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ABSTRACT

SCALABLE DATA-DRIVEN MODELING AND ANALYTICS FOR
SMART BUILDINGS

FEBRUARY 2019

SRINIVASAN IYENGAR

B.TECH., COLLEGE OF ENGINEERING PUNE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Prashant Shenoy

Buildings account for over 40% of the energy and 75% of the electricity usage. Thus,

by reducing our energy footprint in buildings, we can improve our overall energy sustain-

ability. Further, the proliferation of networked sensors and IoT devices in recent years have

enabled monitoring of buildings to provide data at various granularity. For example, smart

plugs monitor appliance level usage inside the house, while solar meters monitor residential

rooftop solar installations. Furthermore, smart meters record energy usage at a grid-scale.

In this thesis, I argue that data-driven modeling applied to the IoT data from a smart

building, at varying granularity, in association with third party data can help to understand

and reduce human energy consumption. I present four data-driven modeling approaches —

that use sophisticated techniques from Machine Learning, Optimization, and Time Series

Analysis — applied at different granularities.
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First, I study IoT devices inside the house and discuss an approach called NIMD that au-

tomatically models individual electrical loads found in a household. The analytical model

resulting from this approach can be used in several applications. For example, these mod-

els can improve the performance of NILM algorithms to disaggregate loads in a given

household. Further, faulty or energy-inefficient appliances can be identified by observing

deviations in model parameters over its lifetime.

Second, I examine data from solar meters and present a machine learning framework

called SolarCast to forecast energy generation from residential rooftop installations. The

predictions enable exploiting the benefits of locally-generated solar energy.

Third, I employ a sensorless approach utilizing a graphical model representation to re-

port city-scale photovoltaic panel health and identify anomalies in solar energy production.

Immediate identification of faults maximizes the solar investment by aiding in optimal op-

erational performance.

Finally, I focus on grid-level smart meter data and use correlations between energy

usage and external weather to derive probabilistic estimates of energy, which is leveraged to

identify the least efficient buildings from a large population along with the underlying cause

of energy inefficiency. The identified homes can be targeted for custom energy efficiency

programs.

x
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CHAPTER 1

INTRODUCTION

Access to energy has enabled significant improvement in the quality of life in modern

societies. Of the overall energy usage, almost 40% is consumed by buildings, ahead of

industry and transportation sectors. Further, over the past several years, there has been

an increased deployment of networked devices — also popularly known as the Internet

of Things (IoT) devices — in built environments to monitor our energy generation and

consumption. This thesis explores the challenges and opportunities in leveraging data pro-

duced from these IoT devices to infer actionable insights for better energy management by

applying several techniques from Machine Learning, Optimization and Time Series Anal-

ysis.

1.1 Motivation
Energy, in different forms, has been vital for economic growth and human development.

Modern energy services such as electricity, natural gas, cooking fuel have been shown to be

directly linked to improved health and education. Over the past century, improved access

to energy has been a significant factor in diminishing poverty levels. UN reports have

identified a strong positive correlation between per capita energy consumption and Human

Development Index [47].

However, increased energy consumption has unintended consequences. Majority of

our energy sources are carbon-based fuels, causing a significant jump in CO2 concentra-

tion in the atmosphere. This increase has lead to adverse impact on the environment and

policymakers around the world are striving towards a sustainable energy future. Most of
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the countries are focussing their efforts on reducing energy intensity from carbon-based

sources [87]. Further, buildings account for over 40% of the energy and 75% of the elec-

tricity usage [61]. This energy consumption in buildings also accounts for 39% of the total

CO2 emissions. Hence, reducing our energy footprint in buildings has emerged as one of

the most critical problems facing us today. However, there is another emerging trend that

makes buildings an ideal candidate to focus our energy management measures, i.e., the

proliferation of IoT devices.

IoT devices are being installed in built environments at an increasing rate. Advanced

metering infrastructure in smart grids, also known as smart meters, can monitor a building’s

energy usage at fine-grained intervals. In the US alone, 70 million smart meters have been

installed in 2016. This number is expected to increase to 90 million by 2020 [31]. Inside

the house, smart plugs allow control over WiFi through APIs. NEST’s programmable and

self-learning WiFi-enabled thermostat has shown to reduce cooling and heating bills in

residential buildings. Around 10% of the homes in the US (⇡ 12.7 million households)

have smart devices deployed to varying degrees by 2015 [55]. Moreover, these IoT data

can be combined with external data sources such as weather and real-estate data through

APIs to drive deeper associations between our energy consumption and these factors.

We believe that this confluence of factors — i) increased monitoring and control in-

frastructure in built environments, and ii) availability of external data sources — permits

use of sophisticated data analytics techniques to infer actionable insights. As more IoT

devices in buildings become increasingly prevalent and ubiquitous, we argue that model-

ing energy usage patterns with external factors using data-driven modeling will be crucial

in reducing our energy consumption. Figure 1.1 provides a basic pipeline for data-driven

modeling. The data from IoT devices along with external 3rd party sources are ingested to

perform some form of data transformation. The data transformation can be applied using

techniques from different domains such as time-series techniques, optimization, and ma-
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IoT Data

3rd Party
Data

ApplicationsData
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Figure 1.1. Data-driven modeling pipeline

chine learning. The data transformation produces an analytical model that can be used to

build several applications that enable better energy management.

1.2 Thesis Contribution
As discussed earlier, increased deployments of networked sensors monitor the complete

lifecycle of energy usage. Thus, data can be looked at different granularities that stretches

from smart meters monitoring energy usage of homes in a city and solar meters monitoring

residential rooftop solar installations to smart plugs monitoring appliance level usage inside

the house. The thesis statement of my work is as follows - data-driven modeling applied to

the IoT data from a smart building, at varying granularity, in association with third party

data can provide actionable insight to understand and reduce human energy consumption.

By observing energy data at different granularities, I looked at addressing the following

research questions using the data-driven modeling pipeline shown in Figure 1.1 -

• How are appliances within a house/building used? Can we model their energy con-

sumption patterns?

• Can predict solar power generation from rooftop installations, using the minimal

site-specific information to integrate renewable sources of energy in our daily lives?
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Transformation

Analytical
Model Applications
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ii) Tax accessor WattHome Weather
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i) Directed energy
audits
ii) Targeted energy
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generation
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i) Past generation
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SolarCast Solar power
prediction

i) Flexible load
scheduling
ii) EV charging
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Individual
House

Panel electrical
properties,
Panel physical
properties,
IR and Visible
Camera etc.

i) Current weather SolarSpy
[Proposed Work]

Real-time
Anomaly
Detection

i) Early Maintenance
ii) Improved Performance

Table 1.1. Summary of the work proposed in this thesis

• Can we identify anomalies in solar power generation to maximize renewable energy

potential?

• Can we identify causes of inefficiency in residential buildings at city-scale to target

energy efficiency programs?

The solution to each of these questions are the individual contributions presented in this

thesis. Table 1.1 summarises these based on the data-driven modeling pipeline at varying

granularity of the energy data. Below, we discuss each of them briefly.

1.2.1 Modeling consumption and usage patterns of electrical appliances

A variety of energy management and analytics techniques rely on models of the power

usage of a device over time. Unfortunately, the models employed by these techniques are

often simplistic, such as modeling devices as being on with a fixed power usage or off and

consuming little power. The power usage of even relatively simple devices exhibits much

more complexity than a simple on and off state. Moreover, the process involved manual

intervention. To address the problem, in this thesis, we present a Non-Intrusive Model

Derivation (NIMD) algorithm to automate modeling of residential electric loads. NIMD
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automatically derives a compact representation of the time-varying power usage of any

residential electrical load, including both the device’s energy usage and its pattern of usage

over time. Such models are useful in several applications — such as Non-Intrusive Load

Monitoring, which has relied on simple on-off models in the past. Further, devices at the

end-of-life can be identified by observing deviations from their historical device models.

1.2.2 Predicting solar power generation from rooftop installations

One can also apply data-driven modeling on the data from residential rooftop solar

meters. Accurately forecasting solar generation is critical to fully exploiting the benefits

of locally-generated solar energy by scheduling flexible loads. In this thesis, I present

two machine learning techniques to predict solar power from publicly-available weather

forecasts. We use these techniques to develop SolarCast, which automatically generates

models that provide customized site-specific predictions of solar generation. SolarCast

utilizes a “black box” approach that requires only i) a site’s geographic location and ii) a

minimal amount of historical generation data. Since we intend SolarCast for small rooftop

deployments, it does not require detailed site- and panel-specific information, which owners

may not know, but instead automatically learns these parameters for each site.

1.2.3 Detecting anomalies in solar power generation

Solar panel generation is subject to several factors. First, weather-related factors such as

cloud cover cause intermittency in energy production, whereas higher temperatures reduce

panel efficiency. Apart from these snow, soiling, and pollen block solar irradiance from

falling on the panels thereby reducing generation. Moreover, power generation can also be

reduced due to regular wear and tear causing cracks and/or discoloration of the panels. At

the same time, one needs to distinguish between reduction in power output due to anomalies

and other factors such as cloudy conditions. Thus, identifying anomalies by observing just

the power produced is non-trivial. In this thesis, we propose SolarClique, a data-driven

approach that can flag anomalies in solar power generation with high accuracy. Unlike prior
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approaches, our work neither depends on expensive instrumentation nor does it require

external inputs such as weather data. Rather this approach exploits correlations in solar

power generation from geographically nearby sites to predict the expected output of a site

and flag anomalies. Detecting these anomalous is crucial in maximizing the investment

made to have a solar installation.

1.2.4 Identifying the inefficient homes along with its probable source

At a higher granularity, data-driven modeling can be applied at the grid-level by observ-

ing the smart meters recording electric and gas usage. In this thesis, I present an approach

called WattHome that first disaggregate a building’s observed energy usage into its heating,

cooling and base components. Unlike past methods such as NILM, the model presented

in this thesis does not require a priori training using ground truth data and instead uses

correlations between energy usage and external weather to derive probabilistic estimates

of energy use under different conditions. Next, this probabilistic model is used to identify

the least efficient buildings from a large population and develop algorithms to diagnose

the underlying cause of energy inefficiency. As shown in Table 1.1, WattHome produces a

weather sensitive analytical model of individual households in a city that can be leveraged

to conduct directed energy audits and correctly target energy efficiency programs.

1.3 Thesis Outline
We structure the remainder of this thesis as follows. Chapter 2 provides background on

data-driven modeling approaches applied at varying granularity and discusses prior work

along with some of the existing challenges. Chapter 3 describes Non-Intrusive Model

Derivation (NIMD) algorithm that automates the modeling of electric loads. Chapter 4

presents SolarCast, a black-box approach to automatically provide site-specific solar pre-

dictions. Chapter 5 discusses SolarClique, a sensorless method to detect anomalies in

solar power generation. Chapter 6 explains WattHome, an approach to identify inefficient

6



homes along with the probable cause. Finally, Chapter 7 presents the conclusions of this

thesis.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter provides background and related work on data-driven modeling used by

observing human energy usage patterns. Specifically, we discuss a few that are applied

at various granularities, i.e., from individual appliances in a house to its overall energy

usage at a grid-level from individual smart meters recording gas and electric consumption.

Further, we also extend our discussion to modeling renewable energy generation (primarily

solar). We also present challenges not addressed in state of the art.

2.1 Data-driven Modeling at the Appliance-level
Data-driven Modeling at the finest granularity, i.e., at the appliance-level of our energy

usage, allows detailing electricity consumption patterns and the running conditions of the

individual electrical loads to the consumers. Below, we describe a fundamental appliance-

level modeling approach, called Non-Intrusive Load Monitoring (NILM), that enables a

wide variety of applications.

2.1.1 Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM) techniques decompose the total energy usage

of a building into individual components — such as usage from lighting, from individual

appliances such as TV or washing machine and AC, furnace and water heaters. NILM was

introduced by Hart et. al. [50] to disaggregate building energy usage. NILM techniques

have been well-studied for decades [21, 25, 67]. The key premise behind NILM is that

each load or appliance exhibits unique power behavior (“power fingerprint”) and that it is
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possible to discern these patterns in the total energy usage and “extract” the power usage of

individual loads. These techniques use pattern recognition, signal processing or machine

learning techniques to perform load disaggregation.

Such techniques are becoming more commonplace with the growing popularity of

Internet-of-Things (IoT) devices being deployed in smart homes. Modeling of electrical

loads is a fundamental building block that is essential for driving higher-level techniques.

Such models are compact representations of the electrical usage patterns exhibited by a load

(e.g., a washing machine or TV) as well as temporal characteristics that describe when

the load is used by residents (e.g., residents watch TV every evening and do laundry on

weekends). NILM-based analytics approaches have been used in a variety of applications,

such as inferring occupancy patterns [26,64], reducing peak demand by opportunistic load

scheduling [20], and learning thermostat schedules [56].

2.1.2 Challenges

Many NILM approaches model electrical loads as simple on-off devices, where the load

draws a fixed amount of power when turned on. As illustrated in Figure 2.1, which depicts a

washing machine, most residential loads exhibit complex and varied power patterns that are

distinct from the simple on-off behavior. Hence, disaggregating loads based on a simplistic

and inaccurate understanding of a load’s behavior significantly degrades the accuracy of

higher-level techniques. Studies have observed that simplistic or coarse-grain models can

be detrimental to the accuracy and effectiveness of higher-level approaches [17].

Despite its importance, empirical or analytic modeling of electrical loads has received

relatively little attention. Typically, common devices, such as TVs, refrigerators, and com-

puters, are only rated (often conservatively) based on their maximum power but include no

details of how the device consumes power over time. A recent effort [18] analyzed empir-

ical data gathered from a large number of residential loads to argue that only the simplest

loads, such as light bulbs, exhibit a simple on-off behavior and demonstrates that most
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Figure 2.1. Observed power usage of a washing machine

loads exhibit more complex exponential decays or growth, bounded min-max, and cyclic

patterns. While this work proposed more complex analytic models to describe load behav-

ior, it did not propose any algorithms or approaches to derive (or construct) such models

automatically. That is, it required manual modeling of a load by an expert before such a

model could be used by higher-level optimizations. However, manual modeling of highly

complex loads is time-consuming, and, for a load as complex as Figure 2.1, potentially

infeasible given the load’s complexity.

2.2 Data-driven Modeling in Renewable Energy Management
In this section, we primarily focus on solar energy — the predominant form of renew-

able energy deployed in smart buildings. Below, we provide a background on how solar

installations in smart buildings (also called rooftop solar) differ from large utility-scale

solar farms and the unique challenges they possess.

2.2.1 Rooftop vs Utility-scale Installations

Solar deployments come in a wide variety of sizes, ranging from the massive solar

farms deployed by utilities (and some datacenter operators [11]) to small and medium-sized

deployments deployed by homeowners, farmers, and local businesses. Overall, nearly half

of aggregate solar capacity is now derived from small-scale home deployments (<10kW),

many of which rely on net metering to transfer surplus energy to the grid [74] — thereby

eliminating the need for expensive battery-based energy storage. As the number of home
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deployments grows, the need for predictive tools that provide near-term forecasts of solar

generation at the time-scales of tens of minutes to days is becoming increasingly important.

A detailed survey of solar power prediction techniques using custom models with known

parameters can be found in Lorenz et al. [70] and Huang et al. [52]. Accurate near-term

predictions, if available, have the potential to yield numerous benefits. For instance, homes

that plan to better align their energy usage with solar generation can substantially decrease

the surplus energy they contribute to the grid via net metering. Minimizing the energy

contributed by net metering is important for two reasons.

• First, consuming power at the point of production is inherently more energy-efficient

than net metering, since it eliminates transmission losses.

• Second, the increasing stochasticity in demand from net metered solar installations

complicates utilities’ task of balancing supply and demand in real time, since util-

ities cannot accurately account for home solar generation when planning generator

dispatch schedules, i.e., when to activate and deactivate generators to ensure the sup-

ply of power matches the grid’s net demand.

2.2.2 Challenges

Predicting solar generation for small-to-medium-sized solar deployments raises a dif-

ferent set of challenges than predicting it for massive solar farms. Specifically, the location

of massive solar deployments is carefully chosen to be in open spaces that minimize occlu-

sions. This enables installers to maximize solar output by precisely tuning the orientation

of the panels or employing “trackers” that continuously change the tilt of the panels to track

the sun. Further, industrial solar farm operators routinely clean the panels to keep them free

from dust or snow to maintain optimal solar output. At the same time, industrial operators

also have the technical expertise and resources to carefully design and tune custom models

to predict the future solar output.

11



Unfortunately, the characteristics described above do not hold for most small-to-

medium-scale solar deployments. For instance, the orientation and pitch of a home’s roof

constrain the installation of rooftop solar panels and limits the ability to optimize their

placement. As a result, shadows from nearby objects, such as trees or even neighboring

buildings, are common; these shadows complicate solar generation forecasting, as they

change based on the time of the day and season of the year. Roofs are often not easily

accessible, which also limits the ability to clean the panels. Finally, neither the owners

nor the installers of small solar deployments typically have the technical expertise or the

resources to develop custom prediction models that are specific to their setup. The large

number of small-to-medium-scale deployments makes it challenging for technical experts

to manually develop custom models for each site, as is common with industrial-scale solar

farms. In fact, due to the factors above, since the models for small rooftop solar deploy-

ments are more complex and dynamic than for large solar farms, they require even more

time and expertise to develop.

We note that most of the characteristics are highly specific to a particular installation.

Thus, precisely quantifying them is not practical, or even possible, for owners of solar

deployments having a limited technical background. Also, the aggregate amount of solar

capacity installed at small residential solar deployments is expected to exceed that of utility-

scale deployments for the first time in 2017 [1]. Thus, there is an increasing need for a

black-box approach to predict the energy generated for rooftop solar installations that can

automatically determine few of the unknown configurations parameters.

2.3 Data-driven Modeling in Solar Anomaly Detection
In this section, we focus on detecting anomalous solar power generation in a residen-

tial solar installation. Unlike power generation from traditional mechanical generators

(e.g., diesel generators), where power output is constant and controllable, the instanta-

neous power output from a PV system is inherently intermittent and uncontrollable. The
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Figure 2.2. Power generation from three geographically nearby solar sites. As shown, the
power output is intermittent and correlated for solar arrays within a geographical neighbor-
hood.

solar power output may see sudden changes, with energy generation at peak capacity at one

moment to reduced (or zero) output in the next period (see Figure 5.1). The change in the

power output can be attributed to a number of factors and our goal is to determine whether

the drop in power can be attributed to anomalous behavior in the solar installation.

2.3.1 Factors affecting solar output

A primary factor that influences the power generation of a solar panel is the solar irra-

diance, i.e., the amount of sunlight that is incident on the panel. The amount of sunlight a

solar panel receives is dependent on many factors such as time of the day and year, dust,

temperature, cloud cover, shade from nearby buildings or structures, tilt and orientation of

the panel, etc. These factors determine the amount of power that is generated based on how

much light is incident on the solar modules.

However, a number of other factors, related to hardware, can also reduce the power

output of a solar panel. For instance, the power output may reduce due to defective solar

modules, charge controllers, inverters, strings in PV, wired connections and so on. Clearly,

there are many factors that can cause problems in power generation. Thus, factors affecting

output can be broadly classified into two categories: (i) transient — factors that have a
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temporary effect on the power output (such as cloud cover); and (ii) anomalies — factors

that have a more prolonged impact (e.g., solar module defect) on the power output.

The transient factors can further be classified into common and local factors. The com-

mon factors, such as weather, affect the power output of all the solar panels in a given

region. Moreover, its effect is temporary as the output changes with a change in weather

conditions. For instance, overcast weather conditions temporarily reduce the output of all

panels in a given region. The local factors, such as shade from nearby foliage or buildings,

are usually site-specific and do no affect the power output of other sites. These local fac-

tors may be recurring and reduce the power output at fixed periods in a day. In contrast,

anomalous factors, such as bird droppings or system malfunctions, reduces power output

for prolonged periods and usually require corrective action to restore normal operation of

the site. Note that both transient and anomalous factors may reduce the power output of a

solar array. Thus, a key challenge in designing a solar anomaly detection algorithm is to

differentiate the reduction in power output due to transient factors and anomalies.

