
Adaptive clustering with artificial ants

Diego Alejandro Ingaramo, Guillermo Leguizamón, Marcelo Errecalde

Lab. de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)∗

Universidad Nacional de San Luis - Ej. de los Andes 950 - (D5700HHW) San Luis, Argentina

{daingara,legui,merreca}@unsl.edu.ar

Abstract

Clustering task aims at the unsupervised classi-
fication of patterns (e.g., observations, data, vec-
tors, etc.) in different groups. Clustering problem
has been approached from different disciplines
during the last years. Although have been pro-
posed different alternatives to cope with cluster-
ing, there also exists an interesting and novel field
of research from which different bio-inspired al-
gorithms have emerged, e.g., genetic algorithms
and ant colony algorithms. In this article we pro-
pose an extension of the AntTree algorithm, an
example of an algorithm recently proposed for a
data mining task which is designed following the
principle of self-assembling behavior observed in
some species of real ants. The extension proposed
called Adaptive-AntTree (AAT for short) repre-
sents a more flexible version of the original one.
The ants in AAT are able of changing the as-
signed position in previous iterations in the tree
under construction. As a consequence, this new
algorithm builds an adaptive hierarchical cluster
which changes over the run in order to improve
the final result. The AAT performance is experi-
mentally analyzed and compared against AntTree
and K-means which is one of the more popular
and referenced clustering algorithm.

Keywords: computational intelligence, bio-
inspired algorithms, clustering, data mining.

1 Introduction

Clustering task organizes a collection of patterns
usually represented as n-dimensional points in
different groups according to their similarity. In-
tuitively, patterns belonging to the same clus-
ter are more similar than those patterns in a
different group. Human beings can easily solve
2-dimensional clustering problems, however, the
more interesting real problems for clustering in-
volve a large number of dimensions. In addition,
the respective problem data are not usually “well”
distributed. For that reason there exist plenty
of algorithms for clustering which perform differ-
ently according to the data set distribution under

consideration, i.e., it is not easy to find a general
method to cope with the inherent difficulty of the
clustering problem.

State-of-the-art clustering techniques are char-
acterized by the data representation, metric used
to assess the similarity (or distance) among data,
and the way they group the data. The simplest
method for clustering, K-mean algorithm, needs
to set beforehand the number of groups (also
called centroids) in the data. Each centroid de-
fines a data group and the remaining data are
associated to the closest centroid. This process is
iteratively repeated by changing the centroids in
order to minimize the sum of square errors (SSE)
function. The algorithm finishes when no fur-
ther improvements are observed in SSE. Unfortu-
nately, K-means has some drawbacks, for exam-
ple is mandatory to define in advance the number
of clusters which is precisely the information we
want to find out. In other words, the performance
of this algorithm will strongly depend on the in-
formation we have about the data regarding the
possible number of clusters.

Is is important to remark that exist plenty of
field of application for clustering. Accordingly, it
can be found an important number of different
methods and techniques for solving this problem.
More recently, novel bio-inspired approaches have
been successfully applied as alternative methods
for clustering, e.g., evolutionary algorithms (EAs)
and ant colony optimization (ACO). In addition,
metaheuristics as Simulated Annealing and Tabu
Search are also being considered for clustering.

In this work we investigate the application of
algorithms based on the behavior of real ants
(BBA) for clustering problems. In this direction,
different examples of this kind of algorithms can
be found in recent literature, e.g., Ant-Class [1],
Ant-Tree[2], and Ant-Clust [3]. The main objec-
tive in this paper is the proposal of a new ver-
sion of the Ant-Tree algorithm called Adaptive
Ant Tree or AAT for short. More specifically,
AAT incorporates some dynamic components in
the sense that ants are able to disconnect from
the tree (a hierarchical clustering structure) and
reconnect in a different place, i.e., to reallocate

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

264

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301030758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


itself on a more similar group or subgroup. This
is an important new feature of the approach since
it produces an adaptive way of building the tree
and eventually obtain a more accurate result re-
garding both, number of clusters discovered and
similarity among elements belonging to the same
cluster. The experimental study includes a com-
parison of AAT against the original Ant-Tree and
K-means over an number of well known bench-
marks. Advantages and disadvantages of ATT
with respect to the other algorithms is also ana-
lyzed.

