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ABSTRACT

DISAGGREGATION OF NET-METERED ADVANCED METERING INFRASTRUCTURE

DATA TO ESTIMATE PHOTOVOLTAIC GENERATION

Advanced metering infrastructure (AMI) is a system of smart meters and data management

systems that enables communication between a utility and a customer’s premise, and can provide

real time information about a solar array’s production. Due to residential solar systems typically

being configured behind-the-meter, utilities often have very little information about their energy

generation. In these instances, net-metered AMI data does not provide clear insight into PV system

performance. This work presents a methodology for modeling individual array and system-wide

PV generation using only weather data, premise AMI data, and the approximate date of PV in-

stallation. Nearly 850 homes with installed solar in Fort Collins, Colorado, USA were modeled

for up to 36 months. By matching comparable periods of time to factor out sources of variability

in a building’s electrical load, algorithms are used to estimate the building’s consumption, allow-

ing the previously invisible solar generation to be calculated. These modeled outputs are then

compared to previously developed white-box physical models. Using this new AMI method, indi-

vidual premises can be modeled to agreement with physical models within ±20%. When modeling

portfolio-wide aggregation, the AMI method operates most effectively in summer months when so-

lar generation is highest. Over 75% of all days within three years modeled are estimated to within

±20% with established methods. Advantages of the AMI model with regard to snow coverage,

shading, and difficult to model factors are discussed, and next-day PV prediction using forecasted

weather data is also explored. This work provides a foundation for disaggregating solar genera-

tion from AMI data, without knowing specific physical parameters of the array or using known

generation for computational training.
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Chapter 1

Introduction

1.1 Motivation

By 2019, the U.S. had 70 GWDC of solar capacity with around 20% of that being residential

rooftop solar [1, 2]. Between 2014 through 2018, the compounded annual growth rate of small-

scale (less than 1 MW) photovoltaic (PV) generation in the United States was 28.2% [3]. The 2

millionth solar array was installed in early 2019 and within 5 years over 2.5% of all U.S. homes will

have a solar installation [4, 5]. Additionally, the National Renewable Energy Laboratory (NREL)

has found that the technical solar potential of suitable residential buildings was over 700 GWDC,

which could generate 926 TWh/year, a quarter of the United States’ total annual electricity con-

sumption [6].

The growth of solar has increased interest in better estimates of real-time generation from solar

arrays for use by distribution operators to manage grid resources [7]. Larger commercial and

utility-scale solar deployments are usually directly metered, providing actual generation typically

at high time resolution and minimal latency. Thus, both system owners and electrical system

operators normally know the actual energy produced by large solar arrays. These data can be used

to accurately simulate expected generation.

However, residential solar systems in the USA are typically net-metered by the distribution

operator, as 38 states, Washington D.C., and four overseas territories have net-metering policies

by 2019 [8]. In traditionally metered systems with PV, system operators have access only to net

load for the billing period, obscuring any information about the PV generation. When available,

digital smart meter data generally reports only net-load or net-generation (generation net of load)

for each meter reading. Since generated PV offsets concurrent load in a net-metered building, it is

difficult to separate behind-the-meter (BTM) generation from load. Therefore, distribution utilities

are essentially blind to PV production at the vast majority of residential solar sites around the
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country. This lack of insight into solar generation complicates solar forecasting and the balancing

of dispatchable generation with demand [9].

To this end, input-intensive physical models have been developed but require intimate knowl-

edge of each system, which a utility may not have. The difficulty in modeling a portfolio of res-

idential assets with physical-models lead to work investigating the estimation of PV output based

on net-metered smart meter data.

1.2 Advanced Metering Infrastructure

Advanced metering infrastructure (AMI) is a system of communication and data collection

between a building’s electric service infrastructure and the providing utility. By 2017, there were

nearly 80 million buildings with AMI in the United States, and approximately 88% of these were

installed in residential buildings [10].

A major component of AMI is the smart meter, which enables access to smart grid services

as a two-way interface between the utility and building [11]. These smart grid services include

demand response, dynamic pricing, and home energy management with generation or storage.

Wired or wireless communication systems in the AMI connect the smart meters with a central

utility provider platform that manages storage, two-way communication, and price signals [12].