2.3.2 Challenges

Prior approaches have focused on using exogenous factors to predict the future power

generation [15, 71, 94]. A simple approach is to use such prediction models and report

anomaly in solar panels if the power generated is below the predicted value for an extended

period. However, it is known that external factors such as cloud cover are inadequate to

accurately predict power output from solar installations [58]. Thus, prediction models may

over- or under-predict power generation, and such an approach may not be sufficient for

detecting anomalies.

Prediction models can be improved using additional sensors but can be prohibitively

expensive for residential setups [75]. For instance, drone-mounted cameras can detect

occlusions in a panel but are expensive and require elaborate setup. Other studies use an

ideal model of the solar arrays to detect faults [9, 35]. These studies rely on various site-
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(a) Winter Months (b) Summer Months

Figure 2.3. Linear relationship between energy consumption and ambient temperature.

specific parameters and assume standard test condition (STC) values of panels are known.

However, site-specific parameters are often not available. Thus, most large solar farms

usually depend on professional operators to continuously monitor and maintain their setup

to detect faults early12. Clearly, such elaborate setups may not be economically feasible

in a residential solar installation. Thus, there is a need for a data-driven and cost-effective

approach for detecting anomalies in a solar installation.

2.4 Data-driven Modeling at the Grid-level
Data-driven modeling at the grid-level using smart meters monitor energy usage of

individual homes. This enables comparative analysis among the homes by using external

sources of real-estate data describing building type, age, and square footage. Additionally,

weather data can be utilized in association with energy consumption to identify inefficient

homes. Below, we provide some background on energy inefficiency in buildings.

2.4.1 Energy inefficiency in buildings

Energy usage in residential buildings has different sources such as heating and cool-

ing, lighting, household appliances and electronic equipment. There can be many causes of

inefficiencies in each of these components, such as the use of inefficient incandescent light-

1ESA Renewables: http://esarenewables.com/

2Affinity Energy: https://www.affinityenergy.com/
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ing and the use of inefficient (e.g., non-energy star) appliances. Studies have shown that

heating and cooling is the dominant portion of a building’s energy usage, comprising over

half of the total usage [2, 61], and it follows that the most significant cause of inefficiency

lies in problems with heating and cooling. Two factors determine heating and cooling effi-

ciency of a building: (1) the insulation of the building’s external walls and roof (”building

envelope”) and their ability to minimize thermal leakage, and (2) the efficiency of the heat-

ing and cooling equipment. Recent technology improvements have seen advancements on

both fronts. New buildings are constructed using modern methods and better construction

materials that yield a building envelope that minimizes air leaks and thermal loss through

better-insulated walls and roofs and high-efficiency windows and doors. Similarly, new

high-efficiency heating and AC equipment are typically 20-30% more efficient than equip-

ment installed in the late 1990s and early 2000s.

Unfortunately, older residential buildings and even ones built two decades ago do not

incorporate such energy efficient features. Further, the building envelope can deteriorate

over time due to age and weather and so can mechanical HVAC equipment. Consequently,

an analysis of a building’s heating and cooling energy use can point to the leading causes

of a building’s energy inefficiency.

An approach for modeling a building’s heating and cooling usage is to model its de-

pendence on weather [106]. For example, a building’s heating and cooling usage can be

modeled as a linear function of external temperature. To intuitively understand this, con-

sider cooling energy usage during the summer. The higher the outside temperature on hot

summer days, the higher the AC energy usage. Since the difference between outside and

inside temperatures are larger, there is higher thermal gain — requiring a longer duration

of cooling to maintain a set indoor temperature. Thus, there is a linear relationship between

heating and cooling energy use and outside temperature. Such linear models are commonly

used in the energy science research and capture the relationship between energy use and

the outside temperature, and we assume them in our work. Figure 2.3(a) and (b) illustrates
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the linear dependence of heating energy used in the winter and cooling energy used in the

summer on external temperature for an example home.

NILM-based methods that assume the availability of ground truth data can disaggregate

loads and extract heating and cooling usage from the total energy usage and then build a

model to correlate heating and cooling usage to parameters such as temperature. However,

such an approach is infeasible to find the least efficient buildings from a population of hun-

dreds or thousands of buildings, as it implies we need full information of every load in all

buildings in a city. Instead of performing full disaggregation of loads, our approach focuses

on partial coarse-grain decomposition. In contrast to full load disaggregation, one can

decompose the total energy usage into two components—weather-dependent and weather-

independent components. As noted earlier, weather-independent loads consist of heating

and cooling equipment in a home, since energy usage of these appliances is dependent on

external weather parameters such as temperature. Weather independent loads consist of all

loads such as cleaning and cooking appliances, TV, electric equipment, lighting, etc. that

do not depend on temperature.

2.4.2 Challenges

By simply using the insight that heating and cooling energy use has a linear dependence

on temperature, one can construct a model that uses the correlations between the observed

variations in energy and temperatures to decomposes the total usage into these two compo-

nents. Consequently, one can automatically build models of heating and cooling usage (as

a function of temperature) as well as the non-HVAC usage and overcome the limitations of

full load disaggregation methods. Simple versions of such linear models have been used in

energy science research for many years [41, 51, 63]. However, these models do not capture

the stochastic variations in heating and cooling as well as the weather-independent energy

usage resulting from day to day variations in human activities inside a home. For exam-

ple, energy usage on the weekend may be higher since the building is occupied for longer
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periods, increasing the heating and cooling usage as well as usage from activities such as

washing clothes. Figure 2.3(a) and (b) depict the substantial variance in energy usage.
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CHAPTER 3

AUTOMATED MODELING OF RESIDENTIAL LOADS

This chapter presents Non-Intrusive Model Derivation (NIMD), an algorithm to auto-

mate modeling of residential electric loads. We initially start with describing the analytical

models that represent different characteristic loads found in a residential building followed

by describing the NIMD algorithm in detail. We conclude with a detailed evaluation illus-

trating the efficacy of our algorithm.

3.1 Motivation
Modeling of electrical loads is an essential part of several higher-level techniques such

as NILM. But several NILM approaches model electrical loads as simple on-off appliances,

i.e., the devices consume a fixed amount of power when turned on. These models are quite

simplistic and do not correctly explain the behavior of energy drawn by these devices. A

recent effort [18] empirically characterized electrical loads from their power traces and

demonstrated that common loads could be modeled analytically. However, it involved

manual modeling of electrical loads by an expert and assumed that a priori information

such as the type of device being known. Thus, there is a need to automatically derive

the “best” analytic description that explains the observed behavior. Further, past work has

not adequately looked at the way humans interact with the devices. Thus, apart from the

modeling the power signature, the usage pattern of the devices can also be captured.
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3.2 Analytical Characterization of Electrical Loads
Below, we show the empirically observed behavior of each basic load type modeled

using one of four analytic equations:

1. On-Off Model: In this case, the load draws a fixed power P
on

when active and zero

or a small amount of standby power P
off

when inactive. Simple resistive loads were

found to exhibit such binary on-off behavior.

2. On-Off Decay Model: In this case, the power usage of the load exhibits an exponen-

tial decay behavior, represented as follows.

X(t) =

8
><

>:

p
active

+ (p
peak

� p
active

)e��t, 0  t < t
active

X
o↵

, t � t
active

(3.1)

Here, p
peak

represents the initial surge power, p
active

is the stable power level and

� captures the rate of decay. Many inductive loads consisting of AC motors were

shown to exhibit this behavior.

3. On-Off Growth Model: Some loads exhibit a growth behavior i.e. a logarithmic

growth in power usage. We model such devices using a logarithmic function (in-

verse of the exponential function) that starts with a power level p
base

with a growth

parameter �. We refer to such loads as an on-off growth model:

X(t) =

8
><

>:

p
base

+ � · ln t, 0 < t < t
active

X
o↵

, t � t
active

(3.2)

4. Stable Min-Max and Random Range Models: All non-linear loads exhibit a degree

of random behavior and the observed behavior was characterized as a random walk

between an upper and lower bound (referred to as random range) or a stable power

draw with random upward or downward deviation (referred to as a stable min-max
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Figure 3.1. Pipeline of steps involved in device modeling of an electrical load

model). While prior work [18] employed a uniform distribution to model random

power fluctuations in non-linear loads, our work uses the more general Gamma and

LogGamma distributions to model stable min and stable max behavior with random

deviations. The two models are shown below.

X(t) ⇠ Gamma(↵, loc, scale), 0 < t < t
active

(3.3)

X(t) ⇠ LogGamma(↵, loc, scale), 0 < t < t
active

(3.4)

Here, ↵, loc and scale denote the shape, location and scale parameters for the two

distributions. Electronic loads with switched-mode power supplies, such as TVs,

phone chargers, and computers were shown to exhibit this behavior.

5. Cyclic Model: Any load that exhibits repeating patterns was characterized as cyclic

with a certain period. All other complex loads that included multiple types of basic

loads were characterized as a linear combination of above loads.

3.3 NIMD Algorithm
In this section, we propose our Non-Intrusive Model Derivation (NIMD) approach for

automated modeling of electrical loads. Broadly our approach has two parts: (i) device

modeling, where we learn the power usage behavior of the load when it is active, and (ii)

usage modeling, where we learn how the users use the load in a particular environment.

Although, both components are necessary to model the overall load behavior, they are
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independent and can be used on their own for specific use-cases. In what follows, we

describe the details of the device and usage modeling.

3.3.1 Basic Approach

Figure 3.1 depicts the high-level approach for NIMD device modeling. Given a raw

power trace of a load, NIMD’s approach to constructing a device model involves the fol-

lowing steps:

• Step 1: Active period extraction: For a given trace, the first step is to partition

the trace into active and inactive periods. An active period is one where the load

is operating and drawing power, while an inactive period is one where the load is

turned off or in standby mode (and not in active use). A long power trace will consist

of alternating periods of active and inactive use, and hence, this step extracts active

periods from the trace.

• Step 2: State change detection via change point detection: During each active

period, a load may transition through different active states and exhibit a different

type of power variations in each state as it transitions from one active state to another.

In this step, our technique uses a change detection algorithm to determine these state

transitions, which manifest as “significant” changes in power behavior. By further

partitioning an active period at each state transition, we obtain a set of trace segments

corresponding to different active states within each active period.

• Step 3: Cycle detection: Next our technique compares the power patterns across

states to determine if the behavior is cyclic. If a repeating pattern of state transitions

is found, then a more compact model can be constructed by analyzing a repeating

cycle rather than all trace segments.

• Step 4: Model fitting: In this key step, our technique tries to fit the trace segment

extracted from each state onto various analytic models described in Section 3. The
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best fit is then chosen, which yields both the load type seen during that active state

and the parameters of the model describing that observed behavior.

• Step 5: Device Model Generation: The previous step yields a sequence of analytic

models, one for each active phase, as well as cyclic dependencies, if any, for each

active period. We repeat this process for each active period present in the trace. The

final step then is to catalog the sequence of analytic functions for the overall model

as well as the parameters of the various analytic functions found by our technique.

While the previous steps construct a device model from a raw power trace, we now

describe the high-level approach for deriving a usage model for the load.

Intuitively, the usage model involves determining how frequently a load is used and

when it is used (e.g., mornings, evenings, weekends, summer, etc.) To derive the usage,

consider the first step of the device modeling, namely active period extraction. In this step,

the trace is partitioned into active and inactive periods. In doing so, we obtain, over the

period of the trace, start times of each active period, and the lengths of each active (“on”)

and inactive (“off”) periods. This data is used to construct a usage model as follows:

• Step 1: Our technique first finds the shortest duration (e.g., a day, week, month or

year) over which the load exhibits “similar” behavior. In order to derive a compact

model, this is the period over which the usage of the device repeats in a statistically

meaningful manner and captures the seasonality of the usage.

• Step 2: Next, our technique constructs probability distributions for the start times and

the active and inactive period lengths for the above duration. The joint probability

distribution of these variables yields the usage model.

Together, device and usage models together describe a compact model for residential

electrical loads. Below, we discuss the key steps in device and usage modeling in detail.
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3.3.2 Device Modeling

Figure 3.1 depicts the key steps for automated device modeling, which are outlined in

the previous section. We discuss each step in more detail below.

• Step 1: Active Period Extraction - Each load alternates between active and inactive

periods. Inactive periods can be determined by sequentially scanning the trace for

periods where the power usage is less than a low threshold ✏ for durations longer

than a threshold interval ⌧ . This threshold corresponds to standby mode, the load

will either consume zero power or a small amount of standby power (also known as

“vampire” power [38]). Once inactive periods are labeled in the trace, the remaining

periods are, by definition, active periods.

• Step 2: State Change Detection - When a load is active, it may transition between

different active states. Each state may represent transitions between different basic

loads that are components of the overall load, or may represent different active states

of a basic load. Each state manifests itself in terms of a different power usage pat-

tern. For example, a washing machine cycle may involve wash, rinse, and spin cycles,

where different components of the washer (i.e., basic loads) activate in turn. Simi-

larly, during the spin cycle, the motor may transition through different speeds, each

of which is a distinct state with a different power usage level. Since each active state

has a distinct and observable power usage pattern, our technique uses a change point

detection algorithm to determine when significant changes (i.e., transitions) occur in

the observed power usage. Change point detection (also known as change detection)

is a well-known technique that is used for anomaly detection [81, 92]. However,

since traditional change detection techniques are not well suited to our problem, we

devise a new change detection algorithm to detect state transition points within an

active period.
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Our energy-specific change point detection algorithm is based on the notion of ap-

proximate entropy. Intuitively, entropy is a measure of the unpredictability of infor-

mation content. In the context of time series data, Approximate Entropy (ApEn) is

a technique to quantify unpredictability of fluctuations in data [82]. Our algorithm

operates over a sliding window of the power time series for an active period. For

each position of the sliding window, it computes the approximate entropy H over a

the window of length � 1. Next, we need to detect large changes in approximate en-

tropy as the window slides over the time series. To do so, we employ the Canny Edge

Detection algorithm [23], a technique from computer vision, to detect “edges” where

there are sudden changes in the entropy values H . Further, we remove certain edges

that are within a predefined range � of each other. Doing so yields instants in the

power trace where significant changes in approximate entropy (which represent ac-

tive state changes) are observed. Algorithm 1 describes the pseudocode of our change

detection algorithm and Figure 3.2 illustrates the different steps in the algorithm: (i)

approximate entropy computed over a sliding window, (ii) canny edge detection, and

(iii) removing nearby edges for a washing machine power trace. Given the change

points, our technique then partitions each active period into segments, where each

segment represents the power usage observed in a specific active state.

Algorithm 1 Changepoint detection to mark active state changes using Approximate En-
tropy

1: procedure ENTROPY-CHANGEPOINT(X,�, �)
2: Initialize:H  []

3: H.append(ApEn(X[i : i + �])) 8i 2 [1..|X|]� �]
4: "

all

 CannyEdge1D(H)

5: " RemoveCloseEdges("
all

, �)
6: return "

1The ApEn computation requires us to set two additional parameters (sequence length, set to M = �/4
and filtering level, set to R = .2 · �(X)) that are not shown in the pseudocode.
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Figure 3.2. Approximate Entropy based change detection using canny edge detection on a
washing machine trace

• Step 3: Cycle Detection - Certain loads may transition through repeating cycles

of active states, yielding cyclic behavior that manifests itself as repeating patterns of

observed power usage. Hence, rather than modeling the load as a linear sequence

of active states, we search for repeating sub-sequences of active states that repre-

sent cyclic behavior within each active period or repeating patterns within an active

state. We use autocorrelation, a standard time series technique, to discover repeat-

ing power patterns within an active period. The autocorrelation of a periodic signal

will exhibit a local maxima at the time multiples of the original signal’s underlying

period. Thus, we compute the autocorrelation of the active period time series for dif-

ferent lag values to determine cycles. To illustrate this process, we choose a portion

of the washing machine trace and show the corresponding autocorrelation values for

the identified cycles (see Figure 3.3).
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Figure 3.3. Autocorrelation plot of a time segement in an active duration of a device

• Step 4: Model Fitting - After extracting a time series segment for each active state

within an active period, our technique then turns to the key problem of deriving an

analytic model that describes the power usage variations observed within each state.

Recall from the previous section that a basic load can exhibit on-off, on-off decay,

on-off growth, stable-min or stable-max behavior, depending on whether it is resis-

tive, inductive or non-linear. We use analytic closed form equations to capture the

behavior of the first three types of loads and use probability distributions to capture

the behavior exhibited by latter two types of non-linear loads. The model fitting pro-

cess involves fitting a curve onto the time series data for the first three load types and

fitting a distribution onto the data for the latter two. Since we have no a priori knowl-

edge of the load type, our approach tries to fit different types of curves or distribution

and chooses the best fit.

First, to determine whether to fit a curve or a distribution, our technique determines

if there are noticeable trends in the data (i.e., on-off, on-off decay or growth) or if

it is derived from a random process (stable min or stable max). This is achieved by

differentiating the time series of the load and observing the change in standard devia-

tion. Our insight is that the standard deviation of the differentiated time series should
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Figure 3.4. On-Off Decay model fit on a time segement in a active duration of a device

decrease for trending data and increase for data derived from a random process. This

step enables our technique to determine whether to fit a curve or fit a distribution

for each time series segment corresponding to an active state. In the former case,

our technique then attempts to fit a linear segment, an exponential decay curve and

logarithmic growth curve onto the data using non-linear least squares method. In the

latter case, our technique attempts to fit both the gamma and the log-gamma distri-

butions onto the data using the Maximum Likelihood Estimation (MLE) method. In

either case, we choose the curve or the distribution that is the best fit in terms of ex-

plaining the observed data. Specifically we use goodness-of-fit measures, discussed

later to choose the best fit. The output of this step is a classification of each active

state as a particular type of base load and the parameters of the derived model (i.e.,

curve or distribution) for that base load. Figure 3.4 illustrates the on-off decay fit on

the part of the time segment shown in Figure 3.3.

• Step 5: Device Model Generation - The previous step derives a unique model for

each non-repeating active state within an active period and repeats this process for

each active period in the raw time series. This yields a collection of models and our

final step derives an overall device model from this collection of base models. This is

achieved by creating a multi-tuple record comprising models for each active period.
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Peak no. P
stable

P
peak

� timelength
1 339.78 897.85 0.33 12
2 342.68 719.03 0.22 12
3 366.87 805.28 0.25 12

Mean 349.77 807.38 0.27 12

Table 3.1. Variation in parameters of the active duration of a device shown as a frequency
table with mean value.

Each tuple contains information on the state number (in a given active period), period

(or 0 if no period is found), the chosen label for the model (on-off decay, stable

max etc.), the fit parameters (P
stable

, P
peak

, � and time length for on-off decay), and

overall segment length. For the segment shown in Figure 3.3, for instance, the tuple

hSegment Number, Period, Model, Fit Parameters, Segment length i is given by -

h11, 20, On� off Decay, ⇤params, 200i.

In the case of cycles within an active period, the same basic model will be found repeat-

edly. However, due to the power behavior of electrical loads, there may be slight differences

in the observed power values or patterns for different observed instances of the same state.

Hence, the computed parameters of the load will vary slightly from one instance of the

state to another. Our overall model can capture the variations at different degrees of accu-

racy. A more accurate description is less compact but captures the observed variations more

faithfully. Conversely, a more compact model is less accurate and also more approximate.

Currently, our technique supports three representations for capturing parameter variations

across repeating instances of the same active state: (i) a single mean value for each param-

eter across all instances (the most concise representation, but also the least precise), (ii) a

frequency table, or (iii) a probability density as multiple dimensions in a parameter hyper-

space (the most precise). Table 3.1 displays the frequency table and the mean value for all

the parameters for the time segment shown in Figure 3.3. Note that a single mean value for

each model parameter will lose subtle variations exhibited by the load, while a probability
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(a) Airconditioner (b) Dryer (c) Refrigerator

Figure 3.5. Energy consumption of devices in kWh over different time of the day and day
of the year

density captures the likelihood of all the possible values of the different parameters of a

model.