The article is organized as follows: in the
next section is given a short overview of the bio-
inspired techniques for clustering. Section 3 de-
scribes the Ant-Tree algorithm in which we based
our proposal presented in section 4. In section
5 we describe the experimental study and the
respective results. Finally, section 6 discusses
strengths and weaknesses of the proposed ap-
proach including some possible future directions
of research in this area.

2 Clustering through bio-

inspired techniques

Clustering problems have been approached by dif-
ferent techniques, in particular bio-inspired ap-
proaches, e.g., evolutionary algorithms [4, 5], and
other metaheuristics such as tabu search and sim-
ulated annealing [6]. In addition, ACO meta-
heuristic [7] has been adapted for clustering prob-
lems as described in [8].

Inside of the class of bio-inspired algorithms
it is worth remarking that BBA algorithms have
showed to be effective in comparison with other
traditional techniques since BBA algorithms in-
clude probabilistic rules for clustering assignation
which avoid local optima. Consequently, better
results can be obtained without any knowledge
or information about the data at hand. As ex-
amples of BBA algorithms is the Ant-Class algo-
rithm [1] which applies explorative and stochastic
principles from the ACO metaheuristic combined
with deterministic and heuristic principles from
K-means. The simulated environment is a 2-
dimensional grid on which the ants leave/take ob-
jects on/from the ground according to their sim-
ilarity. On the other hand, in the Ant-Clust [3]
algorithm the ants proceed according to chemical
properties and odors to recognized themselves as
similar or not. Other interesting algorithm is the
ACODF [4], a novel approach which represents a
direct adaptation of the ACO metaheuristic for
solving clustering problems.

Finally, we describe the AntTree algorithm
which behaves following the self-assembling char-

acteristics observed in some ant species. In this
case, the ants build “living” structures with their
bodies in order to solve different problems deal-
ing with the survival of the whole colony, e.g.,
build a living bridge to let the colony follow a
way from/to the nest to the food source. This
principle of behavior is adapted for solving clus-
tering problems in the following way: each ant
(data) from de colony (the data set to analyze)
tries to connect to another ant according to their
similarity. Repeating this process, AntTree builds
a tree structure representing a hierarchical par-
tition of the original data set. AntTree has
been previously compared against K-means and
AntClass [2]. AntTree showed to be effective and
promising approach for being considered for fu-
ture research in developing new clustering tech-
niques. In the following section we describe in de-
tail the AntTree algorithm highlighting its main
features, finally we present our proposal based on
the AntTree, the AAT algorithm.

3 The AntTree algorithm

The design of the AntTree algorithm [2] is based
on the self-assembly behavior observed in certain
species of ants. As an example we can men-
tion the Argentine ant Linepithema humiles and
African ant Oecophylla longinoda where the liv-
ing structures are used as bridges or auxiliary
structures for building the nest. The structure is
built in a incremental manner in which the ants
joint a fixed support or another ant for assem-
bling. The computational model implemented in
the AntTree builds a tree structure representing
a hierarchical data organization partitioning the
whole data set. Each ant represents a single da-
tum from the data set and it moves in the struc-
ture according to the similarity with the other
ants already connected in the tree under con-
struction (see [2] for a detailed discussion about
the biological concepts used in the design of the
AntTree).

In order to make a partition of the whole data
set it is built a tree structure where each node
represents a single ant and each ants represents
a data single data. The clustering task in this
context means to make the more appropriate de-
cision when determining the place in which each
ant will be connected, either to the main support
(generates a new cluster) or to another ant (re-
fines an existing cluster).

In order to apply AntTree, it is supposed that
is possible to define a similarity function Sim
among any pair of data elements, i.e., if N is the
cardinality of the data set and (di, dj) is an arbi-
trary pair of data, i ∈ [1, N ], j ∈ [1, N ], the value
of Sim(i, j) ∈ [0, 1] could represent the degree of

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

265



similarity between di and dj . When di and dj

are completely different, Sim(di, dj) = 0. On the
other hand, Sim(di, dj) = 1 when di = dj .