Typically, the smart meters record electricity consumption at 5-, 15-, 30- or 60-minute intervals,

but meters recording at finer temporal resolution do exist [11].

Utilities are installing AMI because they reduce operating costs for metering and billing.

Manned sorties to read analog meters are no longer necessary, saving on labor and fuel costs [11].

Smart meters also allow for remote control of connection/disconnection in much quicker time than

deploying someone to the field [11]. Smart meters also provide outage detection and voltage mon-

itoring. Although push-back from some citizens over the installation of smart meters revolves

around the perception of risks to health and data privacy, opt-out rates are generally low [11].

The growth in smart meters has led to huge amounts of high-granularity electric consump-

tion data, leading to research in areas that was previously more difficult or not possible. As [13]

2



notes, the increase in large AMI datasets has led to new work involving descriptive, predictive, and

prescriptive analytics. Load forecasting for better asset management and distribution-grid opera-

tion can be enabled by this mass of information. Premise level information can be aggregated to

feeder- or substation-level to provide a bottom-up approach of load analysis and forecasting. As

smart meter penetration increases, valuable insight will be gained through ever expanding energy

data analytics.

As mentioned, the nature of net-metered systems does not easily allow for the measurement of

distributed generation (DG) assets such as rooftop solar. Research has been conducted to attempt

to disaggregate generation from AMI data; these methods and others will be discussed in Section

1.3.

1.3 Current Predictive Methods

1.3.1 Machine Learning

Several authors have proposed machine learning (ML) methods to estimate PV production [14–

20]. These techniques rely on training a model using separately metered PV and/or total load data

from residences, or use PV production from nearby metered arrays as a proxy for residential PV

production [7, 21]. One ML program, DeepSolar, even identifies and learns solar panel locations

and sizes from satellite imagery data [22]. Others use weather-based models or require known

generation [23, 24], or are hybrid models that use both physical and ML approaches [25, 26].

The array configuration data required for each system estimation varies between methods, from

no data to specific physical and site parameters. Several approaches report root mean squared errors

between 20%-50%, and most require access to data from actual or representative systems in which

PV generation is metered independently from load.

Shaker et al. [27] suggest using the output from a small number of known PV arrays to ex-

trapolate power production across a greater number of BTM solar systems within the same area.

However, this type of modeling requires the utility to know the total capacity of residential sys-
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tems within the area, and implicitly assumes that the small number of monitored arrays represent

all variation in system configurations for the unmonitored arrays.

1.3.2 Physical Models

Directly estimating generation for a solar array is also complex. Modeling requires numerous

variables, including weather, physical array orientation, and system and electrical characteristics.

In addition, variable external factors such as seasonal tree shading, snow coverage, ground re-

flectance, and panel soiling also impact power output. If these data are available, there are well

established “white-box” models that utilize these physical inputs with current or forecasted weather

to estimate solar generation. These tools are often utilized for estimating the output of large solar

arrays and have achieved accuracy to within ±10% of the actual generation of various solar arrays

studied [28].

Two of the U.S. Department of Energy’s National Laboratories have developed open-source

physical PV performance tools. A well-known model has been developed by Sandia National

Laboratories (SNL), and SNL has a long history of developing PV performance models starting

with PVFORM in the 1980’s [29]. This original, simplistic model used typical meteorological

year (TMY) solar and weather data and incorporated module operating temperature [30]. In 1994,

SNL presented a physical model that has been updated and validated over the course of 25 years

using countless measured datasets across the spectrum of commercially available PV modules

products [30]. This model and related work has grown into the PV Performance Modeling Collab-

orative (PVPMC), a collaborative group of industry professionals facilitated by SNL. The PVPMC

contains a PV Library, allowing open-access to the document library and software code for the

modeling tool [31].

Another popular interactive modeling tool is PVWatts developed by the National Renewable

Energy Laboratory. PVWatts is geared to providing aggregated, long-term estimates of energy

production, not to estimate exact production over hourly or daily periods. Released in 1998, the

original version was largely based on the PVFORM model from Sandia [28]. PVWatts is a tool that
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uses several assumptions about system losses to limit complexity for user-friendly operation [28].