3.3.3 Usage Modeling

The usage model captures how a load is used within a certain environment by its users.

Regardless of whether the load is a foreground load or a background load, the usage of a

load is captured by how frequently it activates and when. Hence, the usage patterns can

be captured by three parameters: (i) start time, (ii) length of an active period, and (iii)

length of an inactive period. Note that the three parameters are not independent—the end

of an inactive period defines the start time of the next active period. Nevertheless deriving

all three parameters enables us to capture both the frequency of usage as well as seasonal

dependencies (e.g., load is only active in the evenings, or only on weekends, or only in the

summer etc). Figure 3.5 shows energy consumption (in kWh) in the form of a heat map

for an AC, a clothes dryer and a refrigerator for each hour of the day for an entire year. The

figure shows that the AC is used predominantly in the summer, while the refrigerator is

active multiple times every single day on account of being an ”always-on” load. The dryer

is typically used only once or twice a week.

• Step 1: To capture various usage patterns, our technique first determines the smallest

time window (e.g., day, week, month or year) over which the load exhibits statisti-
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cally significant usage variations. We start with the largest time window present in

the trace (e.g., a year or a month) and compute the frequency distribution of start

times over this time window. We then compute the coefficient of variation i.e. mean

normalized standard deviation, for the start time frequency ⌫. We then recursively

proceed to the next smaller time window (e.g., pick a week if the previous window

was a month) and repeat the process of computing the frequency distribution of start

times over this window and the coefficient of variation (COV) until the COV is found

to be greater than 1. Thus, we pick the smallest time window (i.e., the most com-

pact temporal representation) to model usage while ensuring that we do not miss any

statistically significant variations in usage of the load.

• Step 2: Given the appropriate time window over which usage should be modeled,

our technique then uses the start times and lengths of active and inactive periods

extracted from the power series trace to compute (i) a histogram of start times over

the time window, and (ii) histograms of active and inactive period lengths. We then

use the Kernel Density Estimation (KDE), a non-parametric method for data smooth-

ing, to compute a probability distribution over each histogram. This process yields

three probability distribution functions for the start times, active and inactive period

lengths, respectively. The joint probability distribution function over these three pa-

rameters represents the usage model for the load.

3.4 NIMD Implementation
We implemented a prototype of our NIMD algorithm in python using the SciPy stack.

SciPy stack has a collection of powerful scientific computing libraries for data processing.

Our prototype takes a raw power trace as input and outputs a device model and the usage

model for it using techniques described in the previous section. The overall model fitting

component and Kernel Density Estimation uses specific modules from the SciPy library.

For calculating Approximate Entropy, we used PyEEG [16], an open source python mod-
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Name #Devices Duration Frequency Region

AMPds 24 2 years 1 Minute Canada

Smart* 26 3 months 1 second USA

Tracebase 158 few days 1 second Germany

Table 3.2. Datasets used for evaluation

ule for data processing for EEG data. For other statistical mechanisms, we used standard

python libraries. The model derived from the trace can then be employed for a number of

higher level energy algorithms. In addition, the model, which is a compact description of

the device, can be also used to create a synthetic traces that “faithfully” mimic the load’s

actual power behavior, as discussed next.

3.5 Evaluation Setting
3.5.1 Datasets:

We used device-level electrical data from three publicly available datasets: AM-

Pds [72], Smart* [19], and Tracebase [86]. Table 3.2 describes the key characteristics of

these datasets. AMDds is the smallest of the three datasets, but has load data for two years.

Tracebase is the most extensive dataset in terms of number of loads, while the Smart* has

appliance-level data at a 1-second resolution over a period of 3 months.

3.5.2 Metrics:

To analytically evaluate the goodness of fit for on-off, on-off decay or on-off growth

models described earlier, we use Mean Absolute Percentage Error (MAPE), a standard

statistical measure of accuracy expressed as a percentage value. The formula for calculating

MAPE for a given device with power consumption data represented as Xdata

[1..k] and the fitted

model Xfit

[1..k] is given below.
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MAPE =

100

n
·

KX

k=1

�����
Xdata

k

�Xfit

k

Mean(Xdata

[1..K])

����� (3.5)

For stable min and stable max models, we use Kullback-Leibler (KL) divergence, a

measure of the difference between two probability distributions. KL divergence of proba-

bility distribution Q from P is symbolized as D
KL

(P ||Q). However, KL divergence is not

a metric as it is not symmetric. In practice, probability P is the distribution of the data

and Q is the proposed approximation for P . In our case, Q is the Gamma distribution for

stable min and the LogGamma distribution for stable max. The lower the MAPE or KL

divergence values, better is the fit.

D
KL

(P ||Q) =

X

i

P (i) · log P (i)

Q(i)
(3.6)

3.6 Evaluation
In this section, we evaluate the efficacy of our NIMD approach for device and usage

modeling.

3.6.1 Device Modeling of Basic Loads

Figure 3.6 illustrates the performance of model fit on the 4 appliances from the Smart*

dataset. These appliances are - (a) a Refrigerator, (b) an AC, (c) a CRT-Monitor, and

(d) a LCD-TV fitted with on-off decay, on-off growth, stable min, and stable max models

respectively. The learnt model parameters are also shown in each figure. Figure 3.6 (a)

and (b) show the MAPE values for the fitted model on the data. For the two examples

shown for curve fits in Figure 3.6(a) and (b), we get a MAPE (error) of 2.4% and 1.02%.

Figure 3.6 (c) and (d) show the KL divergence of data from Gamma and LogGamma

distribution respectively. These figures also show the KL divergence of data for a baseline

Normal distribution fit. Intuitively, KL divergence is the penalty on compressing data to

be represented as the proposed distribution. The figure shows that KL divergence of the our
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Figure 3.6. Basic Load Models for On-off Decay, On-off Growth, Stable min, and Stable
max with fitted models
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Figure 3.7. Model learnt for a composite load

proposed Gamma and LogGamma distributions is a more than a factor of 2 lower than

the baseline Normal distribution. Finally, Figure 3.7 shows the overall model learnt for a

washing machine, a composite load.

3.6.2 Accuracy of the device models:

To evaluate the accuracy of model fit, we ran it on a number of appliance loads of

various types in the tracebase dataset. In Figure 3.8(a), we have a violin plot showing

the MAPE values for 5 refrigerators over curve fit on several active periods of the device.

The horizontal stick in these plots represents each underlying datapoint corresponding to

a measurement for an active period. The thickness of the graphs for different devices

corresponding to the MAPE values on the y-axis is indicative of the frequency distribution

of the datapoints. Overall, more than 1000 active periods spread across 5 devices are shown

in this figure. MAPE values for 2 of the refrigerators are almost below 3%, whereas it is

between 1-7% for 2 other refrigerators. For one refrigerator, we found a comparitively

much poorer fit in the range of 6-10%. Figure 3.8(b) shows an appliance type-wise view of

the error in the curve fits for 4 inductive (Refrigerator) or resistive (Kettle, Lamp, Toaster)
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Figure 3.8. Goodness of Fit measures for different appliances from Tracebase dataset

load types. The graph represents more than 1300 active period data for 7 Lamps, 6 Kettles

and 2 Toasters along with the 5 refrigerators shown in (a). As shown, the resistive loads

have MAPE values below 4%.

As discussed earlier, for distribution fit we use a relative measure called KL diver-

gence. Here, again we compare our proposed distributions to a baseline Normal distribu-

tion. Figure 3.8(c) shows the violin plots for more than 200 active periods spread across

8 LCD-TVs. For 5 devices the KL divergence improves by modeling the active period

traces as a LogGamma distribution by a factor of 1.5. For the other 3 devices, there is no

appreciable difference between the two distributions. Figure 3.8(d) represents appliance

type-wise spread of KL divergence for non-linear loads such as TFT-Monitor, Desktop-PC,

and Laptop along with LCD-TVs representing more than 1000 active periods. Except for

LCD-TVs, we do not find any improvement (or worsening) in KL divergence by model

fitting proposed one-tailed distributions over Normal distribution.
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Figure 3.9. Variation in parameters over several active periods

3.6.3 Descriptiveness of the Model:

The model parameters of an electrical load are not static and the variation in them must

be captured for building a realistic model. Figure 3.9 shows the probability density over the

3 dimensions of the parameter space (p
peak

, p
stable

, and �) obtained from applying NIMD

algorithm on the different active periods of a refrigerator from the TraceBase dataset. We

observe that the 3 parameters vary from one active period to the other. Figure 3.9 illustrates

how a probability density is more precise than a frequency distribution table (shown as a

scatter plot) as it provides a smooth parameter space with just a few data samples.

3.6.4 Usage Modeling

To evaluate the efficacy of the usage modeling, we used loads from the AMPds dataset

since it contains consumption data for a period of 2 years. With an adequate amount of

data, we can choose the smallest time window which captures the usage variations of a

device. Earlier, we discussed how the joint probability distribution of start times over an

optimal window and the length of the active and inactive periods capture the usage model
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Device (Window)
Start times/interval Active length Inactive length

µ � µ � µ �

Dryer(W) 4.2 2.2 41.8 11.7 1891 2220

Washer(W) 5.2 2.7 50.9 24.3 1557.1 2114.7

Dishwasher(W) 3.7 1.3 75.8 39.6 2034 2160

Fridge(D) 39.6 4.0 13.5 9.8 22.5 9.7

TV(D) 1.9 1.0 67.7 47.9 522.8 501.5

WOE(M) 3.6 1.8 105.9 399.6 8978 7901

Table 3.3. Usage Patterns of devices with Daily (D), Weekly (W) or Monthly (M) window

of any device. Since the joint probability of these 3 variables is difficult to plot, we use

Table 3.3 to show the mean and the standard deviation of a number of active periods in a

time window (optimally selected from the data) with the length of the active and inactive

periods. The time window selected for the different devices matches the intuitive values

that would have been manually selected for the different devices. For example, our models

indicate that the approximate duty cycle for the refrigerator is around 36 minutes (aver-

age active + inactive period lengths). Our usage models also capture that devices such as

Dryers, Washing machines and Dishwashers are used 3 to 6 times per week.

3.6.5 Automated versus Manual Modeling

To compare our automated approach with models manually derived by experts, we

obtained load data and manually derived models reported in [18] from the authors. We used

NIDM to derive models for the loads and then compare NIMD’s models with the manually

derived ones. Figure 3.10 shows a comparison between the manual and the automated

modeling approaches. We were able to classify each of these 4 appliances with the correct

basic load type. Further, the learnt parameters were very close to the manual modeling
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(a) AC (b) CoffeeMaker

(c) Dryer (d) Toaster

Figure 3.10. Comparison of automated v/s manual modeling

values shown in [18]. The error associated with both manual and automated modeling was

lesser than 1% in all 4 cases. Thus, our automated approach derives models comparable to

human-derived fitted models using domain knowledge (e.g., load type).

3.6.6 Case study: Synthetic Trace Generation

While our models can be used for many energy management tasks, they can also be

used to derive a synthetic power trace that is statistically similar to the original trace. For

this, we need to sample the usage distributions to compute start times of each active and

inactive durations. To derive the parameters such that the synthetic trace mimic the original

load usage, we need to draw samples from joint probability distribution computed by the

usage model. To do so, we employ a state-of-the-art Markov Chain Monte Carlo sampling

method called the Metropolis-Hastings Algorithm [27] that generates a sequence of samples
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Figure 3.11. Synthetic trace generated using out models.

through a random walk over the sample space. Once the start time is computed, the usage

model, which is itself a sequence of analytic models for each active state, is then used to

create a power trace for that active period. In the case of non-linear loads, where the device

models are distributions, we sample the distribution to create a power trace. At the end of

an active period, we set the power to the standby power level for the inactive period. The

process repeats for the next start period.

Figure 3.11 shows the original load trace and the sample trace generated synthetically

from the first sample taken from real data after 104 iterations. By ”replaying” the usage

and device models, we observe that the synthetic trace exhibits similar power usage as the

original load trace.

3.7 Related Work
Due to the large-scale deployment of smart meters by utilities, there has been a resur-

gence in interest in energy analytics techniques, such as NILM, in both academia [12,50,66]

and industry [24]. NILM-based energy analytics have been used in different scenarios,

such as opportunistic load scheduling for capping peak demand [20], learning thermostats

schedule [56], etc. However, prior work on NILM generally uses simple on-off models for

electrical loads, which, as we show, are highly inaccurate. Thus, an important challenge
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is the ability to analytically model the behavior of a variety of residential loads. Earlier

work [17,18] has demonstrated that most appliances map onto few basic types that exhibit

a compact set of features. This prior work shows how to manually construct models for

the basic load types, but does not show how to automatically derive models, especially for

complex loads that are time-consuming to manually model.

In this work, we propose an algorithm to automatically derive a model for each ap-

pliance from its empirical measurements. Our technique is analogous to disaggregation

where an energy usage trace of a compound load is automatically disaggregated into a set

of basic load types and the parameters of each basic load type are automatically learned.

Further, we also model the interaction of devices with residents to build a usage model for

them. Finally, our NIMD techniques adapt and extend multiple methods from probability,

statistics, and information theory to the energy analytics domain. These methods provide a

strong theoretical framework for automatically deriving models of electrical load behavior.

3.8 Conclusions
In this chapter, we presented a new approach for automated unsupervised derivation

of the device and usage models of residential loads. We presented our NIMD approach

that uses concepts from power systems, statistics, and machine learning to automate loads

modeling. Our experimental evaluation showed that our automated models are within 1%

of the ground truth and very close to those derived manually by experts and yield good

fits for a range of loads. A current limitation of our approach is that they only handle

sequential composite loads, where the base loads activate in sequence, and do not handle

parallel composite loads. As future work, we will study methods that combine NILM

disaggregation with our NIMD approach to handling parallel composite loads.
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CHAPTER 4

BLACK-BOX SOLAR PREDICTOR FOR SMART HOMES

This chapter presents SolarCast, an algorithm to automate modeling of residential

rooftop solar installations. We initially start with describing our automated black-box

model generation that produces site-specific solar panel model. We conclude with a de-

tailed evaluation illustrating the performance of our algorithm along with a case-study.

4.1 Motivation
Solar power predictions can play a crucial role in reducing the need for expensive stor-

age capacity while also reducing the amount of energy fed to the grid by using it by locally

to run electrical loads in a household. However, for residential rooftop installations, it is

often difficult to obtain the panel properties and installation-specific configuration param-

eters because homeowners do not know these technical details. Further, it is even more

challenging to know dynamic factors, such as shade, foliage, and pollen, which vary ei-

ther seasonally or irregularly. Consequently, designing prediction models for residential

rooftop installations requires a new approach that should automatically learn panel prop-

erties and configuration parameters with limited historical power data. Additionally, these

models should automatically adapt to the dynamic parameters that vary over time, such as

tree shade and snow, dust, and pollen. Table 1 shows static and dynamic panel properties.

Thus, to generate solar power prediction models at scale, for any solar installation in

the country, one must design a black box model that only requires a site’s location and

minimal historical generation data to generate a customized prediction model, tailored to

that particular site.
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Parameters Variability Our Mechanism

Panel Parameters Static ML Regression

Tilt Static Optimization Parameter

Orientation Static Optimization Parameter

Temperature Coefficient Static Optimization Parameter

Tree Shade Dynamic Adaptive Learning

Snow/Dust/Pollen Dynamic Adaptive Learning

Table 4.1. SolarCast employs different techniques to capture panel and configuration pa-
rameters.

4.2 Automated Black-box Model Generation
While there has been significant work in predicting solar generation, our approach dif-

fers from prior work in three significant respects. First, SolarCast automates the model

generation process—it requires minimal initial inputs from the user and requires no manual

intervention by the user to generate a model. Second, SolarCast uses a black-box modeling

approach to learning the value of unspecified parameters. Third, SolarCast continuously

retrains and refines the model using live data, while also using live data to adjust for the

impact of dynamic site-specific factors that are impossible to learn.

Similar to many approaches presented in the prior work for solar predictions, SolarCast

also employs machine learning techniques to derive its model. However, the primary differ-

ence from prior work is that SolarCast automates the process of learning the model itself,

which we refer to as automated model generation. Such an automated model generation

approach is key to scaling SolarCast to large numbers of small-sized deployments. At the

heart of SolarCast’s automated model generation is a black-box modeling approach, which

represents another departure from prior work that typically uses white box techniques. To

better understand the differences between the two, consider the following canonical white

box modeling approach based on machine learning. The solar deployment is a “white box,”

which means that all important parameters of the deployment, such as its panel type, tilt,

orientation, efficiency, etc., are assumed to be known. Further, a history of past generation
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data at different times of the day and seasons of the year is given, along with the observed

weather conditions at those times. The machine learning approach then simply learns a

map between the specified inputs and the observed solar output.

The learnt model is a “function” that, given certain inputs, such as weather and time of

day, will compute the expected solar output under those conditions—based on the model’s

correlations. Much of the prior work, including some of our own [94], take such an ap-

proach. In contrast, in a black box approach, the solar deployment is assumed be a “black

box” where site specific parameters, such as the number and type of panels, tilt, orientation,

shadows, etc., are all unknown. Instead, a past history of weather data and the observed so-

lar generation (inputs and outputs of the black box) are given and all unknown parameters

must be learned. Intuitively, this is done by searching for the combination of these un-

known parameters that best explains observed outputs. Some dynamic parameters that are

challenging to learn are accounted for by adjusting the predictions dynamically. In this

manner, a black box method is more complex than white box methods, but also requires

fewer inputs and less training data (since the models are continually refined as more live

data becomes available).

4.2.1 Accuracy Metric

Note that we use the Mean Absolute Percentage Error (MAPE) as our preferred statisti-

cal metric to measure a model’s accuracy. Though the Root Mean Squared Error (RMSE) is

a well-known statistical metric, we prefer the MAPE because it is capacity agnostic, which

allows us to directly compare accuracy across panels with widely different capacities. Such

comparisons are not possible with RMSE. Further, since weather forecasts are occasion-

ally erroneous, the MAPE is less sensitive than the RMSE to occasional large errors. Thus,

MAPE is a better metric to illustrate the forecast prediction error. The MAPE for n samples

is expressed as:
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are the instantaneous actual and the predicted generation value at time

t. Unfortunately, problems can occur when calculating the MAPE using a series of small

denominators, as they will substantially increase the MAPE. Instantaneous generation can

vary significantly, briefly dropping to low values even during near ideal conditions. To cir-

cumvent this ‘divide by zero’ problem, we change the denominator in the original formula

from A
t

to A
0 , which is the average value over the entire time interval t. Further, MAPE

values calculated this way are insensitive to the inclusion of nighttime actual and predicted

values as both would be zero. We use the below formula to report prediction errors.
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Below, we start our discussion with the description of the process of model generation

for predicting solar power. This essentially outlines the various inputs to the function of

the learned model. After which, we move on to describe two distinct machine learning

techniques to build our custom site-specific model to predict solar power while learning

the hyperparameters. First, we present a constrained least-squares curve-fit method, which

uses training data to learn hyperparameters and the linear combination of features presented

in the previous section. Then, we present the deep neural network architecture which is

capable of learning complex relationship that exists between weather parameters and the

solar power. Following this, we show how our models can generate a site-specific model

for a solar installation in an online setting where fresh solar generation data is available to

continuously refine our models with diminishing prediction error.

To generate our model, we first prepare a forecast ! power model that predicts so-

lar power from weather forecasts for a sun-tracking solar installation that always keeps

its panels facing the sun, e.g., oriented towards the equator. Next, we extend the model

to automatically learn the static configuration parameters, such as tilt and orientation. As
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photovoltaic (PV) panels use semiconductor-based P-N junctions, an increased temperature

also increases the resistance and thus reduces the overall current (and power) generated.