The general principles of the algorithm are the
following: each ant represents a node to be con-
nected to the tree, i.e, a data to be classified.
Starting from an artificial support called a0, all
the ants incrementally will connect either to that
support or to other ants already connected. This
process continues until all ants were connected
to the structure, i.e., all data where already clus-
tered. The resulting organization of this structure
will depends directly on Sim definition and the
local neighborhood of each moving ant.

To each ant ai will be associated the following
terms:

1. The ingoing links of ai, called I(ai) represent
the set of links toward ant ai, that is, the
children of node ai.

2. An outgoing link of ai, called O(ai) which
represents either the support or another ant,
i.e., the parent node.

3. A data di represented by ai.

4. Two metrics called respectively similarity

threshold (TSim(ai)) and dissimilarity thresh-

old (TDissim(ai)) which will be locally up-
dated during the process of building the tree
structure.

Figure 1: General outline for building the
tree structure by self-assembling artificial ants
(adapted from [2])

Figure 1 shows a general outline of self-
assembling process involving artificial ants. It can
be observed that each ant ai is either of the two
following situations:

1. Moving on the tree: a walking ant ai (gray
highlighted in figure 1) can be either on the
support (a0) or another ant (apos). In both
cases, ai is not connected to the structure.

Consequently, it will be free of moving to the
closest neighbors connected to either a0 or
apos. In figure 2 is showed the neighborhood
corresponding to an arbitrary ant apos.

2. Connected to the tree: in this case ai has al-
ready assigned a value for O(ai), therefore,
it can not move anymore. Additionally, an
ant is not able to have more than Lmax ingo-
ing links (|〉(ai)| ≤ Lmax). The objective is
to bound the maximum number of incoming
links, i.e., the maximum number of clusters.

Figure 2: Neighborhood corresponding to an ar-
bitrary ant apos (adapted from [2])

In order to understand completely the AntTree
algorithm, the next section presents a detailed
description of this algorithm.

3.1 Detailed description of the

AntTree algorithm

The main loop implemented in the AntTree algo-
rithm is showed in figure 3. The very first step
involves the allocation of all ants on the tree sup-
port and their respective thresholds of similarity
and dissimilarity are accordingly initialized. In
this stage the whole collection of ants are repre-
sented by a list L of ants waiting to be connected
in further steps. List L can be sorted in different
ways, later on this article we make some consider-
ations concerning different possibilities of arrang-
ing L. During the process of construction each
selected ant ai can be either connected to the
support (or another ant) or moved on the tree
looking for a correct place to connect itself. Sim-
ulation will continue while exist ants moving on
the tree until all of them found the more adequate
assembling place; either on the support (figure 4)
or on another ant (figure 5).

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

266



Let L be a list (possibly sorted) of ants to be connected
Initialize: Allocate all ants on the support.
TSim(aj )← 1 and TDissim(aj)← 0, for all ant aj

Repeat
1. Select an ant ai from list L
2. If ai is on the support (a0)

then support case (see figure 4)
else ant case (see figure 5)

Until all the ants are connected to the tree

Figure 3: Main loop of the AntTree

When ai is on the support and ai is the first ant
considered, the situation is easier since this ant is
connected directly to the support. Otherwise, ai

is compared against a+, the more similar ant to ai

among all ants connected directly to the support.
If these ants are similar enough, then ai will move
to the subtree corresponding to a+. In case that
ai and a+ are dissimilar enough (according to a
dissimilarity threshold), ai is connected directly
to the support. This last action generates a new
subtree (i.e., a new cluster) due to the incoming
ant is different enough from the other ants con-
nected directly to the support. Finally, if ai is
neither similar or dissimilar enough, the respec-
tive thresholds (similarity and dissimilarity) are
updated in the following way:

TSim(ai) ←− TSim(ai) * 0. 9
TDissim(ai) ←− TDissim(ai) + 0. 01

The above updating rules let ant ai be more
“tolerant” when considered in a further iteration,
i.e., the algorithm increases the probability of
connecting this ant in a future time.