Because PVWatts aims to provide long-term estimates, it uses TMY weather data - output is a

representative estimate of actual system performance [28]. NREL’s Version 5 manual states up

to ±10% error for annual energy totals and up to ±30% error for monthly totals due to variation

from using historical typical weather data may occur. While useful for monthly or annual insight,

the tool is not effective for finer resolution modeling; this is consequential as it would not be

appropriate for hourly or daily modeling.

Both models use a minimum number of inputted PV system specifications such as geographical

coordinates, size, tilt, azimuth, losses, and component efficiencies. PVWatts does have default

values for every input parameter (even assuming a residential system to be a 4 kW array facing due

South) and only truly requires a location from geographic coordinates [28]. However, for useful

model output, very specific and correct system information is required.

1.3.3 Disaggregation from AMI Data

Although physical models have achieved reasonable accuracy, the inputs and assumptions can

be onerous and their complexity cumbersome to the end-user. As noted in [18], distribution utilities

often do not have access to this specific data for each residential array, either because the data were

not collected during the permitting process or because the as installed configuration of the system

deviates from the reported configuration. In addition, system or site modifications over time may

also impact PV production.

The difficulty of modeling a large portfolio of net-metered residential assets using physical

models stimulated interest in estimating PV output based on smart meter (AMI) data. Disaggre-

gating PV generation from the net-generation/net-load measurements recorded by the smart meter

is the crux of this type of estimation.

Tabone et al. built an open-source model that aggregated load as a function of hourly ambient

temperature and time of day and utilizes a nearby irradiance proxy such as known PV genera-

tion [7, 21]. In this work, one year of the Pecan Street household-level generation and total load
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data set from 52 households with PV were used, which is not a typical AMI dataset. The actual PV

generation from each building was known and subtracted from the observed building load to cal-

culate net-load at the meter. Three known array generation data sets were used as a solar resource

proxy to train the model on 8 houses over the span of 10 days and this method led to a root mean

squared error between 20-50% for average daily PV generation.

SunDance was developed by Chen and Irwin to disaggregate solar generation data from net-

metered data without knowing the array’s actual generation for use as training data [25, 26]. The

method uses ML to infer the tilt, azimuth, and overall system efficiency from the AMI data to

build a custom model of maximum clear sky solar generation and maps weather data to an ex-

pected reduction from the maximum solar potential during a clear sky day. This model still uses

the underlying physical characteristic relationships to estimate maximum generation potential and

subtract reduction from each time step. Hybridizing a physical modeling approach with inputs

estimated from machine learning on net-metered data achieves a similar accuracy as other ML

methods that use solar generation training data. The resulting mean absolute percentage error

(MAPE) for SunDance is between 20-40% on 100 premises analyzed.

In a related method to SunDance, SolarCast utilizes historical generational data and array lo-

cation, and does not require specific physical orientation and site information [18]. This “black

box” model estimates tilt, orientation, and external parameters such as shade, snow cover, and

soiling through automated ML. SunDance then uses adaptive learning to predict the power output

from forecasted weather. 116 houses were analyzed, with MAPE’s also generally spread between

20-40%.

Yang et al. created a hybrid ML method using weather data and observed PV generation [14].

Historical PV generation is classified via observed weather, then ML is used to train the weather-

generation sets based on similar days. These similar days are based on 3-hour irradiance, maximum

temperature, and probability of precipitation. A fuzzy inference method is used to forecast next-

day generation based on forecasted weather as well as categorical weather descriptions. While
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estimation errors on periods using observed weather are below 10% from actual generation, this

method requires large amounts of actual PV generation and is modeled from a single 5 kWDC array.

Wang et al. [15] also decomposed load and PV output using historical weather data with esti-

mated equivalent capacity, tilt, and azimuth of a representative system. This model then uses an

artificial neural network to map between day type and weather. The model uses synthetic actual

load and PV generation data from an NREL tool to verify performance. The drawback is that

individual or groups of PV systems are not modeled, rather MAPEs (2-22%) for PV penetration

scenarios (varying from 0-20% penetration) are compared to other methods.

These antecedent works have proposed AMI disaggregation but these methods are hindered by

their data requirements. Tabone et al. [7] uses atypical AMI data from separately metered building

and PV from a publically available dataset for model training. SolarCast by Iyengar et al. [18]

requires at least one month of historical generation data for each premise, which is not realistic for

a portfolio of PV systems.

