5 research outputs found

    Disaggregation of net-metered advanced metering infrastructure data to estimate photovoltaic generation

    Get PDF
    2019 Fall.Includes bibliographical references.Advanced metering infrastructure (AMI) is a system of smart meters and data management systems that enables communication between a utility and a customer's premise, and can provide real time information about a solar array's production. Due to residential solar systems typically being configured behind-the-meter, utilities often have very little information about their energy generation. In these instances, net-metered AMI data does not provide clear insight into PV system performance. This work presents a methodology for modeling individual array and system-wide PV generation using only weather data, premise AMI data, and the approximate date of PV installation. Nearly 850 homes with installed solar in Fort Collins, Colorado, USA were modeled for up to 36 months. By matching comparable periods of time to factor out sources of variability in a building's electrical load, algorithms are used to estimate the building's consumption, allowing the previously invisible solar generation to be calculated. These modeled outputs are then compared to previously developed white-box physical models. Using this new AMI method, individual premises can be modeled to agreement with physical models within ±20%. When modeling portfolio-wide aggregation, the AMI method operates most effectively in summer months when solar generation is highest. Over 75% of all days within three years modeled are estimated to within ±20% with established methods. Advantages of the AMI model with regard to snow coverage, shading, and difficult to model factors are discussed, and next-day PV prediction using forecasted weather data is also explored. This work provides a foundation for disaggregating solar generation from AMI data, without knowing specific physical parameters of the array or using known generation for computational training

    Hybrid energy system integration and management for solar energy: a review

    Get PDF
    The conventional grid is increasingly integrating renewable energy sources like solar energy to lower carbon emissions and other greenhouse gases. While energy management systems support grid integration by balancing power supply with demand, they are usually either predictive or real-time and therefore unable to utilise the full array of supply and demand responses, limiting grid integration of renewable energy sources. This limitation is overcome by an integrated energy management system. This review examines various concepts related to the integrated energy management system such as the power system configurations it operates in, and the types of supply and demand side responses. These concepts and approaches are particularly relevant for power systems that rely heavily on solar energy and have constraints on energy supply and costs. Building on from there, a comprehensive overview of current research and progress regarding the development of integrated energy management system frameworks, that have both predictive and real-time energy management capabilities, is provided. The potential benefits of an energy management system that integrates solar power forecasting, demand-side management, and supply-side management are explored. Furthermore, design considerations are proposed for creating solar energy forecasting models. The findings from this review have the potential to inform ongoing studies on the design and implementation of integrated energy management system, and their effect on power systems
    corecore