If no ant is connected to the support then connect ai to a0

else
Let a+ be the more similar ant to ai

where a+ is connected to a0

(a) If Sim(ai, a
+) ≥ TSim(ai) then move ai toward a+

(b) else
i. Si Sim(ai, a

+) < TDissim(ai) then
/* ai is dissimilar enough to a+*/
connect ai to a0 (in case there is no
more links available in a0, then move
ai toward a+ and decrease TSim(ai))

ii. else decrease TSim(ai) and
increase TDissim(ai)

/* ai is more tolerant */

Figure 4: Support case

The second case to be considered is when ai is
on another ant, e.g., apos in figure 5. If ai is a)
similar enough to apos, b) dissimilar enough to
the ants connected to apos, and c) there exists an
available incoming link (|I(ai)| < Lmax), then ai

is connected to apos, i.e., ai will be the root of a

new subtree connected to apos. The main differ-
ence between ai and the other ants connected to
apos is that ai represents a new subcluster similar
to the cluster represented by apos but dissimilar to
the other subclusters hanging from apos. In case
the above conditions are no met, ai is moved ran-
domly on any neighbor of apos. At the same time,
its respective thresholds are updated accordingly
as explained before. The algorithm finishes when
all ants have been connected to the tree structure.

Let apos be the ant on which ai positioned.
Let ak be a random neighbor of apos

1. If Sim(ai, apos) ≥ TSim(ai) then
Let a+ be more similar to ai connected to apos

(a) If Sim(ai, a
+) ≤ TDissim(ai) then connect ai

to apos /* In case no more incoming links
are available, move randomly ai toward ak */

(b) else decrease TDissim(ai), increase TSim(ai)
, and move ai toward ak

2. else move ai toward ak

Figure 5: Ant case

Before finishing the description of the algo-
rithm, it is important to highlight the arrange-
ment of the ant on list L (the initial step). Since
the algorithm proceeds iteratively taking the ants
from list L, the features of the first ants on the list
will significantly influence the final result. The
strategy that showed the best results [2] is by
making an increasing sorting of list L according
to the average similarity with the remaining ants.
In this way, the first ant connected to the tree will
be the closest to its own group and most dissim-
ilar to the remaining ants.

We should emphasize that the tree obtained fol-
lowing the above procedure is different from the
popular dendrograms (the result of applying some
traditional clustering techniques). In our case.
each node corresponds to a single data from the
whole data set. Therefore, the resulting tree can
be interpreted (see figure 6) as a data partition
(considering each ant connected to a0 as a differ-
ent group) as well as a dendrogram where the ants
in the inner nodes could move to the leaves fol-
lowing the more similar nodes to them. Thus, it
is possible a comparisson between Antree against
other hierarchical clustering method by using the
last procedure.

Finally, it is worth remarking that the AntTree
algorithm includes many interesting features as
avoiding local minima due to its probabilistic be-
havior. In addition, it produces very accurate
results without using any previous information of
the possible distribution of the data set (i.e., there

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

267



Figure 6: A resulting tree interpreted as a
data partition without any hierarchy (adapted
from [2])

is no need of having information of the existing
groups in the data set).

4 The Adaptive AntTree al-

gorithm

In this section, a new method for clustering called
Adaptive AntTree (or AAT for short) is pre-
sented. AAT extends the AntTree algorithm by
allowing a more flexible behaviour of the ants.
The ants in AAT are able of changing a previ-
ous assigned location in the tree structure and
consequently they can be reallocated in a other,
more adequate group. Another improvement in-
troduced by AAT is the capability of exploring
alternative solutions and selecting the one is the
best fit to the data set.

AAT generates a model by means of a process
consisting of three main stages: 1) AntTree ex-
ecution (with modified parameters), 2) reallo-
cation of ants and 3) joining groups. Each of
these stages is outlined in figure 7.