However, different PV panels have a different tolerance to high temperatures. For example,

amorphous silicon solar cells are more resilient than mono and polycrystalline cells. Thus,

we also need to learn an adjustment factor for a given installation for different ambient tem-

perature changes. We then further extend the model to create an adaptive version that not

only automatically learns the configuration parameters, but also accounts for the dynamic

environmental factors, such as snow, dust, and pollen.

4.2.2 Solar Model

Much of the prior work focuses on predicting solar irradiance from weather forecasts

and then using the irradiance! power formula to predict the solar power. Since designing

both the forecast ! irradiance model and irradiance ! power model require historically

observed irradiance, this approach is not scalable to millions of rooftop installations be-

cause the historical irradiance data is generally not available for these sites. So, instead,

we focus on designing a prediction model that directly predicts solar power from weather

forecasts for any solar installation at any location on earth. We first assume the optimal

configuration for the solar panel, i.e., the panel is always facing the Sun and is normal to

the solar radiation.

As described in prior work [94], weather metrics exhibit complex relationships with

solar intensity, which can be captured by advanced techniques, such as high-dimensional

machine learning regressions. Feature selection and feature engineering play an important

role in machine learning. Similar to prior work [94], we consider all weather parameters

included in National Weather Service forecasts, including sky cover, temperature, humidity,

dew point, precipitation potential, and wind speed, as input parameters, but unlike prior

work, we create a new feature set by normalizing all weather parameters by the cloudless

irradiance (e.g., by multiplying by the cloudless irradiance). This normalization of features
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is based on our intuition that the same weather parameter always affects the solar irradiance

in the same proportion, regardless of the time. For example, if at 6pm a certain weather

parameter causes cloudless irradiance to be cut in half, then if the weather parameter

is the same at 12pm, it will also cause the cloudless irradiance to be cut in half (even

though cloudless irradiance at 12pm is different than at 6pm). Additionally, since the

cloudless irradiance depends on the altitude and azimuth angles of the sun, by multiplying

the cloudless irradiance by the weather parameters our model also captures the seasonal and

diurnal variations of the sun’s position. Consequently, we formulate the power prediction

regression model as:

P
t

= f
⇣
Scloudless

t

· W
t

⌘
(4.3)

Here, P
t

and Scloudless

t

are predicted power and cloudless irradiance, respectively, at time

t, W
t

is a vector of size i containing the forecast of the weather parameter at time t, and

f is the function that we determine using machine learning regression. This novel feature

engineering enables prediction of solar power at any time of the day without learning a

separate model for different hours, a drawback of the proposed model by [94]. Our insight

and the normalization above is the key to enabling our techniques to use all historical

generation data as training data for the same model. Prior work has had to learn different

models for different time periods, e.g., one model per month, since the maximum solar

generation varies throughout the year. These prior approaches require more time to collect

training data, e.g., multiple years, and are significantly less accurate, as even the maximum

solar capacity each day within a given month will vary.

4.2.3 Black-box Learning of Static Parameters

The above model assumes the optimal configuration of solar panels and might work

well for a sun-tracking solar installation. However, a typical rooftop installation does not

have the optimal configuration, since its configuration is dictated by the tilt and orientation
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Figure 4.1. Tilt of panel (�) and solar elevation (↵)

of the roof. Further, panel properties and configuration parameters vary widely across

different sites and are often unknown to owners. Thus, to automatically learn these static

parameters and generate site-specific prediction models we modify the above regression

model as follows:

P
t

= f 0
⇣
Smodule

t

· ⌫
t

· W
t

⌘
(4.4)

P
t

and W
t

are the same as in the previous section. In addition, Smodule

t

is the perpendicular

component of the cloudless irradiance on the panel, ⌫
t

is the adjustment factor due to the

changes in the ambient temperature, all at time t. We then learn the function f 0, for given

values of static parameters, using the machine learning regression technique from the pre-

vious section. Since the component of the cloudless irradiance perpendicular to the surface

of the panel depends on - (i) the panel’s tilt and orientation, and (ii) the Sun’s altitude and

azimuth, Smodule

t

, is expressed as:

Smodule

t

= Scloudless

t

· (cos↵
t

sin � cos( � ✓
t

) + sin↵
t

cos �) (4.5)

Here, ↵
t

and ✓
t

are the altitude and azimuth of the Sun at time t, respectively, whereas �

and  are the tilt and orientation of the panel, respectively (see Figure 4.1). The details in-

volved in deriving this equation can be found in [95]. For simplicity, we assume the panel’s
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orientation to be same as the sun’s azimuth in the figure. In addition to tilt and orientation,

ambient temperature has a direct bearing on the power output from a photovoltaic panel.

To account for the impact of temperature on the panel output, we must calculate ⌫
t

for different time periods t. As noted earlier, different panels have a varying amount of

resilience to increased temperature. This depends on the type of panel, e.g., monocrys-

talline, polycrystalline, amorphous, etc., and the distinct manufacturing processes followed

by panel manufacturers. For our black-box model, we assume information, such as the

type of panel and manufacturer information, is unavailable. However, based on different

adjustment factors discussed in the literature, we have the following general equation to

account for temperature changes with hyperparameters a and b:

⌫
t

= a · (T cell

t

� b) (4.6)

We learn the hyperparameters, such as tilt (�), orientation ( ) with a and b for tempera-

ture adjustment, using the parameter optimization techniques detailed below. In summary,

SolarCast automatically learns static configuration parameters such as tilt, orientation, tem-

perature adjustment factor, and generates a custom site-specific prediction model for any

solar installation ranging from a single panel rooftop installation to a large solar farm; it

only requires the location and historical power data from the site.

4.2.4 Constrained Least-Squares Curve-Fit

We apply the constrained least-squares curve-fit technique on a training dataset to deter-

mine the function f , i.e. a linear combination of different features discussed in the previous

section. Least squares regression is a simple and commonly-used technique to estimate a

value to be predicted from a set of variables. Here, we leverage this technique to predict-

ing solar power from weather forecasts. This regression technique minimizes the sum of

the squared differences between the observed solar power and the power predicted by a

function approximation of forecast parameters. Using this technique, we initially use his-

49



torical solar power data (also referred as training data), to learn optimal coefficients for the

different features. Essentially, as we have few unknowns, in the form of features and hyper-

parameters, limited training data (more than the number of features and hyperparameters)

is sufficient to build a reasonable model. Next, with the help of these learned parameters,

we can make future predictions when we are supplied with expected feature values.

• Hyperparameter Learning: While learning the function f , we apply constraints

on tilt and orientation to reflect the realistic range of values, such as the tilt of a panel

can only range from 0 � to 90 �. Thus, apart from learning the coefficients for the

combination of individual features, this technique can also learn the hyperparameters

that best fit the training data. The learned hyperparameters with the coefficients

together help in predicting solar power.

• Model variation: The function f , described in Equation 4.4, can be used to learn

the static parameters and to predict the solar power. Hereinafter, use of constrained

least-squares curve-fit on the function f defined by Equation 4.4 is referred as Black

box (Static) model. However, apart from the static configuration parameters, dynamic

environmental factors, such as tree shade, foliage, pollen, snow, and dust, also affect

the power output. A few of these parameters, such as foliage and pollen, have sea-

sonal variations, while others, such as leaves and dust, vary irregularly. Since, unlike

large solar farms, rooftop installations are not cleaned regularly, we must account for

the dynamic factors in our prediction model. Our intuition is that power output in

the recent past contains some information about the impact of dynamic factors. To

compensate for prediction errors due to the dynamic factors we add a new feature

P output

t�24h , which is essentially the power output at the same time the previous day, in

the feature set. So, the predicted power at time t can be expressed as:

P
t

= f 0
⇣
Smodule

t

· ⌫
t

· W
t

, P output

t�24h

⌘
(4.7)
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Notations P
t

, Smodule

t

, ⌫
t

and W
t

have been introduced earlier. Since P output

t�24h is a

dynamic parameter that changes every day, we can account for surrounding charac-

teristics such as tree shade and dynamic characteristics such as snow, dust, pollen

etc.

Hereinafter, use of constrained least-squares curve-fit on the function f defined by

Equation 4.7 is referred as the Black box (Adaptive) model as it can adapt to account for

dynamic environmental factors, that vary seasonally or irregularly, by automatically cor-

recting the model to account for effects due to them.

4.2.5 Deep Neural Network with Custom Input Layer

A Neural Network is a model based on the human brain and nervous system. Similar to

the biological model, the neural network model in machine learning consists of a network

of neurons. Each neuron has multiple inherent parameters associated with each neuron that

includes a weight term and a bias term. These terms are applied to one or more inputs

received by the neurons. A layer of the neural network might contain one or more such

neurons. Each layer has an activation function, which will fire the neurons in it depending

on the values of the input along with the weight and the bias term. There are various

activation functions which can be used in a neural network model. The weights and the

biases for the different neurons in each layer are learned using backpropogation algorithm.

This algorithm uses training data to tune these terms. The power of the neural networks

lies in their ability learn arbitrary functions to map the inputs to the output. Further, one

can use multiple layers of neurons stacked one top of the other with each of these activated

using different activation functions. The resultant model renders even greater power to

learn complex functions. These layered neural networks are called deep neural nets.

Deep neural nets have been applied in recent years to several domains, such as com-

puter vision, natural language processing, and speech recognition. Theoretical advances in
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training deep architectures with the advent of GPUs have now made deep neural nets the

technique of choice for solving challenging problems in artificial intelligence.

In our case, we build a 4-layer deep neural network as shown in Figure 4.2 to learn the

function defined by Equation 4.4. This deep neural network produces an expressive model

that is capable of learning the complicated relationship between their inputs (features) and

output (solar power). As shown in the figure, each layer, except the last, consists of an

equal number of neurons. This number is equal to the number of features used in our

model. The first layer receives the raw features discussed earlier, as inputs. The subsequent

layers receive all the outputs of the previous layer as inputs. For the first two layers, we

use a Rectified Linear Units (ReLU), the most popular activation function for deep neural

networks. As we have formulated solar power prediction as a regression problem, we use a

linear activation function for the next two layers. Clearly, as the solar power generated at a

given time is a scalar, the last layer contains just one neuron that outputs the prediction. As

with any machine learning model, its complexity needs to be controlled to avoid overfitting,

which is typically caused by parameters taking extreme values. Deep neural nets have

multiple neurons, each containing a weight and a bias term. These parameters could take

large at the end of training and could perform poorly while making predictions. To avoid

this, we use L2 regularizers on the layer parameters. Hereinafter, this model is referred as

a Black box (Deep).

We use a grid search technique to automatically find the tilt and orientation (hyperpa-

rameters) of a solar panel installation. The grid search algorithm finds the tilt and orien-

tation that minimizes the MAPE value by cross-validating over training data. Firgure 4.3

shows the MAPE values for the different combination of tilt and orientation for a solar

installation. Here, the tilt of 20 degrees and orientation of 180 degrees (panel facing south)

has the lowest MAPE.
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Figure 4.4. Prediction error for the online version of SolarCast’s adaptive model and SVM-
ML model.

4.2.6 Online Learning

Like any regression model, SolarCast also requires historical data (of several months)

for training, which increases the barrier to using its services. Gathering sufficient historical

data is especially challenging for new installations or existing installations that have not

been continuously monitoring and archiving power generation since deployment. Further,

not all homeowners install sophisticated monitoring devices, which can store data for sev-

eral months or years. With limited training data, the machine learning models discussed

earlier might generate poor results as with few examples the generalization error is higher.

To address issues with insufficient historical data, SolarCast employs an online algo-

rithm that starts generating site-specific prediction models from as little as one to two days

of historical data. Further, SolarCast stores the past data for each site and retrains (and

refines) the model as it gets more recent data from the site. This step involves using the

machine learning algorithms described earlier to be used repeatedly as and when new data

is available. Albeit poor in the beginning, the error associated with the SolarCast’s pre-

dictions will trend lower with more data available to correctly train the machine learning

model.
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To see how quickly our online approach achieves a prediction accuracy of the static or

adaptive model generated with sufficiently large training data, we start the online model

with just one day of training data. As shown in Figure 4.4, the online model rapidly con-

verges, within 10%, to the static model within one month. This illustrates that any new or

old installation can start using SolarCast service with just a few weeks of historical data.

Further, we compare our online approach with the online version of the machine learning

prediction model from [94] using a Support Vector Machine (SVM) with a linear kernel,

hereinafter referred as the SVM-ML model. The figure shows that our adaptive model

requires much less training data than the SVM-ML model to create site-specific predic-

tion models. As SVM-ML learns a separate model for each time of the day, essentially

leveraging only (1/24)th of the training data, the MAPE improves more slowly over time.

Also, notice MAPE for both approaches stabilizes with more data. This graph uses the

constrained least-squares curve-fit technique described below for learning the model. As

we show in Section 5, the deep neural network model performs even better.

In summary, SolarCast’s online learning technique can generate site-specific prediction

models with as little as a few weeks of historical data and keeps on refining the models as

and when it gets new data from the sites.

4.3 SolarCast Cloud Service
In this section, we first describe the high-level architecture of SolarCast, followed by

our prototype implementation.

4.3.1 Architecture

SolarCast provides a web-based service (see http://solarcast.cs.umass.edu) that house-

holds can use to predict solar power generation from their own installations for short-to-

medium timescales ranging from tens of minutes to a few days. Unlike prior services [83],

which are either proprietary or require knowing installation- and panel-specific parameters,
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SolarCast does not require any panel or configuration parameters from the user. Instead,

its black-box service automatically learns these parameters, as discussed in the previous

section.

SolarCast consists of five primary components, which we detail below: (a) Profile Man-

ager, (b) Visualization Engine, (c) Predictive Model Generator, (d) Power Predictor, and (e)

Storage Engine. First and foremost, a user needs to create an account with SolarCast, and

then create an installation profile. The installation profile contains the site location and any

other optional information provided by the user. The installation profile is the key infor-

mation for all other components; they operate on a per-profile basis. A user can then have

multiple installation profiles, where a profile may be associated with multiple users.

• Profile Manager. The profile manager is responsible for managing users and associ-

ated profile information. When a user logs in, the profile manager gets the associated

profile(s) and other information from the storage engine and calls the visualization

engine to display the required information on the user’s browser.
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• Visualization Engine. The visualization engine interacts with the profile manager

and power predictor to get the necessary information, such as point forecast, average

forecast, and predicted power generation, to render and display on the user’s browser.

The graphical and intuitive display enables the user to easily grasp the historical, as

well as predicted power generation, for any time interval in the future or past.

• Storage Engine. The storage engine is responsible for formatting and storing raw

historical, as well as forecast, data into a relational database. Further, it also stores

customized site-specific forecast models in the database. All other components con-

tact the storage engine for retrieving information, such as historical/forecast data and

forecast models. When a user uploads historical power data it also pulls correspond-

ing forecast data from Forecast.io to store in the database.

• Model Generator. The adaptive model generator and power predictor are the core

components of SolarCast. Whenever a user uploads historical power data for an in-

stallation profile, the profile manager first calls the storage engine to store the data

and then triggers the adaptive model generator. The model generator gets the stored

data for that profile from the storage engine and runs the ML-based adaptive algo-

rithm to generate a custom prediction model for that installation profile. Moreover,

the model generator automatically refines the prediction model if the user uploads

any new information.

• Power Predictor. The power predictor is called when a user sends a request to gen-

erate a prediction report for a selected time interval. The power predictor gets the

forecasting model from the storage engine, pulls real-time forecast data from Fore-

cast.io, and predicts power generation for the selected interval. The web service calls

the visualization engine to format the results and display them to the user; it provides

point-by-point predictions as well as average prediction of the weather condition and

power output from the installation.
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4.3.2 Implementation

We use many open source libraries to build SolarCast and its black box prediction

model. We use Django [36], an open source web application framework written in Python,

to build SolarCast’s web service. The visualization engine uses dygraph [37], a Javascript

charting library specifically designed to display time series data, to display solar power pre-

dictions to users. We use scikit-learn to design our black box prediction model, which is an

open source machine learning library for Python. The deep neural network architecture was

implemented using Keras [28], an open source deep learning library in python. In addition,

we use libraries – SciPy, NumPy, Pandas – from the SciPy stack [7] for data processing.

To store users’ profiles, prediction models, and dataset we use SQLite, a lightweight disk-

based relational database.

Since sensors used by many households report power readings in their local time zone,

accounting for daylight savings time in the prediction model is challenging. For this

purpose, we convert local time readings to standard Unix time using the Python pytz li-

brary [85], which automatically handles the daylight saving issues. To get weather forecasts

for any location we use the Forecast API from Forecast.io [43]. Forecast.io provides sim-

ple RESTful APIs to retrieve both historical as well as future forecasts of several weather

parameters, such as cloud cover, temperature, humidity, precipitation potential, dew point,

wind speed, and wind direction, etc. It returns data in the JSON format. Furthermore, we

use the National Renewable Energy Laboratory recommended Masters’ Algorithm to get

the Sun’s altitude and azimuth, and the cloudless irradiance at a particular time for a given

location. We use the PySolar library [84] that implements the Masters’ algorithm.

4.4 Evaluation
We evaluate our black box prediction model on three geographically diverse datasets.

Table 5.2 describes them in terms of their number of installations, duration, data granularity

and installed capacity. All the installations in the Pecan Street dataset [4] are located in
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Name Installations Duration Granularity Size

Pecan Street 116 2 years Hourly 5-20kW

Utility 3 2 years Hourly .8 to 3.5 MWlevel

3rdParty 116 1 year Hourly 5-150 kW

Table 4.2. Details of the different datasets used in the evaluation

Austin, Texas. The 116 sites from a third-party site are spread across 16 different states

in the U.S., whereas the three medium-sized installations are managed by a utility located

in the Northeast U.S. Each dataset contains the location – latitude and longitude – and

historical power generation readings collected for 12 to 24 months using energy meters

(the accuracy is discussed in prior work [19]). In each case, we use the first half of the

dataset for training and the next half for testing. For the three sites from the utility dataset

and one from the third-party dataset, we had access to real-time data.

We first learn the configuration parameters – i.e. the tilt and the orientation – for each

site using an optimization for the constrained least squares curve fit technique and grid

search for the deep neural networks. Next, we use the site-specific configuration param-

eters in our black box models for each site. For each site, the static model built using

constrained least squares curve fit, leverages features developed using prevalent weather

forecasts, whereas the adaptive approach (again built using constrained least-squares curve-

fit) additionally uses immediate past generation data to get a more refined model to predict

the next day power generation. The neural network based approach uses features similar to

the static approach for deriving a deep neural architecture to learn the complex relationship

between the weather parameters and power generation. To compare with an existing ma-

chine learning based forecasting technique, we use the SVM-ML model discussed earlier

which uses a support vector machines (SVM) [94]. We experimented with 3 different ker-

nels - 1) Linear, 2) Polynomial, and 3) RBF. Of these three kernels, linear kernel performed

the best for our problem with the datasets we had. Thus, we have only included the results
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(a) Static (Curve Fit) (b) Adaptive (Curve Fit) (c) Grid Search (NN)

Figure 4.6. Tilt and orientation for different solar installation in the Pecan Street dataset.

with the linear kernel. As opposed to predicting irradiance, we directly predict power based

on weather forecasts for each day.

4.4.1 Learning Configuration Parameters

As discussed earlier, our method relies on learning configuration parameters, such as

the tilt and orientation of the different sites, to build a solar power prediction model. These

parameters are learned directly in the optimization function used in the constrained least-

squares curve-fit, and using the grid search routine for the deep neural network. These

parameters are constrained to be between 0� to 60� and 140� to 220� for tilt and orientation

respectively in case of the curve fit method. For the deep neural network, we employ grid

search by varying the tilt between 0� and 40� and the orientation between 150� and 210�,

both with a step of 10�, to find the values that minimize the average MAPE over the training

data.

