2,776 research outputs found

    Swarm-Based Spatial Sorting

    Full text link
    Purpose: To present an algorithm for spatially sorting objects into an annular structure. Design/Methodology/Approach: A swarm-based model that requires only stochastic agent behaviour coupled with a pheromone-inspired "attraction-repulsion" mechanism. Findings: The algorithm consistently generates high-quality annular structures, and is particularly powerful in situations where the initial configuration of objects is similar to those observed in nature. Research limitations/implications: Experimental evidence supports previous theoretical arguments about the nature and mechanism of spatial sorting by insects. Practical implications: The algorithm may find applications in distributed robotics. Originality/value: The model offers a powerful minimal algorithmic framework, and also sheds further light on the nature of attraction-repulsion algorithms and underlying natural processes.Comment: Accepted by the Int. J. Intelligent Computing and Cybernetic

    Distributed Swarm Formation Using Mobile Agents

    Get PDF
    This chapter presents decentralized control algorithms for composing formations of swarm robots. The robots are connected by communication networks. They initially do not have control program to compose formations. Control programs that implement our algorithm are introduced later from outside as mobile software agents. Our controlling algorithm is based on the pheromone communication of social insects such as ants. We have implemented the ant and the pheromone as mobile software agents. Ant agents control the robots. Each ant agent has partial information about the formation it is supposed to compose. The partial information consists of relative locations with neighbor robots that are cooperatively composing the formation. Once the ant agent detects an idle robot, it occupies that robot and generates the pheromone agent to attract other ant agents to the location for neighbor robots. Then the pheromone agent repeatedly migrates to other robots to diffuse attracting information. Once the pheromone agent reaches the robot with an ant agent, the ant agent migrates to the robot closest to the location pointed by the pheromone agent and then drives the robot to the location. We have implemented simulators based on our algorithm and conducted experiments to demonstrate the feasibility of our approach

    Adaptive clustering with artificial ants

    Get PDF
    Clustering task aims at the unsupervised classification of patterns (e.g., observations, data, vec- tors, etc.) in different groups. Clustering problem has been approached from different disciplines during the last years. Although have been proposed different alternatives to cope with clustering, there also exists an interesting and novel field of research from which different bioinspired algorithms have emerged, e.g., genetic algorithms and ant colony algorithms. In this article we pro- pose an extension of the AntTree algorithm, an example of an algorithm recently proposed for a data mining task which is designed following the principle of self-assembling behavior observed in some species of real ants. The extension proposed called Adaptive-AntTree (AAT for short) represents a more flexible version of the original one. The ants in AAT are able of changing the assigned position in previous iterations in the tree under construction. As a consequence, this new algorithm builds an adaptive hierarchical cluster which changes over the run in order to improve the final result. The AAT performance is experimentally analyzed and compared against AntTree and K-means which is one of the more popular and referenced clustering algorithm.Facultad de Informátic

    Mal-Netminer: Malware Classification Approach based on Social Network Analysis of System Call Graph

    Get PDF
    As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort, and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that influence-based graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.Comment: Mathematical Problems in Engineering, Vol 201

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies
    • …
    corecore