1. Execute the AntTree algorithm (with
modified parameters).

2. Repeat until all ants belong to an adequate group
a. Selection of ants to be disconnected from the tree
b. Sorting of the ants list (in decreasing order)
c. Reallocate the ants (AntTree with a branch

of tree asigned in advance)
3. Repeat Lmax times or until no unions are possible

a. Selection of two groups to be combined
b. Join process
c. Model evaluation

Figure 7: A general overview of AAT algorithm

4.1 AntTree execution

The first stage of the AAT algorithm is ad-
dressed to achieve a considerable number of small
groups which should have the following two char-
acteristics: a) the elements in the group ex-
hibit a very high cohesion and b) the groups are
well-separated. These two characteristics were
achieved by running the AntTree with a small
modification in the updating formula correspond-
ing to the dissimilarity threshold of each ant1:

TDissim(ai) ←− TDissim(ai) + 0. 2

In addition, the branching factor of the tree was
increased to Lmax = 20, so that a greater number
of clusters could be generated.

4.2 Reallocation of ants

This iterative process considers each ant in turns
and attempt to find out a more adequate group
where the ant should be reallocated. The process
stops when all of ants have been analyzed. As
can be observed in figure 7, stage 2 consists of
three elemental steps: a) selection of ants to be
disconnected from the tree, b) sorting of the ants
list (in decreasing order), and c) reallocation of
ants.

In step a), each ant in the tree structure is
evaluated in order to deciding if it should be dis-
connected from the tree or not. Such decision is
based on the Silhouette function [9] which esti-
mates the membership degree of an arbitrary ant
respect to the group under consideration. The
Silhouette function is defined as follows:

s(i) = (b(i)− a(i))/max(a(i), b(i)), (1)

where a(i) is the distance between ant ai and
the mean value of the group that ai belongs,
b(i) is the minimum distance between ant ai and
the mean values of the remaining groups, and
−1 ≤ s(i) ≤ 1. A threshold t = t0 must be
defined to detect the assignation of an ant ai to
a wrong group, i.e., when s(i) < t. This means
that a “better” 2 group has been detected for ant
ai and consequently this ant should be selected
to be disconnected from the tree. If we assume
that L represents the list of ants selected in the
previous step to be desconnected, an important
issue is to take into account the decreasing sort-

ing of list L according to the similarity with the
remaining ants (step b). Note that in this case,
the criterion adopted for sorting the list is dia-
metrically oppossed to that used by the AntTree

1The simmilarity threshold TSim was not modified.
2A group which have a media value closer to ant ai

than the media value of the group which ai belongs at the
present moment.

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

268



algorithm. Therefore, the first place on the list
will be occupied by the ant which is more similar

to the remaining ones. In order to understand the
reasons behind this criterion we need to consider
some situations arising when the previous selec-
tion process is carried out. When some the ants
of a group are removed, this group can eventually
becomes empty. Therefore, it should not be con-
sidered in the future and those ants that were just
assigned to the group recently eliminated have to
be reallocated to another group3. In that sense,
if we use a decreasing sorting of the list, the most
similar ant on the list will have an important in-
fluence on the media value of the group that it
was assigned to and those ants which are simi-
lar to this ant also will be assigned to the same
group.

With respect to the reallocation of ants (step
c), it is important to observe that this step in-
volves two different processes. The first one is the
verification of pre-assigned groups, i.e., ver-
ify if some group has become empty. In this case,
a new existing group is assigned. The second one
is the reallocation of the ant to its new group.
This process is carried out by a simple movement
of the ant toward the corresponding new group,
i.e., toward the first ant connected to the support.

4.3 Joining groups

The goal of this stage is find out the real groups
present in the data set. The general process
consists in iteratively combine the most similar
groups and evaluate each new model obtained.
The result of this process will be the best adapted
model to the data under consideration.

Pair of groups to to be combined are chosen ac-
cording to their similarity (in mean values). The
join process is very similar to the second stage ex-
plained above. The ants belonging to one of two
selected groups are incorporated into the other
one. It is worth remarking that it is not neces-
sary any sorting of these ants because all of them
have been assigned before to the same group.