Figure 4.6 shows the tilt and orientation for the three different algorithms for each site in

the Pecan Street dataset, where the x-axis is the tilt and the y-axis is the orientation. As the

figures show, the tilt and orientation vary greatly across different sites, which highlights the

importance of an automatic technique like our black box model to learn the configuration

parameters rather than assuming fixed values for all sites.
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4.4.2 Model Comparison

• Hourly predictions: In this section, we compare the prediction accuracy of three

models—our black box static model, our black box adaptive model, our black box

neural network model—with the SVM-based prediction model from prior work [94].

We use MAPE to measure the prediction accuracy of each model. Figure 4.7(a) plots

MAPE for all four models for 116 rooftop installations for the third-party dataset,

while Figure 4.7(b) plots the same for the three open-space medium-sized utility

solar farms, each with over .8MW capacity. In Figure 4.7(a), we see that the adaptive

approach performs best as it adapts to the dynamic parameters, such as dust, leaves,

or pollen, and is slightly better (⇠2-3%) than the static model, which only learns the

static configuration parameters and is oblivious to the dynamic factors. The Neural

Network based approach outperforms the adaptive approach for a few sites by (⇠3-

5%) but overall seems to produce inferior results. In Figure 4.7(b), we find that the

neural network approach performs the best for all three locations by (⇠.5-2%). For

both graphs, the SVM-ML model performs worse because it constructs a separate

model for each time of the day, thereby using just part of the training data. Further,

it does not capture the yearly variation in the position of the sun for the same time

of the day. For example, at noon, the Sun is closer to zenith during summer than

during winter for a given location. By normalizing the features using the cloudless

irradiance, we address both these shortcomings.

Figure 4.8(a) shows the comparison between our three black box approaches on the

Pecan Street dataset with hour-level forecasts. For almost half the sites the deep

neural network based approach outperforms the static and the adaptive approach by

(⇠3-5%). In most other cases, the performance is (⇠1-3%) better.

• Minute-level predictions: The experiments above were based on hour-level predic-

tions of solar generation based on forecasts released by the National Weather Service

each hour. However, our techniques are agnostic to the data resolution: as long as
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Utility dataset

0 20 40 60 80 100
Solar installations sorted by MAPE for Black-box (Deep)

0

10

20

30

40

50

M
A

P
E

Black-box (Static)
Black-box (Adaptive)
Black-box (Deep)

0 20 40 60 80 100
Solar installations sorted by MAPE for Black-box (Deep)

0

10

20

30

40

50

M
A

P
E

Black-box (Static)
Black-box (Adaptive)
Black-box (Deep)

(a) Hour level forecasts (b) Minute level forecasts

Figure 4.8. Prediction error for various prediction models for each site in Pecan Street
dataset over 1 years.

we have a forecast available at a particular resolution, we can apply our techniques

to predict future solar output at that resolution. Forecast.io provides basic minute-

level forecasts one hour into the future for each specific location in the U.S., e.g., as

a specified longitude and latitude. These forecasts only predict rain (and its inten-

sity) and do not include the multiple metrics in a typical National Weather Service

weather forecast. As a result, minute-level predictions may not capture reduced solar

generation due to clouds that do not produce rain.
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However, we apply our techniques to them to demonstrate the flexibility of apply

predictions at high data resolutions. Such predictions might be useful for utility

operators, which have to balance grid supply and demand in real time, e.g., second-

to-second and minute-to-minute. Figure 4.8(b) shows the comparison between our

three black box approaches on the Pecan Street dataset with minute level forecasts.

The error is slightly higher for all sites compared to the hour level forecasts due to

the inclusion of only a single forecast parameter (rain intensity). However, we again

find that the deep neural network-based approach performs better than the static and

the adaptive black box approaches. In most cases, the difference in performance is

(⇠5-7%).

4.5 Case Study
In this section, we explore how households can leverage our black box prediction model

in two case studies: scheduling elastic background loads to reduce electricity bills, and

providing accurate predictions of charging profiles to customers at a solar-powered EV

charging station.

4.5.1 SolarCast in Smart Homes

To maximize green energy penetration homeowners can schedule certain elastic loads,

such as plug-in EVs, washing machines, or clothes dryers, to run when solar energy is

abundant. We experiment with sunny scheduling of a dryer in a smart home located in

the state of Massachusetts. The home’s power usage varies from 0 to 18.88 kW with an

average of 1.38 kW. The solar power generation varies from 0 to 9.71 kW with an average

of 1.43 kW. Thus, the house is a net generator of electricity. We have per-hour data with

average power for the solar generation, total electricity usage (excluding the dryer) and an

additional load of a dryer. The dryer is running for 652 hourly intervals out of the overall

8258 hours (49 weeks). Note that a single load can run for multiple hourly timeslots.
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(a) (b)

Figure 4.9. Frequency distribution for hour of day when the dryer is run (a) and grid
demand for start time flexibility (b).

Figure 4.9(a) shows the frequency distribution for the hour of the day when the dryer runs.

The figure demonstrates that the dryer is typically operational in the afternoon.

For this case-study, we make an assumption that the magnitude of all loads, including

that of the dryer, is known beforehand. We employ an online scheduling algorithm that

allocates loads to the earliest contiguous timeslots where the minimum load from the grid is

drawn based on solar predictions that have been learned online using day-ahead forecasts.

In this algorithm, we bring flexibility in scheduling by running the load in a timeslot of

±k hours to the actual time. While allocating dryer loads, we ensure multiple loads are not

scheduled during the same timeslot. We compute excess power for timeslot j by subtracting

the grid electricity from the predicted solar power.

The overall energy consumed by the dryer is 863.54 kWh. With the existing schedule,

the total power drawn from the grid is 508.63 kWh. In Figure 4.9(b), we show the results

of running the algorithm with observed and predicted solar power generation values with

varying flexibility. Even though most of the dryer loads are scheduled during afternoons

when solar intensity is strong, there is a substantial reduction in electricity drawn from the

grid by having a flexibility of few hours.

In summary, our results show that smart homes can leverage SolarCast’s predictions to

better schedule elastic loads to align with solar generation. In this case, our smart home
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reduces its grid energy demand by 40% by providing flexibility of ⇠5 hours to a dryer’s

startup time.

4.5.2 SolarCast in Smart EV charging

Over the past few years, EVs have gained popularity because of their appeal as an

environmentally-friendly mode of transportation. EVs have a tremendous potential to re-

duce our carbon footprint and our dependence on fossil fuels. However, as discussed in

prior work [105], these EVs can be more detrimental to the environment as they require

charging batteries with low efficiency from the grid, which primary consists of carbon-

based power plants. To offset the environmental impact of these cars, we must ensure that

they are charged with green energy sources, such as solar. However, as discussed earlier in

the chapter, solar energy is intermittent and at many times unreliable due weather changes.

In this case study, we explore the possibility of a solar-powered EV charging station

equipped with an array of panels that can help customers by providing an estimate on the

amount of energy that can be provided using SolarCast’s power predictions. This station

could be a parking lot in a company where employees can park their vehicles for the day.

Here, we simulate a charging station by using multiple solar rooftop installations at houses

from the Pecan Street dataset [79]. We selected five different EVs containing two Teslas,

two Chevrolet Volts and one Nissan Leaf from the Pecan Street dataset, which uses the

solar power from our simulated charging station. Initially, the user provides the charging

required for their EVs at the start of the day. Based on SolarCast’s power predictions, we

provide an estimate on the amount of charging for that day.

Our aim is to provide best-effort charging, where we provide equal access to the avail-

able solar power to all parked EVs, while maintaining following constraints - i) the car

batteries have a certain limit and cannot be overcharged, and ii) the EVs cannot draw more

energy than the amount generated by the solar installation. Further, as we do not have

access to battery charging levels, we assume that the maximum charging allowed is equal
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EV Name Overall Yearly Demand (kWh) Max Charging rate (kW)

Tesla1 1651.31 6.68

Tesla2 2185.87 6.83

Volt1 1260.26 3.37

Volt2 1469.98 3.39

Leaf1 1218.02 3.77

Table 4.3. Details of the different EVs used in the case-study
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Figure 4.10. Solar energy produced by the smart charging station over the year 2015

to the amount of demand shown in the data (see Figure 4.11). We assume that we have

EVs over the entire duration of the day when the sun is above the horizon. We ran the

experiment for charging these EVs over the period of a whole year from 1

st January to 31

st

December 2015 using minute level forecasts for the smart charging station (rooftop instal-

lation). Figure 4.10 shows the energy produced by the solar charging station over the period

of a year. Table 4.5.2 describes the maximum charging rate and the energy consumed over

the period of a year by the EVs. Figure 4.11 shows the demand profile of the different EVs

over the same period.

We observed that there was a demand of 7785.46 kWh from the five EVs. Through

our best effort charging, we were able to satisfy 5423.38 kWh of the EV demand. Further,

Figure 4.12 shows the difference in energy between the promised charging provided by

SolarCast estimates and the delivered charging using the available solar power for the whole
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Figure 4.11. Energy demand profile of the different EVs in our study over the period of
the year 2015

year for each of the 5 EVs. For the two Teslas, we were able to completely satisfy the

demand for approximately 240 days. For the other EVs, we were able to satisfy the energy

demand for around 300 to 330 days in a year. The solar charging station had an average of

1.21 kWh of the absolute difference between the promised and the delivered energy over

the average daily charge of 14.86 kWh per day.

In summary, our results show the following -

• Of the total demand of 7785.46 kWh from the five EVs, our simulated solar charging

station was able to satisfy 5423.38 kWh of the EV demand using best effort charging.

Further, the EVs were completely charged for approximately 230 to 330 days in a

year.

• The mismatch (absolute difference) between promised and delivered energy for the

solar charging station was on average 1.21 kWh per day over the average daily charge

of 14.86 kWh per day.

67



�10
�5

0
5

10
Tesla1

�10
�5

0
5

10
D

iff
er

en
ce

be
tw

ee
n

pr
om

is
ed

an
d

de
liv

er
ed

(k
W

h)
Tesla2

�10
�5

0
5

10
Volt1

�10
�5

0
5

10
Volt2

0 50 100 150 200 250 300 350
Days from start of the year 2015

�10
�5

0
5

10
Leaf1

Figure 4.12. Mismatch between the promised and the delivered energy for the different
EVs over the whole year

4.6 Limitations of the model
In this section, we discuss the limitations of our models due to inaccuracies in weather

forecasts. As our models are a function of weather forecasts, any inaccuracy in them will

result in errors in solar power prediction.

Cloud cover is a major contributor to the intermittency of solar power. To present the

impact of inaccuracies in cloud cover, we looked at two set of days - i) clear sky days with

no cloud cover (according to weather forecasts), and ii) overcast days having similar cloud

cover levels. While constructing these sets, we ensured that the other weather parameters,

such as precipitation, visibility, and temperature, are also not very different for days within

the set. Further, all the days in a given set were chosen such that they are within 25 days

of each other. Figure 4.13 shows the recorded solar power and our predictions for the four

clear sky days and the three overcast days. Furthermore, to evaluate our predictions, we

also plot ground truth irradiance with average cloud cover for that day. The data shown in

the figure is from a rooftop installation in the Pecan Street dataset. The irradiance data for

Austin (location of the site) is collected from a wunderground [102] weather station.
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4.6.1 Clear Sky days

Figure 4.13(a) shows the four clear sky days. Apart from the second day, our algorithm

has MAPE between ⇠6-10%. However, on the second day, as corroborated by the irra-

diance data, the second half of the day has reduced irradiance, which was missed by our

weather forecasts. In this case, our MAPE increased to 22.5%.

4.6.2 Overcast days

Figure 4.13(a) shows the three cloudy days. According to our forecast data, all the three

cloudy days were had similar cloud cover throughout the day with increased cloud cover in

the middle of the day. For the first two days, we observe that increased cloud cover in the

late morning causes a dip in solar production which was partially captured by our model

resulting in a MAPE of ⇠25-31%. However, on the third day our model over-predicts,

resulting in a large MAPE value. The ground truth irradiance shows that the day was more

overcast than suggested by weather forecasts.

Thus, our key observations are as follows:

1. As our models are a function of weather forecasts, any error in them would translate

to prediction error in solar power.

2. Even with correct cloud cover information, the MAPE values associated with over-

cast days was higher than those for the clear sky days. This clearly suggests that

cloud cover is not a reliably accurate predictor of solar power (e.g., 50% cloud cover

could mean light uniform clouds or scattered clouds covering half the sky).

4.7 Related Work
Prior work on solar forecasting focuses on predicting solar power for a particular solar

panel installation or only a few installations with well-known characteristics. They either

predict solar irradiance and get power from the irradiance or directly predict the power.
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(a) Sunny days (b) Cloudy days

Figure 4.13. Error analysis for the two sets of days

In both cases, they assume all panel and configuration parameters are known in advance.

However, these are often unknown for a typical rooftop installation. Lorenz et al. [70] and

Huang et al. [52] provide a comprehensive comparison of different solar irradiance and

power prediction techniques, respectively. These techniques can be classified as persis-

tence method, satellite data/imagery method, numeric weather prediction (NWP) method,

statistical method and hybrid method. Each of these methods is suitable for different time

horizons. For example, the persistence model is ideal for short-term forecasting (1 hour

ahead), whereas statistical methods are more effective for medium-term forecasting (1 to

36 hours ahead). Yona et al. [104] use a neural network model to forecast solar irradiance;

they then use a site-specific irradiance! power model to forecast power generation.

Tao et al. [98] propose a nonlinear autoregressive exogenous model that uses installation

parameters, such as tilt and orientation, to forecast day-ahead power generation. The input

layer of the model includes cloudless irradiance for the next day from 6am to 6pm. To

predict power at any arbitrary time it further requires additional input nodes with adequate

training. These restrictions exist for [29] that uses Elman Neural Networks with an input

layer very similar to that of related work [98]. Mandal et al. [73] presents a hybrid model

that uses wavelets and Neural Networks. Moreover, all of these techniques have used a
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single site and limited dataset (⇠4 days) for evaluation. Apart from neural network models,

machine learning (ML) based statistical techniques [49, 69, 94] are also gaining popularity

in the past decade. These techniques typically use weather forecasts and historical data, to

predict power generation at short time scales.

Unlike prior work, SolarCast does not require panel and configuration parameters; it

automatically learns these parameters from minimal historical data. Further, its black box

architecture allows it to scale across a number of sites, ranging from rooftop installations

to large solar farms. To our knowledge, we are the first to evaluate our black box model on

datasets with many solar sites with different characteristics.

4.8 Conclusion
In this chapter, we present a black box approach for forecasting solar power genera-

tion. Our black box model only needs the location and minimal historical data from any

solar panel installation to design a custom site-specific prediction model. We evaluate this

approach using two different machine learning approaches—one based on a least-squares

curve-fit and one based on a deep neural network—-across multiple datasets that include

more than one hundred solar deployments each (spread across multiple geographic loca-

tions). Importantly, our approach learns much faster than prior approaches by normalizing

each data point at each point in time relative to the weather, e.g., 50% cloud cover at 12pm

and 6pm has the same affect on the percentage of solar output. This normalization enables

our approach to applying all the data to a single model. In addition, unlike prior techniques,

our adaptive black box model also accounts for the dynamic factors, such as snow, dust, and

pollen, which is evident from its low prediction error compared to prior machine learning

based prediction model. Finally, we present two application case studies. Our first applica-

tion case study shows how a smart home can exploit SolarCast’s services to schedule elastic

loads and reduce electricity bills. As an example, we show that by simply providing a little

flexibility for a dryer’s start time, the homeowner can reduce grid energy demand by up to
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40%. We then evaluate a smart solar-powered charging station, which can optimally charge

the maximum number of electric vehicles (EVs) on a given day, and show that SolarCast

can provide EV owners the amount of energy they can expect to receive from solar energy

sources.
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CHAPTER 5

ANOMALY DETECTION IN SOLAR POWER GENERATIONS

This chapter proposes SolarClique, a data-driven approach to flag anomalies in solar

power generation. SolarClique utilizes a graphical model formulation to distinguish be-

tween anomalies affecting solar output and weather-related factors such as cloud cover.

Moreover, this approach neither relies on expensive instrumentation nor does it require

external inputs such as weather data. In this chapter, we also discuss the approach in de-

tail and show how it exploits correlations in solar power generation from geographically

nearby sites to predict the expected output of a site and flag anomalies. Further, this chapter

presents an extensive evaluation of this approach. Specifically, we show that it can scale to

sparsely populated regions, where there are few solar installations.

5.1 Motivation
Technological advances and economies of scale have significantly reduced the costs

and made solar energy a viable renewable alternative. From 2010 to 2017, the average

system costs of solar have dropped from $7.24 per watt to $2.8 per watt, a reduction of

approximately 61% [44]. At the same time, the average energy cost of producing solar is

12.2¢ per kilo-watt and is approaching the retail electricity price of 12¢ per kilo-watt [3].

The declining costs have spurred the adoption of solar among both utilities and residential

owners.

Recent studies have shown that the total capacity of small-scale residential solar instal-

lations in the US reached 7.2 GW in 2016 [5]. Unlike large solar farms, residential instal-

lations are not monitored by professional operators on an ongoing basis. Consequently,
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anomalies or faults that reduce the power output of residential solar arrays may go unde-

tected for long periods of time, significantly reducing their economic benefits. Further,

large solar farms have extensive sensor instrumentation to monitor the array continuously,

which enables faults or anomalous output to be determined. In contrast, residential in-

stallations have little or no sensor instrumentation beyond displaying the total power of

the array, making sensor-based monitoring and anomaly detection infeasible in such con-

texts. Adding such instrumentation increases the installation costs and is not economically

feasible in most cases.

However, the primary challenge in designing such an application is to handle intrinsic

variability of solar and site-specific idiosyncrasies. Several factors affect the output of a

solar panel — such as weather conditions, dust, snow cover, and shade from nearby trees

or structures, temperature, etc. We refer to such factors as transient factors since they

temporarily reduce the output of the solar array. For instance, a passing cloud may briefly

decrease the power output of the panel but doesn’t reduce the solar output permanently.

Similarly, shade from nearby buildings or trees can be considered transient factors as they

reduce the output temporarily and may occur only at certain periods of the day.

Interestingly, some transient factors, such as overcast conditions, impact the output of

all arrays in a geographical neighborhood, while other factors such as shade from a nearby

tree impact the output of only a portion of the array. In addition, factors such as malfunc-

tioning solar modules or electrical faults also reduce the output of a solar array, and we refer

to them as anomalies — since human intervention is needed to correct the problem. Prior

studies have shown that such factors can significantly reduce the power output by as much

as 40% [10, 34, 45]. In our work, we need to distinguish between the output fluctuations

from transient and anomalous factors. Further, site specific idiosyncrasies (such as shade,

tilt/orientation of panels) need to be considered when exploiting the correlation between

solar arrays in a region.
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Figure 5.1. Power generation from three geographically nearby solar sites. As shown, the
power output is intermittent and correlated for solar arrays within a geographical neighbor-
hood.

Naive approaches such as labeling a solar installation as anomalous whenever its power

output remains “low” for an extended period do not work well. Since drops in power

output may be caused due to cloudy conditions, depending on the weather, the solar output

may remain low for days. Labeling such instances as anomalies may result in many false

positives. Since the challenge lies in differentiating drops in power output due to transient

factors (i.e., factors that impact power output temporarily) and those that are anomalies

(i.e., factors that may require human intervention), we need a new approach for detecting

solar anomalies using geographically nearby sites.

The rest of the section is organized as follows. We present a graphical model repre-

sentation for our setup that models the confounding variables. Next, we discuss how our

algorithm removes the confounding factors and detects anomalies in solar generation.

5.2 Graphical model representation
We first introduce the intuition behind our approach to detect anomalous power genera-

tion in a solar installation. Our primary insight is that other geographically nearby sites can
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Figure 5.2. Graphical model representation of our setup.

predict the solar output potential, which can then reveal issues in a given site. Since factors

such as the amount of solar irradiance (e.g., due to cloudy conditions) are similar within a

region, the power output of solar arrays in a geographical neighborhood is usually corre-

lated. This can be seen in the power output from three different solar installation sites in the

same geographical neighborhood (see Figure 5.1). As seen, the solar arrays tend to follow

a similar power generation pattern. So we can use the output of a group of sites to predict

the output of a specific site and flag anomalies if the prediction significantly deviates.

