireless personal-area network (WPAN), real-time video streaming at rates of several-Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used worldwide. However, transceivers at 60GHz pose several additional challenges over microwave transceivers. In addition to the circuit design challenges of implementing high performance 60GHz RF circuits in mainstream CMOS technology, the path loss at 60GHz is significantly higher than at microwave frequencies because of the smaller size of isotropic antennas. This can be overcome by using phased array technology. This thesis studies the new concepts and design techniques that can be used for 60GHz phased array systems. It starts with an overview of various applications at mm-wave frequencies, such as multi-Gbps radio at 60GHz, automotive radar and millimeter-wave imaging. System considerations of mm-wave receivers and transmitters are discussed, followed by the selection of a CMOS technology to implement millimeter-wave (60GHz) systems. The link budget of a 60GHz WPAN is analyzed, which leads to the introduction of phased array techniques to improve system performance. Different phased array architectures are studied and compared. The system requirements of phase shifters are discussed. Several types of conventional RF phase shifters are reviewed. A 60GHz 4-bit passive phase shifter is designed and implemented in a 65nm CMOS technology. Measurement results are presented and compared to published prior art. A 60GHz 4-bit active phase shifter is designed and integrated with low noise amplifier and combiner for a phased array receiver. This is implemented in a 65nm CMOS technology, and the measurement results are presented. The design of a 60GHz 4-bit active phase shifter and its integration with power amplifier is also presented for a phased array transmitter. This is implemented in a 65nm CMOS technology. The measurement results are also presented and compared to reported prior art. The integration of a 60GHz CMOS amplifier and an antenna in a printed circuit-board (PCB) package is investigated. Experimental results are presented and discussed

    Integrated Circuit and Antenna Technology for Millimeter-wave Phased Array Radio Front-end

    Get PDF
    Ever growing demands for higher data rate and bandwidth are pushing extremely high data rate wireless applications to millimeter-wave band (30-300GHz), where sufficient bandwidth is available and high data rate wireless can be achieved without using complex modulation schemes. In addition to the communication applications, millimeter-wave band has enabled novel short range and long range radar sensors for automotive as well as high resolution imaging systems for medical and security. Small size, high gain antennas, unlicensed and worldwide availability of released bands for communication and a number of other applications are other advantages of the millimeter-wave band. The major obstacle for the wide deployment of commercial wireless and radar systems in this frequency range is the high cost and bulky nature of existing GaAs- and InP-based solutions. In recent years, with the rapid scaling and development of the silicon-based integrated circuit technologies such as CMOS and SiGe, low cost technologies have shown acceptable millimeter-wave performance, which can enable highly integrated millimeter-wave radio devices and reduce the cost significantly. Furthermore, at this range of frequencies, on-chip antenna becomes feasible and can be considered as an attractive solution that can further reduce the cost and complexity of the radio package. The propagation channel challenges for the realization of low cost and reliable silicon-based communication devices at millimeter-wave band are severe path loss as well as shadowing loss of human body. Silicon technology challenges are low-Q passive components, low breakdown voltage of active devices, and low efficiency of on-chip antennas. The main objective of this thesis is to investigate and to develop antenna and front-end for cost-effective silicon based millimeter-wave phased array radio architectures that can address above challenges for short range, high data rate wireless communication as well as radar applications. Although the proposed concepts and the results obtained in this research are general, as an important example, the application focus in this research is placed on the radio aspects of emerging 60 GHz communication system. For this particular but extremely important case, various aspects of the technology including standard, architecture, antenna options and indoor propagation channel at presence of a human body are studied. On-chip dielectric resonator antenna as a radiation efficiency improvement technique for an on-chip antenna on low resistivity silicon is presented, developed and proved by measurement. Radiation efficiency of about 50% was measured which is a significant improvement in the radiation efficiency of on-chip antennas. Also as a further step, integration of the proposed high efficiency antenna with an amplifier in transmit and receive configurations at 30 GHz is successfully demonstrated. For the implementation of a low cost millimeter-wave array antenna, miniaturized, and efficient antenna structures in a new integrated passive device technology using high resistivity silicon are designed and developed. Front-end circuit blocks such as variable gain LNA, continuous passive and active phase shifters are investigated, designed and developed for a 60GHz phased array radio in CMOS technology. Finally, two-element CMOS phased array front-ends based on passive and active phase shifting architectures are proposed, developed and compared

    Circuit Design Techniques For Wideband Phased Arrays

    Get PDF
    University of Minnesota Ph.D. dissertation.June 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xii, 143 pages.This dissertation focuses on beam steering in wideband phased arrays and phase noise modeling in injection locked oscillators. Two different solutions, one in frequency and one in time, have been proposed to minimize beam squinting in phased arrays. Additionally, a differential current reuse frequency doubler for area and power savings has been proposed. Silicon measurement results are provided for the frequency domain solution (IBM 65nm RF CMOS), injection locked oscillator model verification (IBM 130nm RF-CMOS) and frequency doubler (IBM 65nm RF CMOS), while post extraction simulation results are provided for the time domain phased array solution (the chip is currently under fabrication, TSMC 65nm RF CMOS). In the frequency domain solution, a 4-point passive analog FFT based frequency tunable filter is used to channelize an incoming wideband signal into multiple narrowband signals, which are then processed through independent phase shifters. A two channel prototype has been developed at 8GHz RF frequency. Three discrete phase shifts (0 & +/- 90 degrees) are implemented through differential I-Q swapping with appropriate polarity. A minimum null-depth of 19dB while a maximum null-depth of 27dB is measured. In the time domain solution, a discrete time approach is undertaken with signals getting sampled in order of their arrival times. A two-channel prototype for a 2GHz instantaneous RF bandwidth (7GHz-9GHz) has been designed. A QVCO generates quadrature LO signals at 8GHz which are phase shifted through a 5-bit (2 extra bits from differential I-Q swapping with appropriate polarity) cartesian combiner. Baseband sampling clocks are generated from phase shifted LOs through a CMOS divide by 4 with independent resets. The design achieves an average time delay of 4.53ps with 31.5mW of power consumption (per channel, buffers excluded). An injection locked oscillator has been analyzed in s-domain using Paciorek's time domain transient equations. The simplified analysis leads to a phase noise model identical to that of a type-I PLL. The model is equally applicable to injection locked dividers and multipliers and has been extended to cover all injection locking scenarios. The model has been verified against a discrete 57MHz Colpitt's ILO, a 6.5GHz ILFD and a 24GHz ILFM with excellent matching between the model and measurements. Additionally, a differential current reuse frequency doubler, for frequency outputs between 7GHz to 14GHz, design has been developed to reduce passive area and dc power dissipation. A 3-bit capacitive tuning along with a tail current source is used to better conversion efficiency. The doubler shows FOMT_{T} values between 191dBc/Hz to 209dBc/Hz when driven by a 0.7GHz to 5.8GHz wide tuning VCO with a phase noise that ranges from -114dBc/Hz to -112dBc/Hz over the same bandwidth

    Interference suppression techniques for millimeter-wave integrated receiver front ends

    Get PDF
    corecore