For each iteration, the resulting model is eval-
uated and compared against the best model ob-
tained to this moment. If the new model is more
accurate than the best model so far, the former
is saved to be compared in subsequent iterations.
The number of iterations depends on the num-
ber of groups analyzed. However, this number
will not be greater than Lmax for any size and/or
type of data set.

Finally (last step in stage 3) it is necessary to
asses each new model found with respect to the

3The reallocation process simply allocates each ant to
the group which have the closest media value to the ant
considered.

best model so far. An interesting function defined
for this end, is that based on the Davies-Boulding

index [10] which is defined tacking into account
a similarity value Rij between two groups Ci y
Cj . The Rij value is defined considering the de-
viation estimate inside each group with respect
to a similarity factor between both groups. Rij

is restricted to be positive and symetric 4. For
example, a simple equation satisfying these con-
ditions is the following:

Rij = (si + sj)/dij (2)

where the deviation estimate si is defined as the
maximum distance between the mean value of
Ci and dm ∈ Ci; dij is the distance between the
mean values of Ci and Cj , respectively. Finally, if
nc is the number of clusters, the Davies-Boulding
(DB) index is defined as:

DBnc
=

1

nc

nc
∑

i=1

Ri (3)

where Ri = max
j=1...k, i6=j

Rij . Intuitively, we can say

that this function estimates the average similarity
between each group and its most similar. Thus,
an ideal clustering algorihthm should cluster the
data set in a way that groups are as different as
possible, i.e., the lower values of DBnc

the better
is the model achieved.

5 Experimental results

The AntTree and AAT algorithms used in the
experiments were implemented in JAVA. The
set of tools for clustering tasks provided by the
WEKA [11] package also was used for experi-
menting with the K-means method. Addition-
allly, AntTree and AAT were included as alterna-
tive data mining tools in the WEKA package.

As similarity function, it was used the Gower’s

function:

Sim(i, j) =

∑p

k=1 wijksijk
∑p

k=1 wijk

(4)

where sijk is the similarity between an element
i and other element j respect to the k-th at-
tribute. When all attributes are categorics, they
are compared by equality (sijk = 1 if the elements
are equal and 0 in other cases). When continu-
ous data have to be considered, sijk is defined as
sijk = 1 − |xik − xjk|/Rk where Rk is the differ-
ence beetween the maximum and minimum ob-
served value corresponding to kth attribute. The
wijk factor will be 1 if the values for attribute k

4The following restrictions have to be fulfiled: a) Rij ≥

0, b) Rij = Rji and c) if si = 0 y sj = 0 then Rij = 0

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

269



are comparable, otherwise, it will be 0. For ex-
ample, if the value of atribute k is missing either
for element i or j, wijk = 0.

The algorithms were compared over four real
data bases: breast-cancer-wisconsin (bcw), euca-

lyptus (euca), heart-disease (heart), and thyroid-

disease (thyroid) taken from the UCI reposi-
tory 5. Also, it were generated three artificial
data bases: art1, art2 and art3. These data bases
differ with respect to the extent of proximity be-
tween the groups inside them: art1 includes well-
separated groups, art2 has also a clear separation
between groups but it is smaller than in art1. Fi-
nally, in art3 the existing groups are very close
to each other.

The main features of the data bases (Name)
are summarized in table 1. In each case is speci-
fied the number of instances (NI ), number of at-
tributes (NA), type of attributes (TA, categoric or
numerical), number of records with missing values
(MV ), number of classes (K), and distribution of
instances over each class(DI ).