We hypothesize that predicting the output using geographically nearby sites can “re-

move” the effects of confounding factors (i.e., common factors). By accounting for con-

founding factors, the remaining influence on power generation can be attributed to local

factors in the solar installation. The local factors may include both transient local factors

and anomalies. Thus, any irregularity in power generation, after accounting for confound-

ing and transient local factors, must be due to anomalies in the installation. For example,

cloudy or overcast conditions in a given location have a similar impact on all solar panels

and will reduce the power output of all sites. However, a malfunctioning solar module in

a site (a local event) will observe a higher drop in power output than others. If the drop

in power due to cloudy conditions (a confounding factor) along with transient local factors

is accounted for, any further drop in power can be attributed to anomalies. Our approach

follows this intuition to detect anomalies in a solar installation.
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Our work is inspired by a study in astronomy, wherein Half-Sibling Regression tech-

nique was used to remove the effects of confounding variables (i.e., noises from measuring

instruments) from observations to find exoplanets [90]. We follow a similar approach to

model and detect anomalies in a solar installation.

Let C, L, X and Y be the random variables (RVs) in our problem. Here, Y refers to the

power generated by a candidate solar installation site. X represents the power produced

by each of the geographically nearby solar installations (represented in a vector format).

While C represents the confounding variables that affect both X and Y , the variable L

represents site-specific local factors affecting a candidate site. These local factors include

both transient factors and anomalies that affect a candidate site. In our setup, both X and Y

are observed variables (as power generation of a site can be easily measured), whereas C

and L are latent unobserved variables. Figure 5.2 depicts a directed graphical model (DAG)

that illustrates the relationship between these observed and unobserved random variables.

We are interested in the random variable L which represents anomalies at a given site.

As seen in the figure, since both L and C affect the observed variable Y , without the knowl-

edge of C it is difficult to calculate the influence of L on Y . Clearly, X is independent of L

as variable L impacts only Y . However, we note that C impacts X and when conditioned

on Y , Y becomes a collider, and the variables X and L become dependent [78]. This

implies that X contains information about L and we can recover L from X .

To reconstruct the quantity L, we impose certain assumptions on the type of relationship

between Y and C. Specifically, we assume that Y can be represented as an additive model

denoted as follows:

Y = L + f(C) (5.1)

where f is a nonlinear function and its input C is unobserved. Since L and X are in-

dependent, variable X cannot account for the influence of L on Y . However, X can be

used to approximate f(C), as C also affects X . If X exactly approximates f(C), then

f(C) = E[f(C)|X], and we can show that L can be recovered completely using (5.1).
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Figure 5.3. An overview of the key steps in the SolarClique algorithm.

Even if X does not exactly approximate f(C), in our case, X is sufficiently large to pro-

vide a good approximation of E[f(C)|X] up to an offset. A more detailed description of

the approach is given in [90]. Thus, using X to predict Y (i.e., E[Y |X]), f(C) can be

approximated and removed from (5.1) to estimate ˆL as follows:

ˆL :

= Y � E[Y |X] (5.2)

where ˆL is an estimate of the local factors that may include both transient local factors and

anomalies.

5.3 SolarClique Algorithm
We now present our anomaly detection algorithm called SolarClique. Figure 5.3 de-

picts an overview of the different steps involved in the SolarClique algorithm. First, we

use the Half-Sibling Regression approach to build a regression model that predicts the solar

generation of a candidate site using power output from geographically nearby sites. Next,

we remove any seasonal component from the above regression model using time series de-
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composition. Finally, we detect anomalies by analyzing the deviation in the power output.

Below, we describe these three steps in detail.

5.3.1 Step 1: Remove confounding effects

The first step is to build a regression model that predicts the power generation output

Y of a candidate site using X , a vector of power generation values from geographically

nearby solar installations. As mentioned earlier, the regression model estimates E[Y |X]

component in the additive model shown in (5.2). Since Y is observed, subtracting the

E[Y |X] component determines the L component.

Standard regression techniques can be used to build this regression model. The regres-

sion technique learns an estimator that best fits the training data. Instead of constructing

a single regression model, we use bootstrapping — a technique that uses subsamples with

replacement of the training data — which gives multiple regression models and the proper-

ties of the estimator (such as standard deviation). We use an ensemble method, wherein the

mean of the regression models is taken to estimate the E[Y |X] in the testing data. Finally,

we remove the confounding component E[Y |X] from Y to obtain an estimate of ˆL
t

8t 2 T

in the testing data. The final output of this step is an estimate ˆL
t

and the standard deviation

(�
t

) of the estimators.

5.3.2 Step 2: Remove seasonal component

As discussed earlier, the solar output of a site is affected by both common (i.e., con-

founding) and local factors. Using the Half-Sibling Regression approach, we can account

for the transient confounding factors such as weather changes. However, we also need to

account for transient local factors, such as shade from nearby trees, which may temporar-

ily reduce the power output at a specific time of the day. Since variable ˆL
t

include both

transient local factors and anomalies, we need to remove the local factors to determine the

anomaly ˆA
t

.
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We note that the time period of such occlusions (those from nearby trees or structures)

may not vary much on a daily basis. This is because the maximum elevation of the sun

in the sky varies by less than 2� over a period of a week1 on average. Using time series

decomposition techniques over short time intervals (e.g. one week), such seasonal compo-

nents (i.e the pattern occurring every fixed period) can be removed. Thus, we perform a

time series decomposition to account for transient local factors as follows. We compute the

seasonal component and remove it from ˆL
t

only when ˆL
t

is outside the confidence interval

4� and on removal of the seasonal component, ˆL
t

doesn’t go outside the confidence inter-

val. After removal of the seasonal component, if any, we obtain ˆA
t

from ˆL
t

as our final

output.

5.3.3 Step 3: Detect Anomalies

We use the output ˆA
t

(from Step 2) and the standard deviation �
t

(from Step 1) to

detect anomalies in a candidate site. Specifically, we flag the day as anomalous when three

conditions hold. First, the deviation of ˆA
t

should be significant, i.e., greater than four times

the standard deviation. Second, the anomaly should occur for at least k contiguous period.

Finally, when the period t is during the daytime period (not including the twilight). Thus,

an anomaly can be defined as follows:

anomaly = (

ˆA
t

< �4�
t

) ^ ... ^ (

ˆA
t+k

< �4�
t

) 8t 2 T (5.3)

where T denotes the time during the daytime period.

Based on our assumption that ˆA
t

is Gaussian, it follows that the odds of an anomaly

are very high when the deviation is more than 4�. These anomalous values belong to the

end-tail of the normal distribution. The second condition (i.e., contiguous anomaly period)

1The sun directly faces the Tropic of Cancer (+23.5�) on the summer solstice. Whereas, it faces the Tropic
of Capricorn (-23.5�) on the winter solstice. Thus, over half the year (26 weeks) the maximum elevation of
the sun changes by ⇡47�, i.e., <2� per week.
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ensures that the drop in power output is for an extended period. In practice, depending

on the data granularity, the contiguous period can range from minutes to hours. Clearly,

we would like to detect anomalies during the period when sunlight is abundant. During

the night or twilight, the solar irradiation is very low to provide any meaningful power

generation. Thus, we choose the daytime period in our algorithm for anomaly detection.

5.4 Implementation
We implemented our SolarClique algorithm in python using the SciPy stack [7]. The

SciPy stack consists of efficient data processing and numeric optimization libraries. Fur-

ther, we use the regression techniques in the scikit-learn library to learn our models [80].

The scikit-learn library comprises various regression tools, which takes a vector of input

features and learn the parameters that best describe the relationship between the input and

the dependent variable. Additionally, we use Seasonal and Trend decomposition using

Loess (STL) technique to remove the seasonality component [30]. The STL technique per-

forms a time series decomposition on the input and deconstructs it into trend, seasonal, and

noise components.

5.5 Evaluation Settings
5.5.1 Dataset

For evaluating the efficacy of SolarClique, we use a public dataset available through

the Dataport Research Program [4]. The dataset contains solar power generation from

over hundred residential solar installations located in the city of Austin, Texas. The power

generation from these installations are available at an hourly granularity. Table 6.3 shows

the key characteristics of the dataset. For our case study, we selected those homes that have

contiguous solar generation data, i.e., no missing values, for an overlapping period of at

least two years. Based on this criteria, we had 88 homes for our evaluation in the year 2014

and 2015.
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Number of solar installations 88

Solar installation size (kW) 0.5 to 9.3

Residential size (sq. ft.) 1142 to 3959

Granularity 1 hour

Year 2014, 2015

Table 5.1. Key characteristics of the dataset.

5.5.2 Evaluation Methodology

We partitioned our dataset into training and testing period. We used the first three

months of data to train the model, and the remaining dataset for testing (21 months). Fur-

ther, for bootstrapping, we sample our training dataset by randomly selecting 80% of the

training samples with replacement. These samples are then used to build the estimator,

and we repeated this step 100 times to learn the properties of the estimator. To build our

model, we used five popular regression techniques namely Random Forest (RF), k-Nearest

Neighbor (kNN), Decision Trees (DT), Support Vector Regression (SVR), and Linear Re-

gression (LR). Finally, we selected the contiguous period as k = 2 (see Step 3 of our

algorithm) since our data granularity is hourly. Unless stated otherwise, we use all homes

in our dataset for our evaluation.

5.5.3 Metrics

Since the installation capacity can be different across solar panels, it may not be mean-

ingful to use a metric such as Root Mean Squared Error (RMSE). This is because the

magnitude of the error may be different across predictions. Thus, we use Mean Abso-

lute Percentage Error (MAPE) to measure the regression model’s accuracy in predicting a

candidate’s power generation. MAPE is defined as:
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Figure 5.4. Performance of different regression techniques used to predict the power gen-
eration of a site.

MAPE =

100

n

nX

t=1

����
y
t

� p
t

ȳ
t

���� (5.4)

where y
t

and p
t

are the actual and predicted value at time t respectively. ȳ
t

represents the

average of all the values and n is the number of samples in the test dataset.

5.6 Experimental Results
Below, we summarize the results of using SolarClique on the Dataport dataset.

5.6.1 Prediction performance using geographically nearby sites

We compare the accuracy of the five regression techniques used to predict the power

generated at a candidate site (Y ) using the data from nearby sites (X). Figure 5.4 shows

the spread of the MAPE values for the regression techniques used for all the 88 sites. Ran-

dom Forest and Decision Trees show the best performance closely followed by k-NN with

average MAPE values of approximately 7.81%, 7.87%, and 8.94% respectively. Linear

Regression, on the other hand, shows poor accuracy with an average MAPE of 19%.
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Figure 5.5. Mean standard deviation of predictions for different regression techniques

As discussed earlier, our approach uses bootstrapping to generate the standard deviation

values for each prediction. Note that a small standard deviation means tighter confidence

interval and indicates that the regression technique has a consistent prediction across runs.

Figure 5.5 shows the mean value of standard deviation over all the testing samples nor-

malized by the size of the solar installation. We observe that RF and k-NN have tight

confidence intervals, while LR has considerably wider bounds. In particular, we observe

that the average standard deviation of RF and k-NN is 0.0032 and 0.0059 using all the sites,

respectively. In comparison, the average standard deviation of LR is 0.0078. Since RF per-

forms better than other regression techniques, we use RF for the rest of our evaluation.

5.6.2 Impact due to the number of geographically nearby sites

We now focus on understanding the minimum number of geographically nearby sites

to accurately predict the power generated at the candidate site. As discussed earlier, the

power output of geographically nearby sites are used as input features to build the regres-

sion model. Since in this experiment we are not interested in analyzing the confidence

intervals, we use the entire training data to build the model (i.e., no bootstrapping). We
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Figure 5.6. Average MAPE diminishes with increase in the number of geographically
nearby sites.

vary the number of geographically nearby sites from 1 to 50 and for each value, we build

100 different models learnt from choosing random combinations of nearby sites.

Figure 5.6 shows the spread of average MAPE values as we vary the number of geo-

graphically nearby sites used for all 88 sites. We use the Random Forest regression tech-

nique to build the model. As expected, the average MAPE value reduces when more num-

ber of geographically nearby sites are used to predict the output. Note that as the nearby

sites increase, the variations in nearby sites cancel out, which provides a more robust re-

gression model. This suggests that an increase in the nearby site can improve the accuracy

of the power generation model of a candidate site. We also note that the reduction in

MAPE diminishes as the number of geographically nearby sites increases. With at least

five randomly chosen geographically nearby sites, we observe that the MAPE is around

10%. This indicates that our algorithm can be effective in sparsely populated regions such

as towns/villages, having few solar installations.

Next, we analyze the variability in performance of the different models as the number of

geographically nearby sites increases. Figure 5.7 shows the spread of the standard deviation
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Figure 5.7. Standard deviation of MAPE diminishes with increase in the number of geo-
graphically nearby sites.

of the 100 models with increasing number of geographically nearby sites. As shown in the

figure, we observe that the variability reduces when the number of nearby sites increases.

However, unlike the previous result, the variability continues to reduce — albeit at a slower

rate — even when the number of nearby sites is greater than five. Thus, the performance of

the learned models is closer to its average.

5.6.3 Detection of anomalies

We illustrate the different steps involved in our algorithm using Figure 5.8. In the

top subplot of the figure, the blue line depicts the power generation trace from a solar

installation for over a week in August, 2015. The red marker shows the prediction from

the RandomForest regression technique with data from the remaining 87 sites as features.

While the prediction (i.e., red marker) closely follows the actual power output (i.e., blue

line), there is a significant difference in the actual and predicted after 14th August. As seen,

there is a sharp drop in the actual power generated in the late morning of 14th August. The

drop in power is significant, and there is no output recorded in the site for an extended
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Residual crossing the confidence interval 

Figure 5.8. An illustrative example that depicts the data-processing and anomaly detection
steps in SolarClique.

period until October (not shown in the figure). However, the regression model forecasts a

non-negative power output for the given site.

The second subplot shows the residual, i.e., the difference between the actual and the

predicted values (i.e., the black line) along with the confidence interval (i.e., the gray shaded

region). The confidence interval, which is within ±4�, is calculated using the pointwise

standard deviation obtained from the bootstrap process. In this figure, we observe that the

residual sometimes lie outside the confidence interval at the same time of the day across

multiple days — which indicates a fixed periodic component.

On removing the seasonal component using our approach, we observe that the residual

always lies within the confidence interval, except when there is an anomaly in power gen-

eration. This is shown in the third subplot of the figure, where the black line (i.e., residual)

lie within the gray shaded region (i.e., the confidence interval). Finally, the last subplot de-

picts our anomaly detection algorithm in action. We observe that our algorithm accurately

flags periods of no output as an anomaly (depicted by the red shaded region).
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Figure 5.9. Number of anomalous days for each site. Installation sites are plotted in
ascending order of anomalous days.

5.7 Case-study: Anomaly Detection Analysis
In this case study, we use the solar installations in the Dataport as they represent a

typical setup within a city. We ran our SolarClique algorithm on the generation output

from all solar installations and obtained the anomalous days in the dataset. Below, we

present our analysis.

5.7.1 Anomalies in solar installations

Figure 5.9 shows the total number of anomalous days in each solar installation site. We

observe that our SolarClique algorithm found anomalous days in 76 solar installations, out

of the 88 sites in the dataset. As seen in the figure, the total number of anomalous days

span from a day to several months. Together, all the installation sites had a total of 1906

anomalous days. This indicates a significant loss of renewable power output. Specifically,

we observe that 17 of the 88 (around 20%) installations had anomalous power generation

for at least a total of one month that represents more than 5% of the overall 640 days in

the testing period. Anomalies from these installations account for nearly 80% of all the

anomalous days.
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Anomalous days

Anomalous days

Figure 5.10. Under-production of solar detected using our algorithm.

To better understand the anomalous periods, we group them into short-term and long-

term periods. The short-term periods have less than three contiguous anomalous days,

while the long-term periods have consecutive anomalous days for at least three days. Our

results show the dataset has 587 occurrences of short-term periods spread over 683 days.

Further, we observe 123 occurrences of long-term periods spread over 1223 days. We also

observe that the maximum contiguous anomalous period found in a site was approximately

five months (i.e., 158 days), with no power output during that period. Clearly, such high

number of long-term anomalous periods demonstrate the need for early anomaly detection

tools. Additionally, we note that long-term anomalies are relatively easier to detect than

short-term anomalies. While long-term anomalies represent serious issues that may need

immediate attention, short-term anomalies may be minor problems, if unattended, could

become major problems in future. The advantage of our approach is we can detect both

short-term and long-term anomalies.
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5.7.2 Analysis of anomalies detected

Note that the reduction in power output depends on the severity of an anomaly. This

is because some electrical faults (e.g., short-circuit of a panel) may have localized impact

on a solar array, which can marginally reduce the power output, while other faults (e.g.,

inverter faults) may show significant power reduction or completely stop power generation.

SolarClique detects anomalous days when there is no solar generation and also when

an installation under produces power. Our algorithm reported 1099 and 807 anomalous

days with under production and no solar generation, respectively. Since no solar genera-

tion days are trivially anomalous, we specifically examine cases of solar under production.

Figure 5.10 shows the power output from three different sites. The top plot shows the

power output (depicted by the blue line) with no anomalous days, the subplots below show

sites that have anomalous days (depicted by the red marker). Our results show that the So-

larClique algorithm detects anomalies even when a site under produces solar power. Note

that the site with no anomaly, which is exposed to the same solar irradiance as other sites,

continues to produce solar output. However, we observe a drop in power output for an

extended period in the anomalous sites. Specifically, we observe the drop in power output

is around 75% and 40% in Site 1 and Site 2, respectively — presumably due to factors such

as line faults in the solar installation. Usually, anomalies such as line faults can cause a

significant drop in the power output. In particular, a 75% drop in Site 1 can be attributed to

faults in three fourth of the strings (i.e., connected in series).

We further examine the reduction in power output in the underproduction cases. Fig-

ure 5.11 shows the distribution of the difference in actual and predicted power output for

anomalous days. Out of the1099 under production days, our algorithm reported 23 days

when the difference in percentage was less than or equal to 5%. Typically, more than 5%

drop in power output is considered significant. This is because malfunctioning of a single
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Less than 5% error    

Figure 5.11. Distribution of the difference in actual and predicted on underproducing
anomalous days.

panel in a solar array with 20 panels2 will result in a 5% reduction. Thus, we investigate

anomalous days wherein the difference is less than or equal to 5%. Figure 5.12 compares

the regression fit of anomalous days with two normal days (adjacent to the anomalous days)

from two sample sites where the difference was less than 5%. Note that the figure shows a

good fit for most periods except during the anomalous period highlighted in the circle. In

comparison to other periods, we observe a drop in power during the anomalous period, oc-

curring during the mid-day. Even though the difference in percentage is small, it represents

a relatively significant drop since the power output is at its peak during the mid-day.

We observe that our approach also detects anomalies due to degradation in the power

output, which usually spans over an extended time period. Since the drop in power output

over the time period may be small, such changes are more subtle and harder to identify.

Figure 5.13 shows the degradation in power output of an anomalous site. Our algorithm

reports an increase in the frequency of anomalous days in the installation site over the year,

with more anomalous days in the latter half. To understand the increase in anomalous days,

we plot the difference between the actual and predicted (seen in the bottom subplot). We

2Typically, a 5kW installation capacity has 20 panels, each panel having 250W capacity.
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(a) Site A (b) Site B

Figure 5.12. Anomalies detected in two sample sites where the difference in actual and
predicted was less than 5%. The figure shows a good fit on all days except the anomalous
period highlighted in the circle.

observe that the difference between the actual and predicted value steadily increases over

time. It is known that the power output of solar installations may reduce over time due

to aging [77] at a rate of around 1% a year. However, the accelerated degradation seen in

Figure 5.13 is presumably due to occurrences of hot-spots or increased contact resistance

due to corrosion. Early detection of such conditions can help homeowners take advantage

of product warranties available on solar panels.

