4 research outputs found

    A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem

    Get PDF
    We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems

    A Hypergraph Model for the Rolling Stock Rotation Planning and Train Selection

    Get PDF
    This paper is about an integrated optimization approach for timetabling and rolling stock rotation planning in the context of passenger railway traffic. Given a set of possible passenger trips, service requirement constraints, and a fleet of multiple heterogeneous self-powered railcars, our method aims at producing a timetable and solving the rolling stock problem in such a way that the use of railcars and the operational costs are minimized. To solve this hard optimization problem, we design a mixed-integer linear programming model based on network-flow in an hypergraph. We use this models to handle effectively constraints related to coupling and decoupling railcars. To reduce the size of the model, we use an aggregation and disaggregation technique combined with reduced-cost filtering. We present computational experiments based on several French regional railway traffic case studies to show that our method scales successfully to real-life problems

    A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem *

    No full text
    Abstract We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems. 1998 ACM Subject Classification G.1.6 Optimizatio

    Integrated Rolling Stock Planning for Suburban Passenger Railways

    Get PDF
    corecore