Name NI NA TA MV K DI

bcw 699 9 cat 16 2 〈458, 241〉
euca 736 19 cat 141 5 〈180, 107,

num 130, 214,

105〉
heart 303 13 cat 0 5 〈164, 55,

num 36, 35, 13〉
thyroid 1505 5 num 0 3 〈1050, 245,

210〉
arti, 1002 31 num 0 3 〈334, 334,

i = 1, 2, 3 334〉

Table 1: Main features of experimental data bases

For each instance is known in advance the clus-
ter it belongs to 6. Therefore, it is possible eval-
uate the algorithms with respect to the classifi-
cation error measure Ec proposed in [2]. In this
case, ki represents the true class of the object di,
k′

i is the class found it by a particular method for
di. K corresponds to the real number of classes
and K ′ is the number of classes found by an ar-
bitrary method. Now we can define Ec as:

Ec =
2

N(N − 1)

∑

(i,j)ε{1,.......N}2,i<j

ǫij (5)

wherw:

ǫij =

{

0 if (ki = kj ∧ k′
i = k′

j) ∨ (ki 6= kj ∧ k′
i 6= k′

j),

1 otherwise.

It should be noted that the real number of clus-
ters (K) has to be specified as an additional pa-
rameter when the K-means method is used. The

5Machine Learning repository, University of California,
Irvine (UCI) [12].

6Obviously, this information is not available to the al-
gorithms.

remaining methods do not know this value, hence,
they can not take any advantage of this valuable
information.

In table 2 comparative results obtained with
K-means, AntTree and AAT are showed. The ta-
ble includes information about the classification
error measure Ec (equation 5), number of clus-
ters found K ′, running time (in seconds) of the
algorithm, and the value from Davies-Boulding
(DB) function (equation 3). It is also showed the
average global Silhouette based on equation 1 and
defined as: GS = (

∑N

i=1 s(i))/N . In all cases, the
value K ′ of K-means corresponds to the value K
given as parameter.

Name Alg. Ec K ′ Time DB GS

K-means 0.04 2 0.38 1.89 0.58
bcw AntTree 0.21 10 0.94 4.85 0.4

AAT 0.11 2 15.5 1.56 0.47

K-means 0.31 5 0.59 2.38 0.27
euca AntTree 0.78 1 2.03 0 0

AAT 0.27 13 2.44 1.02 0.64

K-means 0.33 5 0.34 2.38 0.24
heart AntTree 0.65 1 0.47 0 0

AAT 0.37 2 0.61 1.87 0.29

K-means 0 3 0.45 1.85 0.62
thy- AntTree 0.47 1 3.39 0 0
roid AAT 0.31 2 2.83 1.63 0.68

K-means 0. 28 3 1.41 3.37 0.41
art1 AntTree 0. 22 2 4.8 0.48 0.72

AAT 0 3 4.7 0. 31 0.87

K-means 0 3 0.61 0.42 0.83
art2 AntTree 0. 67 1 4.75 0 0

AAT 0 3 4.61 0.42 0.83

K-means 0.28 3 0.89 4.07 0.1
art3 AntTree 0. 67 1 4.67 0 0

AAT 0 3 4.7 0. 38 0.83

Table 2: Results for different data bases

In the following a descriptive analysis of the
obtained results is presented:

• With respect to the classification error Ec,
it can be observed that AAT performed bet-
ter than AntTree for all data sets tested. In
addition, the performance of AAT is not de-
graded as can be observed for the AntTree
when the clusters are not well-separated in
the data sets (e.g., euca, heart, art2, and
art3). In general, AAT obtained similar re-
sults to those obtained by K-means, how-
ever, AAT is superior for some data sets:
euca, art1, and art3.

• When the groups in data sets are not well-
separated (e.g., artificial data bases), the
AAT algorithm finds the optimal solutions.

• AAT tends to find a number of clusters K ′

closer to the real number of cluster K when
compared to AntTree. For instance, for four

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

270



out of seven data bases considered, the K ′

found by AAT was equal to K.

• The running times of the proposed approach
AAT are not significantly larger than those
corresponding to the AntTree algorithm.

• The metrics DB (the lower the better) and
GS (the greater the better) for assessing the
quality of the clustering achieved show that
AAT has obtained the best models with re-
spect to the other algorithms considered (i.e.,
AntTree and K-means) over almost all data
bases. More specifically, the index DB for
AAT is better than the respective index for
K-means in all cases. The same situation
is observed when AntTree yielded an index
DB 6= 0. On the other hand, it can be ob-
served that in terms of GS the performance
of AAT is superior to AntTree and K-means,
except for data base bcw, for which K-means
obtains the best result.