We now examine the types of anomalies in the top 17 sites with more than a month of

anomalous days. The power output of anomalous days can be categorized into three types

— (i) no production, (ii) under production, and (iii) degradation over a period. Table 5.2

summarizes the different types occurring over a period in these sites. The single period

represents a single contiguous period of anomaly, while the multiple period represents more

than one contiguous period. We observe that the average power reduction during anomalous

periods may range from 98.8% to 30.6%. We classify “no production days” as days with

no power output for the majority of the period. Overall, we observe that there are 810 no
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Degradation over a year

Figure 5.13. Accelerated degradation in the power output of a solar site.

production days — a significant loss in renewable output. Although the average power

reduction due to severe degradation is 30%, it is likely to grow over time.

5.8 Discussion
As mentioned earlier, several third-party sites exist that host solar generation data for

rooftop installations. While in our approach, we use power to determine the existence of

anomalies in power generation, several other electrical characteristics such as voltage and

current are available that carry much richer information about the type of anomaly. This

information can be leveraged to further infer the exact type of anomaly in power generation.

For example, a line fault (broken string) will reduce the current produced by the overall

setup, but the voltage will remain unchanged. Conversely, covering of dust/bird droppings

can impact both the voltage and the current. Thus, our algorithm can be extended to use

multi-modal data (e.g., voltage, current, and power) to further diagnose the exact cause of

the anomaly.
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Anomaly

Type
#Sites #Days

Avg. power

reduction(%)

Single No Production 5 515 98.87

Multiple No Production 3 295 98.65

Single Under Production 2 348 60.22

Multiple Under Production 4 164 43.63

Severe Degradation 3 179 30.67

Table 5.2. Types of anomaly in sites having more than a month of anomalous days.

Our approach can also be extended to a single solar installation for detecting anomalies.

With the proliferation of micro-inverters in residential solar installations, power generation

data from individual panels are available. Power output from these colocated panels can

also be used to detect faults in the PV setup, as they can predict the power output with higher

fidelity. This can be used in remote locations where data from other solar installations

are not easily available. As part of future work, we plan to use SolarClique algorithm to

discover faults in a single panel by comparing power generated with others in the same

setup.

5.9 Related Work
There has been significant work on predicting the solar output from solar arrays [14,

15, 53, 71, 94]. While some studies have used site-specific data such as panel configu-

ration [15, 71] for building the prediction model, others have used external data such as

weather or historical generation data [58, 94]. Such models can provide short-term gener-

ation forecast (e.g., an hour) to long-term forecast (e.g., days or weeks). Although these

studies can predict the reduction in power output, a limitation in these studies is that they

cannot attribute the reduction to anomalies in the solar installation.
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Prior work has also focused on anomaly detection in PV panels [45, 46, 77, 88, 97, 99,

101]. These studies propose methods to model the effects of shades/covering [45, 65],

hot-spots [62], degradation [77, 97] or short-circuit and other faults [46]. However, these

methods require extensive data (such as statistics on different types of anomalies) [96] or do

not focus on hardware-related issues [45]. For instance, [96] proposes a solution to deter-

mine probable causes of anomalies but require detailed site-specific information along with

pre-defined profiles of anomalies. Unlike prior approaches, our approach doesn’t require

such extensive data or setup and relies instead on power generation from co-located sites.

Thus, it provides a scalable and cost-effective approach to detect anomalies in thousands

of solar installation sites.

The idea behind our approach is similar to [89, 90]. However, the authors use the

approach in the context of an astronomy application, wherein systematic errors are removed

to detect exoplanets. In this case, the systematic errors are confounding factors due to

telescope and spacecraft, which influences the observations from distant stars. In contrast,

our solution uses inputs from other geographically nearby sites to detect anomalies in solar.

As discussed earlier, today, such datasets are easily accessible over the internet, which

makes our approach feasible. Further, using regression on the data from neighbors has

been studied earlier [32]. However, the main focus of this work was in the context of

quality control in climate observations by imputing missing values. In our case, we use the

learned regression model to find anomalous solar generation.

5.10 Conclusion
In this chapter, we proposed SolarClique, a data-driven approach to detect anomalies in

power generation of a solar installation. Our approach requires only power generation data

from geographically nearby sites and doesn’t rely on expensive instrumentation or other

external data. We evaluated SolarClique on the power generation data over a period of two

years from 88 solar installations in Austin, Texas. We showed how our solar installation
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regression models are accurate with tight confidence intervals. Further, we showed that

our approach could generate models with as few as just five geographically nearby sites.

We observed that out of the 88 solar installations, 76 deployments had anomalies in power

generation. Additionally, we found that our approach is powerful enough to distinguish

between reduction in power output due to anomalies and other factors (such as cloudy

conditions). Finally, we presented a detailed analysis of the different anomalies observed

in our dataset.
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CHAPTER 6

MODEL-DRIVEN ENERGY EFFICIENCY ANALYTICS AT
CITY-SCALE

This chapter presents WattHome, an algorithm that utilizes at grid-level smart meter

data to initially derive a probabilistic and weather-sensitive energy model for individual

homes based on its energy usage and the prevailing ambient weather. The model parame-

ters are then leveraged to identify the least efficient buildings in a given population along

with the underlying cause of energy inefficiency. This chapter also discusses a detailed

evaluation section that examines the individual parts of the algorithm. Finally, the chapter

presents a real-world case-study where WattHome is used to identify faults in residential

buildings in a mid-sized city in the New England region.

6.1 Motivation
A city consists of hundreds or thousands of buildings, an essential first step for im-

plementing energy-efficiency measures is to identify those that are the least efficient and

thus have the greatest need for energy-efficiency improvements. Interestingly, naive ap-

proaches such as using the age of the building or its total energy bill to identify inefficient

buildings do not work well. While older buildings are usually less efficient than newer

ones, age alone is not an accurate indicator of efficiency, since older buildings may have

undergone renovations and energy improvements. Similarly, the total energy usage is not

directly correlated to energy inefficiency. First, larger buildings will consume more energy

than smaller ones. Even normalizing for size, greater energy usage does not necessarily

point to inefficiencies. For example, two identical size homes with a different number of
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Figure 6.1. WattHome Overview.

residents will have different total energy usage, and higher usage, in this case, merely re-

flects a greater number of occupants rather than inefficiency. Thus, finding truly inefficient

buildings requires more sophisticated methods.

The buildings that are identified as inefficient can then become candidates for various

energy efficiency measures such as energy audits or targeted energy incentives for im-

provements or upgrades. Methods to identify inefficient homes is made feasible by the

availability of citywide datasets. For example, advanced metering infrastructure in smart

grids, also known as smart meters, can monitor a buildings energy usage at a fine time

granularity of minutes or hours. Real estate information describing a building’s age, size,

and other characteristic are public records in many countries, and curated building datasets

for entire cities is readily available through public APIs over the Internet.

6.2 WattHome Approach
In this section, we describe the details of our data-driven approach. WattHome’s ap-

proach is depicted in Figure 6.1 and it involves three key steps: (i) Learn a building energy

model for each home from energy usage data, (ii) Create a partial order of buildings using
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Figure 6.2. Energy usage versus outdoor temperature.

its parameter distribution from the building model, and finally (iii) Detect building faults

causing energy inefficiency. Below, we discuss each step in detail.

6.2.1 Building Energy Model

We first provide the intuition behind our approach. Heating and cooling costs for a

building can be understood using elementary thermodynamics. Typically, in colder months,

the outside ambient temperature is colder than the inside building temperature, resulting in

a net thermal loss where the inside heat flows outside through the building envelope, caus-

ing the inside temperature to drop. In warmer months, the opposite is true. The building

experiences a net heat gain where the heat flows inside, causing the building temperature

to rise.

It follows that every home has a specific temperature T
b

, where there is neither thermal

loss nor thermal gain i.e. the thermodynamic equilibrium. When the outside temperature

is above T
b

, there is a need for AC to cool the home. Conversely, when the temperature

is below T
b

, there is a need for a heater to heat the home. This temperature T
b

is called

the balance point temperature of the building. The rate of thermal loss or thermal gain

depends on the degree of insulation, airtightness of the building envelope and surface area

exposed to outside elements. Better the insulation and airtightness, smaller the rate of

loss or gain for a given temperature differential relative to T
b

. The difference between the
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outside temperature and the balance point temperature T
b

is also referred as the degree-days

— an indication of how many degrees warmer or colder is the outside weather relative to

the building’s balance point.

Based on this intuition, we now describe our building energy model. Any energy load in

a building can be classified as weather independent and dependent. A weather independent

load is one where the energy consumed by the device is uncorrelated to the outside tem-

perature — consumption from loads such as lighting, electronic devices, and household

appliances depend on human activity rather than outside weather. Heating and cooling

equipment constitute weather dependent loads, as their consumption linearly dependent on

the outside temperature relative to the balance point.

If we assume that weather independent loads are distributed around a constant value

(also called the base load); then the total energy consumed is the sum of the base load and

the weather dependent loads (heating and cooling loads) and defined as:

Etotal

d

= Eheat

d

+ Ecool

d

+ Ebase 8d 2 D (6.1)

where Etotal

d

denotes the total energy used by a building on day d 2 D. Eheat

d

and Ecool

d

denote the energy used for heating and cooling, respectively, on day d, while Ebase denotes

the energy usage of base load appliances. Thus, given a series of observations of the total

energy usage and the outside ambient temperature, it is possible to fit a regression and

learn the fixed weather independent component (base load) and the temperature dependent

component (heating and cooling). This forms the basis for inferring our weather-aware

building energy model.

Figure 6.2 illustrates the relationship between outdoor temperature and the energy con-

sumption of a building. The individual data points represent the daily energy usage (along

the Y-axis) for a given average outdoor temperature (along the X-axis) of a building. The

figure shows that the building has two balance point temperatures — a heating balance

point temperature T heat, below which heating units are turned on, and a cooling balance
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point temperature T cool, above which air-conditioning is turned on. Further, the figure also

shows a piecewise linear fit over the daily energy usage. When the outdoor temperature is

between the two balance points, the building consumes energy that is distributed around a

constant value defined as the base load Ebase energy consumption. The weather dependent

components, i.e. the heating Eheat and cooling Ecool energy consumption, are a function of

ambient outdoor temperature T
d

and are defined as:

Eheat

d

= �heat(T heat � T
d

)

+ 8d 2 D (6.2)

Ecool

d

= �cool(T
d

� T cool

)

+ 8d 2 D (6.3)

where �heat and �cool are the heating and the cooling slope in the above linear equations and

represent a positive constant factor indicating the sensitivity of the building to temperature

changes; and ()

+ indicates the value is zero if negative and ensures either energy from

heating or cooling is considered. Using (6.2) and (6.3), energy model in (6.1) can be

represented as a piecewise linear model:

Etotal

d

=Ebase

+ �heat(T heat � T
d

)

+
+ �cool(T

d

� T cool

)

+8d 2 D (6.4)

The model in (6.4) is known as the degree-day model [63] and forms our base energy model

for estimating the building parameters.

While methods like Maximum Likelihood Estimation (MLE) or Maximum a posteriori

estimation (MAP) can be used for determining the building parameters, they provide point

estimates that can hide relevant information (such as not capturing the uncertainties in

human energy usage). To capture human variations, we require probability density function

of the parameters. Thus, we use Bayesian inference approach, which provides the posterior

distribution of parameters.
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We model (6.4) using a bayesian approach and assume the error process to be normally

distributed (N (0, �2)). Thus, the daily energy consumption Etotal

d

is normally distributed

with parameters mean (µ) and variance (�2), where µ is equal to the right hand side of

(6.4). Note that energy consumption Etotal

d

is known and so is the independent variable

i.e. ambient temperature T
d

. However, the building parameters (�heat, �cool, T heat, T cool,

and Ebase) are unknown. Using Bayesian inference, we can then compute a posterior

distribution for each of these parameters that best explains the evidence (i.e. the known

values for Etotal

d

and T
d

8d 2 D) from initially assuming a prior distribution.

To determine the posterior distribution of the individual parameters, we use the Markov

chain Monte Carlo (MCMC) method that generates samples from the posterior distribution

by forming a reversible Markov-chain with the same equilibrium distribution. We introduce

a prior distribution that represents the initial belief regarding the building parameters. For

example, the two balance point temperatures will be between a wide range of 32°F and

100°F. This belief can be represented using a uniform prior with the said range. Similarly,

the baseload, heating slope and cooling slope can be drawn from a weakly informative

gaussian prior having non-zero values. This is because baseload, a unit of energy, cannot

be negative. Similarly, slope values must be positive as they represent increase in energy

per unit temperature. The parameters of the gaussian priors are scaled to our setting and

selected based on the recommendations provided by Gelman et al. [48]. To simplify our

building model, we assume that the parameters are independent, i.e., the heating, cooling

and the baseload parameters do not affect one another.

Several MCMC methods leverage different strategies to lead from these priors towards

the target posterior distribution. We employed No-U-turn sampler, a sophisticated MCMC

method, which has shown to converge quickly towards the target distribution. Thus, after

an initial burn in samples, we can draw samples approximating the true posterior distribu-

tion. From these post-burn-in samples, a posterior distribution for the individual building

parameters can be formed. Our complete Bayesian model is defined in Table 6.1.
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Prior

Ebase ⇠ N (20, 20), �heat ⇠ N (0, 4), �cool ⇠ N (0, 4)

T heat ⇠ U(32, 100), T cool ⇠ U(32, 100), � ⇠ Cauchy(0, 5)

Regression Equation

µ
d

= Ebase + �heat(T heat � T
d

)

+ + �cool(T
d

� T cool

)

+ 8d 2 D

Model Likelihood

Etotal

d

⇠ N (µ
d

, �2
)

Parameter Bounds

Ebase, �heat, �cool >= 0 and T heat <= T cool

Table 6.1. Bayesian formulation of our building energy model.

Since buildings are of different sizes, simply comparing the parameters in absolute

terms is not meaningful. To enable such comparison, we initially normalize the energy

usage by building size before the Bayesian inference. Hence, in our case, Ebase repre-

sents base load energy use per unit area. Similarly, heating slope �heat and cooling slope

�cool gives change in energy per degree temperature per unit area. Thus, the balance point

parameters (T heat and T cool) are not normalized as they are unaffected by the size of the

house. We construct a cumulative distribution (F
�

heat , F
�

cool , F
E

base) for each of the build-

ing model parameter (�heat, �cool, Ebase) from their respective density functions (posterior)

obtained after the inference. For the balance point parameters (T heat and T cool), we only

use its mean values as they tend to remain fixed for a given building irrespective of human

variation. This completes our approach for creating the building energy model.

6.2.2 Partial Order Creation

Rather than relying on rule-of-thumb measures to interpret model parameters that

change with geography and many other building characteristics, we propose comparing
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them with those of similar homes from a given population. Given the above model, we cre-

ate a partial order of buildings as follows. We first create peer groups using the building’s

physical attributes (e.g., age of the building, building type etc.). Next, within each peer

group we create a partial order of the buildings for each building parameter distribution.

Below, we describe each step in detail.

• Peer groups creation: To enable a meaningful comparison, we compare the build-

ing model parameters only within their cohort. We use three building attributes for

peer group creation namely: (i) property class (e.g., single family, apartment, etc.),

(ii) built area (e.g., 2000 to 300 sq.ft.), and (iii) year built (e.g.1945 to 1965). For in-

stance, buildings constructed in different years adhere to different energy regulations

and standards, and thus, it is not meaningful to compare them. Similarly, building

types and age group have different characteristics and it would be unreasonable to

compare them. Hence, our approach allows the creation of peer groups to enable

comparison within a cohort to determine inefficient homes.

• Stochastic order of building parameters: Since the building model parameters are

probabilistic distributions, we cannot simply compare these uncertain quantities and

create a total ordering. Statistics, such as mean, median or mode, provide a single

number to capture the behavior of the whole distribution. While these point estimates

can be used to compare two distributions, they typically hide useful information re-

garding their shape and may not account for any heavy-tailed nature that is present

in a building parameter distribution. Hence, we use second order stochastic domi-

nance, a well-known concept in decision theory for comparing two distributions [68],

to create a partial order of the building parameters within a peer group.

The main idea behind determining second order stochastic dominance is that for a

given building model parameter p, if distribution F
p

dominates G
p

i.e., F
p

⌫2 G
p

,
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Figure 6.3 depicts stochastic ordering of two distribution F
p

and G
p

where; (i) F
p

does not dominate G
p

i.e. F
p

✏2 G
p

and (ii) F
p

dominates G
p

i.e., F
p

⌫2 G
p

. The

area shaded in green shows the region where F
p

dominates G
p

, and the red region

shows G
p

dominates F
p

. In Figure 6.3(a), we observe that F
p

✏2 G
p

, since there are

no green area greater or equal to the left of the red area. In contrast, Figure 6.3(b)

and (c) shows F
p

dominates G
p

because for every red area, there exists a larger green

area located to its left.

To intuitively understand the implications of stochastic dominance in our scenario, let

us consider two distributions F
p

and G
p

of a building parameter p from two separate

buildings A and B respectively. As noted earlier, building parameters influences

energy usage, such that higher parameter values implies higher energy usage, and

vice-versa. Let us assume that building A’s normalized energy usage is greater than

building G’s normalized energy usage, such that distribution F
p

dominates G
p

i.e.,

F
p

⌫ G
p

. Clearly, the building parameter distribution F
p

for building A will lie on the

right-side of distribution G
p

as A has higher energy usage. In fact, since F
p

⌫ G
p

,
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Indicator Characteristics Probable Building Faults

High Heating Slope Inefficient Heater, Building Envelope

High Cooling Slope Inefficient AC, Building Envelope

High Heating Balance Point High Set point, Poor Building Envelope

Low Cooling Balance Point Low Set point, Poor Building Envelope

High Base load Inefficient Appliances

Table 6.2. Indicator building model characteristics and associated probable building faults.

by definition, the distribution F
p

will be on the right of G
p

for a majority of the

region. However, homes may have similar building parameter distribution, i.e the

distribution has similar shape and tendency. In such cases, it is possible that neither

home will dominate the other. Stochastic dominance thus enables interpretation of

the building parameter distribution with respect to one another, with higher energy

usage buildings having a tendency to lie on the right side of the population. This

allows separation of homes with dominant distributions from non-dominant ones.

We run a pair-wise comparison of all buildings within a cohort for each building

model parameter p. This gives us the partial order for all pairs and parameters, which

we use to detect inefficient homes.

6.2.3 Fault Detection and Analysis

We first discuss the causes of inefficiencies associated with the different model param-

eters. Heating slope �
heat

and heating balance point temperature T heat are the two parame-

ters that enable our model to interpret the heating inefficiencies of a home. Buildings with

high �heat lose heat at a higher rate, which in turn affects heating unit usage (i.e., consumes

more power) to compensate for the high loss rate. A high energy loss rate can be attributed

to poor building insulation, air leakages, or inefficient or heating unit. Separately, heating
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balance point temperature also indicates inefficiencies in the heating component of a home.

A high balance point temperature suggests two possible inefficiencies: (i) high thermostat

set-point temperature1 and (ii) poor building insulation. If the set-point temperature is high

during winters, heating units turn on more frequently to maintain the indoor temperature

at set-point. In contrast, if building insulation is poor, more heat is lost through the build-

ing envelope. Thus, heating units will be turned on frequently to sustain the high heating

balance point temperature. Similarly, we can interpret the cooling slopes �cool and cool-

ing balance point temperature, which points to inefficiencies in cooling units or building

envelope.

Homes with high Ebase indicate high appliance usage or inefficient appliances. In such

homes, energy retrofits may not help reduce energy consumption. However, these homes

may benefit from replacing old appliances (water heater, dryer) with newer energy star

rated ones. We summarize the association between probable causes of building faults and

model parameter in Table 6.2.

Next, we present our algorithm that identifies inefficient homes and its potential cause.

Here, we first use the partially ordered set of buildings to determine the outliers for each

parameter and then use the mapping in Table 6.2 to assign building faults. To determine

outliers, note that the energy usage of an inefficient home would be high. Thus, the build-

ing parameter distribution of an inefficient home will tend to be stochastically dominant

with respect to others in their peer group. However, among inefficient homes, the building

parameter distribution may be similar, and thus their distributions may not be stochastically

dominant to one another. Similarly, within energy efficient homes this distinction of dom-

inance may not be apparent, as their distribution may be identical to one another. We use

this insight to define a building as inefficient in a given model parameter, if it is stochas-

tically dominant compared to a majority of the homes within its cohort. For instance, if

1Set point temperature and balance point temperature have a linear relationship
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a building’s heating parameter distribution F
�̂

heat is dominant across more than ⌧% of the

buildings, we conclude that the building is inefficient and has a high heating slope. Here, ⌧

is the sensitivity threshold for WattHome and provides the flexibility to control the number

of inefficient homes. The higher the threshold value, the higher the possibility of identi-

fying an inefficient home. For all experiments, we chose this to be 75%. Thus, for each

parameter, we determine whether a building is inefficient if its distribution is dominant be-

yond a certain threshold. We use a balance point threshold to determine buildings with high

balance point temperature. We flag buildings as inefficient if the mean value obtained after

inference for heating (or cooling) balance point temperature T heat (or T cool) is greater than

(less than) specific heating (or cooling) balance point threshold 70°F (55°F) — a common

choice employed by expert auditors. We present the pseudo-code to determine inefficient

buildings in Algorithm 2.

Algorithm 2 Fault Analysis Algorithm
1: Inputs: Sensitivity (⌧ ), buildings (B)
2: procedure FINDINEFFICIENTHOMES(⌧ , B)
3: count = {}; homes = {}
4: for p in [�heat, �cool, Ebase

] do
5: for (b1, b2) |B|P2 do // all-pairs permutation
6: if F

p

(b1) ⌫2 F
p

(b2) then
7: count[p, b1] +=1
8: for b B do homes[p, b] = count[p, b] � ⌧
9: for b B do homes[T heat, b] = T heat

b

> 70

�F

10: for b B do homes[T cool, b] = T cool

b

< 55

�F

11: return homes
1: Inputs: building (b), parameters (P ), fault map (M )
2: procedure GETROOTCAUSE(h, P , M )
3: faults = []
4: for p P do
5: if homes[p, b] then
6: faults += M [p] // append list
7: return faults

As noted earlier, each parameter in the building model affects an energy component

defined in (6.4). Any irregularity in the building parameter, in comparison to its peer group,
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points to possible inefficiency in the said energy component. We outline our pseudo-code

for finding root cause in Algorithm 2. First, we create a mapping of indicators of deviations

in building model parameters to possible faults using Table 6.2. We provide the mapping as

an input to our algorithm. Next, we associate a fault to a home if it was flagged inefficient

for the given parameter p. For instance, if a home is flagged as high base load, we say that

the home has inefficient appliances. Similarly, an inefficient home with high heating slope

is assigned faults related to heating inefficiencies. We then generate a report of the list of

potential faults in a given home.

6.3 Implementation
We implemented WattHome as an open source tool. WattHome is split into two com-

ponents — (i) a Unix-like command line tool 2 that uses PyStan, a statistical modeling

library, to implement our bayesian model, and (ii) a web-based application interface im-

plemented using Django framework for interacting with the command line tool. Users can

interact with either component, and provide their energy traces and building information,

to determine likely reasons of inefficiency.

Our system works as follows. When users provide their energy traces and building in-

formation (such as zip code, year built, etc.), WattHome builds a custom bayesian model

of the home using the local weather data and the details provided by the user. The weather

data of a nearby airport is used as a proxy for local weather conditions, and WattHome

periodically fetches and updates this data from public APIs. Next, users provide a sensi-

tivity threshold that is used to create a partially ordered set of inefficient homes. As utility

companies may have a limited audit budget to manually inspect homes, the threshold pro-

vides user the flexibility to control the list of least efficient home. Figure 6.4(a) shows how

users can adjust the sensitivity parameter to get inefficient homes. Finally, our WattHome

2We have publicly released the code and the tool. http://bit.ly/2nU7kA5
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(a) Find Inefficient homes (b) Inefficiency Report

Figure 6.4. Screenshot of our implementation of WattHome.

generates a report listing inefficient homes and their likely faults. Figure 6.4(b) shows the

inefficiency report for a single home listing likely faults.

6.4 Experimental Validation
We first validate our model estimates against ground truth data from two cities and

evaluate its efficacy.

6.4.1 Dataset Description

• Dataset 1: Dataport (Austin, Texas) :

Our first dataset contains energy consumption information from homes located in

Austin, Texas from the Dataport Research Program [4]. The dataset contains energy

breakdown at an appliance level, which serves as ground truth to understand how

our approach disaggregates energy components. We select a subset of homes (163 in

total) from this dataset having HVAC, baseload appliances along withthe total energy

usage information. Since most homes enrolled in the Dataport research program are
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Charactersitics Dataset 1 Dataset 2

# of Homes 163 10,107

Duration 2013 2015

Built Area Range (sq.ft.) 758-6516 250-10,000

Year Built Range 1912-2014 1760-2013

Location Austin, TX A city in New England

Table 6.3. Key characteristics of Dataport and New England-based utility smart meter
dataset

energy-conscious homeowners, and have energy efficient homes, we use this dataset

only for validating our energy disaggregation process.

• Dataset 2: Utility smart meter data (New England):

This dataset contains smart meter data for 10,107 homes from a small city in the

New England region of the United States [57]. The dataset has energy usage (in

kWh) from both electricity and gas meters. Each home may have more than one

smart meter — such as a meter to report gas usage and another to report electricity

usage. For homes with multiple meters (gas and electric), we combine their en-

ergy usage to determine the building’s daily energy consumption for an entire year

(2015). Apart from energy usage, the dataset also contains real estate information

that includes building’s size, the number of rooms, bedrooms, property type (single

family, apartment, etc.). We also have manual audit reports for some of the homes.

We use this as our ground truth data for validating our approach. Further, we have

weather information of the city containing average daily outdoor temperature. We

summarize the characteristics of both the datasets in Table 6.3.
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Figure 6.5. Validation of energy split using
the two baselines and our model.

Figure 6.6. Comparison of the standard de-
viation of parameters.

6.4.2 Energy Split Validation

We now validate the efficacy of our model in disaggregating the overall energy usage

into distinct energy components, i.e., heating, cooling, and baseload. For this experiment,

we restrict our analysis to the 163 homes from the Dataport dataset.

We compare our technique with two baseline techniques (LS 65F and LS Range), com-

monly used in prior work, which use the degree-days model to provide point estimates

of the individual building model parameters. Our first baseline technique, LS 65F, esti-

mates the three building energy parameters (�heat, �cool, �, Ebase) using least-squares fit

and assumes the balance point temperature to be constant (65�F). This is a widely used

approach by energy practitioners around the US and recommended by official bodies such

as ASHRAE [13]. Our second baseline technique, LS Range, estimates all the five building

energy parameters (�heat, �cool, T heat, T cool, and Ebase) using the least-squares fit. Un-

like the baseline approaches, WattHome estimates the parameter distribution and thus to

compare we use the mean of the posterior distribution of the parameters to get the fixed

proportion of the energy splits.
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Figure 6.5 shows the distribution of percentage difference in the energy usage with the

ground truth for each energy component. While LS Range and WattHome have median

error of ⇡-1.6%, LS 65F have a median error of 10% for baseload energy. Unlike LS 65F,

LS Range and WattHome do not assume a constant balance point temperature and thus

have lower error. Figure 6.6 compares the standard deviation of the building parameters

from the two approaches. In WattHome, the standard deviations are obtained from the

parameter posterior distributions. Whereas, in case of LS Range, the standard deviations

are calculated from the covariance matrix outputted by the least-squares routine. While the

results for the four parameters are similar, the spread of standard deviation for the lower

balance point is much smaller in WattHome compared to LS Range. In summary, fixed

parameters provide poor estimate of the building parameter. Further, WattHome provides

lower error and tighter parameter estimates compared to other baseline techniques (LS

Range).

6.4.3 Faulty Homes Validation

We now examine the accuracy of our model in reporting homes with likely faults. We

ran our algorithm on all homes in the New England dataset to generate a list of outlier

homes for each of the parameter and then compare our results with findings from manual

energy audits (ground truth). Since manual audit reports contain faults related to building

envelope and HVAC devices only, we only report these results and inefficiencies arising

from base energy usage and faulty set points were not analyzed.

To determine the accuracy, we compare an inefficient building’s parameter to the audit

report conducted in the past and verify whether it has any building faults. The audit reports

were manually compiled by an expert on-field auditor identifying and suggesting energy

efficiency improvement measures. We find that WattHome reported 59 homes with building

envelope faults, out of which 56 buildings were in the audit report, an accuracy of 95%.

Moreover, we find that 46 of the 56 homes with building envelope faults also had faulty
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(a) Total Energy Split (b) By Building Age (c) By Property Type

Figure 6.7. (a) Disaggregated energy usage for all homes. (b) and (c) Possible fault types
in different building groups.

HVAC systems. In summary, WattHome identified parameter related faults in a building

with high accuracy. In particular, our approach correctly identified 95% of the homes that

were flagged by expert auditors as having either faulty building envelope or HVAC systems.

6.5 Case study: Identifying Inefficient Homes In A City
We conduct a case study on the New England dataset to determine the least efficient

residential buildings in the city. In particular, we seek to gain insights on the following

questions: (i) What percentage of the homes are energy inefficient? (ii) Which groups of

homes are the most energy inefficient? (iii) What are the most common causes of energy

inefficiency? We first provide a brief analysis of the distribution of the energy split.

6.5.1 Energy Split Distribution Analysis

To get the fixed proportion of the energy split, we use the mean of the posterior es-

timates to compute the disaggregated energy usage i.e. heating, cooling and base load

components. To compare the energy components, we compute the Energy Usage Intensity

(EUI), by normalizing the energy component with the building’s built area. Figure 6.7(a)

shows the heating, cooling, base load and total EUI distribution grouped by property type

across all homes. The figure shows that the base load is the highest component of energy

usage in most Mixed Use and Apartment property types followed by heating and cooling.

114



Heating Cooling Base load Overall

Outliers Outliers Outliers Outliers

3162 1033 2016 5079

Table 6.4. Summary of all inefficient homes in the data set.

However, for Single family homes, the heating cost is usually higher. The high base load

can be attributed to lighting, water heating, and other appliances. Further, since the New

England region has more winter days, homes require more heating, and thus expected to

have a higher heating energy footprint compared to cooling. In particular, the average heat-

ing energy required is almost 20⇥ that of average cooling energy. We also observe that the

normalized total energy usage of single and multi family homes is the highest — presum-

ably due to more number of appliances. The median energy EUI of the Single family home

is ⇡53 kBtu/sq.ft. (1 kW=3.412kBtu), which is almost twice that of Apartment homes

(⇡26.8 kBtu/sq.ft.).

6.5.2 Efficiency Analysis

In this section, we analyze the results of our approach on the utility company’s dataset

described earlier. We created peer groups to identify inefficient homes in their respective

cohort. To do so, we used three building attributes (property type, age, and area), which

created 120 peer groups in total. Among these peer groups, we discarded groups with less

than 20 homes, as it didn’t have enough population size for a meaningful analysis. In all,

67 peer groups containing a total of 186 homes were discarded. Below, we present our

analysis on the remaining 9,921 homes.

First, we examine the number of homes that are flagged as inefficient for each of the

energy components using our approach. Table 6.4 shows the summary of inefficient homes

across all peer groups. We note that a home may have multiple inefficiencies, such as
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inefficient heating and high base load and thus may be inefficient in several of the energy

components. Our results show that the overall percentage of inefficient homes across all

residential homes is 50.25%. Further, almost 62.25% of all inefficient homes have either

inefficient heater or poor building envelope, and 4144 homes have either inefficient heating

or cooling.

We now analyze the cause for inefficiency in these inefficient homes. Figure 6.7(b)

shows the percentage of inefficient homes within each building age group across all faults.

Note that a home may have multiple faults. We observe that the building envelope fault

is the major cause of inefficiency, followed by inefficiency in heaters and other base load

appliances. Across all age groups, nearly 41% of the homes have building envelope faults,

while 23.73% and 0.51% homes have heating and cooling system faults respectively. The

figure also shows that some homes might have set point faults. In particular, 18.06% of

the homes have issues with either high heating or low cooling set point temperature. These

faults indicate likely issues with thermostat setting. Adjusting the thermostat set point tem-

perature in these home may likely improve its efficiency. As shown, homes built/altered

before 1945 have a higher proportion of inefficient homes. However, the percentage differ-

ence with other age groups is <15%.

Figure 6.7(c) shows the percentage of inefficient homes within each building property

type and faults. We observe that the building envelope faults are the most common faults

across all building types. Further, we find that except for HVAC appliance related faults,

mixed use property type has the highest percentage of inefficiency in the remaining fault

categories. After mixed use property type, apartments tend to have a higher percentage of

inefficient homes followed by multi family and single family property types.

6.6 Related Work
Diagnosing and reducing energy consumption in buildings is an important problem [22,

42, 60, 107]. Various methods have been proposed to detect abnormal energy consumption
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in a building [39, 60, 91]. However, these methods focused on commercial buildings that

require expensive building management systems [39,91] or requires costly instrumentation

using sensors for monitoring purposes [22, 59]. Sensors allow fine-grained monitoring of

energy usage but are not scalable due to high installation costs. Unlike prior approaches,

our model does not require building management systems or costly instrumentation and

use ubiquitous smart meter data to determine energy inefficiency in buildings.

Prior work have also proposed automatic modeling of residential loads [8]. Studies

have shown that compound loads can be disaggregated into basic load patterns. Separately,

there has been studies on non-intrusive load monitoring (NILM), which allow disaggre-

gation of a household’s total energy into its contributing appliances, and does not require

building instrumentation [21, 50]. However, most NILM techniques require fine-grained

datasets for training purposes and assume energy consumption patterns are similar across

homes [21]. On the other hand, our approach makes no such assumption on energy con-

sumption patterns and is applicable across multiple homes as it uses coarse-grained energy

usage data that are readily available from utility companies [6].

Various energy performance assessment methods exist to quantify energy use in build-

ings and identify energy inefficiency [54, 100, 103]. A common approach is to use

degree-days method, a linear regression model, for calculating building energy consump-

tion [40, 41, 63]. However, these approaches do not consider uncertainties that are associ-

ated with indicators of building performance. The idea of modeling uncertainties in thermal

comfort is studied in [33]. However, it is restricted to a single office building with cooling

and heating systems. Unlike previous studies, our approach can be used to identify least

energy efficient home at scale without manual expert intervention. Further, we propose a

novel Bayesian model to account for uncertainties arising from human factors. Finally, we

use actual ground truth data to validate our approach and show its efficacy on a large scale

city-wide data.
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6.7 Conclusions
Improving efficiency of buildings is an important problem, and the first step is to iden-

tify inefficient buildings. In this chapter, we proposed WattHome, a data-drive approach

to identify the least energy efficient homes in a city or region. We also implemented our

approach as an open source tool, which we used to evaluate datasets from different ge-

ographical locations. We validated our approach on ground truth data and showed that

our model correctly identified 95% of the homes with inefficiencies. Our case study on

a city-scale dataset showed that more than half of the buildings in our dataset are energy

inefficient in one way or another, of which almost 62.25% of homes with heating related

inefficiencies as probable cause. This shows that a lot of buildings can benefit from energy

efficiency improvements.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusions
This thesis explored the opportunities and challenges in leveraging data-driven model-

ing to smart buildings. We proposed using data from IoT sensors to generate actionable

insights for better energy management at different levels of human energy consumption.

In Chapter 3, we looked at the usage and energy consumption profiles of residential

electric loads. I proposed Non-Intrusive Model Derivation (NIMD), an algorithm that au-

tomates the modeling of residential electric loads. Such models are useful for a variety

of analytical techniques, such as Non-Intrusive Load Monitoring. Further, these models

can be used to identify deviations from standard appliance energy profile associated with

electrical faults.

Chapter 4 focussed on the difficulties in predicting the power generated in rooftop

solar installations. I proposed SolarCast, a black-box approach to automatically provide

site-specific solar predictions. This approach uses a Neural Network architecture to offer

custom predictions that could be used for improved integration of renewable solar energy

in our energy mix.

In Chapter 5, I proposed SolarClique, a method to detect anomalies in solar power

generation. This method uses no additional inputs from multiple IoT sensors to identify

a reduction in power generation. This method has implications for improving the effec-

tiveness of monitoring solar panel infrastructure to maximize the investment in renewable

sources by aiding in optimal operational performance.
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Finally, Chapter 6 looked at the challenges in identifying inefficient homes from a

given population. I proposed WattHome, a novel probabilistic model to provide context to

the weather-sensitivity of individual households. Further, I discussed an algorithm based on

stochastic-dominance to associate a probable fault causing inefficiency in these shortlisted

homes.

7.2 Future Work
In this thesis, we have demonstrated the usefulness of data-driven modeling to use IoT

data from smart buildings. The opportunity to reduce our energy footprint by leveraging the

increased instrumentation and monitoring infrastructure in buildings represents an exciting

and important problem. Next, I will elaborate on a couple of promising future directions

that can expand on the ideas presented in this thesis as networked devices become more

ubiquitous in our built environments.

7.2.1 Identifying root cause of solar installation anomalies

SolarClique presented an approach to detect faults in the solar generation by comparing

energy generated to colocated sites. However, there are several causes of such anomalies.

Dirt, pollen, and snow block solar irradiance from falling on the panels thereby reducing

generation. Physical damage causing discoloration of panels (again decreasing incident

irradiance) and cracks also impacts solar production. Other factors include electrical issues

such as poor sizing of accessory devices such as charge controller, inverter, etc. [93]

presents a detailed study of these factors. Thus, to identify the root cause of the reduction in

the solar generation, we can monitor a multitude of data points describing solar panel health

such as - ambient temperature, panel temperature, wind speed, incident solar irradiance,

voltage and current (along with power) from the solar panels, etc. Further, we can monitor

temperature effects on the panels using thermographic imaging.
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Fortunately, modern charge controllers are capable of providing real-time access to

electrical properties of the solar installations through standard protocols such as Mod-

Bus [76]. Additionally, sensors such as pyranometers, panel temperature modules and

visual data inputs from thermographic cameras can be leveraged to monitor the health

of solar installations. Classifying faults causing a reduction in power generation through

time-series data generated from such multiple sensors can be modeled as a sequence label-

ing problem. In machine learning, sophisticated Neural Network architectures (e.g., Long

Short-term Memory) have been proposed to address these problems.

Early detection of solar generation faults has several benefits. First, it helps in increas-

ing the lifetime of the solar installation and reducing future maintenance costs. Second,

it helps to maximize the investment by aiding in optimal operational performance. Most

importantly, electrical grids can become more resilient to the intermittent nature of solar

energy and can allow increased renewable penetration.

7.2.2 Providing actionable feedback to customer

Data-driven models described in WattHome can also be used to generate reports that

can help customers better understand their energy consumption patterns. Such reports can

nudge users to reduce their energy consumption by providing actionable feedback (e.g.,

decrease setpoint temperatures in winter by 2� F to cut the energy bill by 10%). Moreover,

willing consumers can provide access to energy consumption data from plug-level devices

inside their homes to utilities for more customized reports yielding greater insights.

Additionally, experiments could be designed to match consumers with various incen-

tives that encourage energy saving behavior among the most significant power consumers.

The efficacy of these feedbacks can be studied using hypothesis testing. Such an exercise

could help governments, policymakers, town municipalities, and utilities to design subsi-

dies that are most effective in reducing energy consumption.
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