• Although AAT and AntTree do not need the
number of cluster to proceed with the clus-
tering task, the results obtained by these
algorithms are similar or even better than
K-means for some of the metrics considered
here.

6 Conclusions

This paper presented a new clustering algorithm
based on the AntTree algorithm, an approach in-
spired on the self-assembling behavior observed in
some species of real ants. The proposed algorithm
uses (with some parameters modified) the origi-
nal AntTree algorithm as the first stage. Then,
a re-assignation of ants to different clusters and
a combination of those clusters is carried out to
give a better clustering model.

The remarkable characteristic of AAT is given
by its capacity of disconnecting ants from the
tree under construction without increasing signif-
icantly the running time. Since the resulting clus-
tering from AAT is structurally the same as that
obtained by the AntTree, it is possible to visualize
it as either a partition clustering or hierarchical
clustering. Finally, it is important to note that
AAT is robust approach in view of different data
set distributions since it proceeds starting from
small groups toward bigger ones by joining them
based on their similarity.

References

[1] N. Slimane, N. Monmarché, and G. Venturini.
Antclass: discovery of clusters in numeric data by

an hybridization of an ant colony with kmeans algo-
rithm. Rapport interne 213, Laboratoire d ’ Informa-
tique de l ’ Universit e de Tours, E3i Tours,, 1999.

[2] H. Azzag, N. Monmarche, M. Slimane, G. Venturini,
and C. Guinot. Anttree: A new model for cluster-
ing with artificial ants. In Ruhul Sarker, Robert
Reynolds, Hussein Abbass, Kay Chen Tan, Bob
McKay, Daryl Essam, and Tom Gedeon, editors, Pro-
ceedings of the 2003 Congress on Evolutionary Com-
putation CEC2003, pages 2642–2647, Canberra, 8-12
December 2003. IEEE Press.

[3] N. Labroche, N. Monmarché, and G. Venturini.
AntClust: Ant Clustering and Web Usage Mining. In
Genetic and Evolutionary Computation Conference,
pages 25–36, Chicago, 2003.

[4] Cheng-Fa Tsai, Chun-Wei Tsai, Han-Chang Wu, and
Tzer Yang. Acodf: a novel data clustering approach
for data mining in large databases. J. Syst. Softw.,
73(1):133–145, 2004.

[5] Alex A. Freitas. A survey of evolutionary algorithms
for data mining and knowledge discovery. In A Ghosh
and S Tsutsui, editors, Advances in Evolutionary
Computation, pages 819–845. Springer-Verlag, Au-
gust 2002.

[6] Hussein Abbass, Charles Newton, and Ruhul Sarker.
Data Mining: A Heuristic Approach. Idea Group
Publishing, Hershey, PA, USA, 2002.

[7] Marco Dorigo and Luca Maria Gambardella. Ant
colony system: a cooperative learning approach to
the traveling salesman problem. IEEE Trans. Evolu-
tionary Computation, 1(1):53–66, 1997.

[8] V.K. Jayaraman P.S. Shelokar and B.D. Kulkarni. An
ant colony approach for clustering. Technical report,
Chemical Engineering and Process Division, National
Chemical Laboratory, India, 2003.

[9] F. Azuaje N. Bolshakova. Improving expression data
mining through cluster validation. 2003.

[10] Maria Halkidi, Yannis Batistakis, and Michalis Vazir-
giannis. Clustering validity checking methods: Part
II. SIGMOD Record, 31(3):19–27, 2002.

[11] Ian H. Witten and Eibe Frank. Data mining: practi-
cal machine learning tools and techniques with Java
implementations. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2000.

[12] C. L. Blake and C. J. Merz. UCI repository of ma-
chine learning databases. University of California,
Irvine, Dept. of Information and Computer Sciences,
http://www.ics.uci.edu/∼mlearn/MLRepository.html,
1998.

    JCS&T Vol. 5 No. 4                                                                                                                     December 2005

271