Although Wang et al. [15] uses a representative PV proxy, the work is of particular interest due

to the mapping of categorical and numerical variables such as day type (week day or weekend),

hour of day, month, week, and ambient air temperature. Like others, Yang et al. [14] uses actual

generation for training, and only uses one PV array for forecasting generation. However, Yang’s

work does open to the door to modeling PV generation based on similar periods of time, a method

which will be leveraged in a new AMI model described in this work.

1.4 Objectives and Overview

As discussed in the review of PV estimation methods, there are shortcomings from these count-

less modeling approaches. The key challenges with these proposed methods include a) acquiring

long time series of local generation data for training, b) understanding if the solar resource used for

training is representative of current and future PV installations, c) acquiring the skills to train the

model - likely a challenge for most distribution utilities, and d) depending upon the method, having

reasonably accurate records of the location, size and as-built physical characteristics of individual
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PV arrays. Many of the models described were developed and tested using only small data sets,

including a single 5-kW array [14], 8 houses over the span of 10 days [7], 15 days of training

data from one PV system [16], or only superficially describe training methods and data sets [19].

Another method requires metered PV output from over 300 sites [24], an arduous data set to repli-

cate. Because these works use uncommonly available data sets and typically only train and/or

model from a few PV systems over short periods of time, further work to improve net-metered PV

modeling is appropriate.

This work proposes an alternative method that will estimate PV production using open-source

software and three data sources that are commonly accessible by distribution utilities: a) historical

and, if desired, forecasted weather data, b) net-metered, sub-hourly, AMI data, and c) the approx-

imate month of PV system installation. This method does not require training using known PV

generation, nor does it attempt to estimate array-specific [25] or a representative system’s geom-

etry [15] as attempted by others. Using the model as a primitive forecasting tool for next-day

generation will also be explored. This approach is deployed to estimate individual system and ag-

gregated generation using 1-4 years of AMI data from nearly 850 net-metered residential systems.

By using the known basic configurations of these systems, the method’s performance is tested with

a physical model to compare generation estimates.

The work is organized as follows: Chapter 2 briefly provides a detailed description of the

data sources used for this analysis. Chapter 3 explicates the methodology of building the AMI

model. Chapter 4 presents necessary first experimental results. Chapter 5 describes the process

of building a validation tool based on a physical model. Chapter 6 presents computational results,

figures, and statistics of the work and discusses the impact and validity of the findings and method

employed. Chapter 7 briefly discusses the model projecting generation from next-day weather

forecasts. Chapter 8 concludes on the current AMI model, and offers a recommendation for future

work.
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Chapter 2

Description of Data Sources

For this analysis, we utilize data from Fort Collins, Colorado, USA, a high-elevation com-

munity in the central United States with highly variable weather conditions. Electricity service

is provided by the City of Fort Collins Municipal Utilities (FCU), a city-owned municipal distri-

bution company with a sole-provider contract with Platte River Power Authority (PRPA). PRPA

generates and transmits power to FCU infrastructure for distribution.

2.1 AMI Data

Fort Collins Utilities received $18M from the U.S. Department of Energy through the American

Recovery and Reinvestment Act of 2009 to deploy smart meters city-wide and expand SCADA

and automation capabilities in the distribution system [32]. Beginning in 2014, FCU installed

AMI meters on existing premises, and the AMI system become operational at the beginning of

2015 [32]. FCU had approximately 76,000 premise smart meters in January 2019. The AMI meters

report on 15-minute intervals, and all residential PV systems are net-metered. FCU provided all

gathered AMI data to Colorado State University (CSU) researchers - a total of approximately 11

billion meter readings. Four data fields were of interest for this research:

1. Premise identification number

2. Timestamp

3. Delivered energy (kWh)

4. Received energy (kWh)

Each premise has a unique ID number, which can be tied to geospatial and housing data. A

timestamp is recorded in 15-minute increments and has a timezone offset from Coordinated Uni-

versal Time (UTC). Fort Collins is located in the Mountain time zone, this offset oscillates between
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7 and 6 hours from UTC based on Daylight Saving Time. The timestamps are coded at the end of

each interval, meaning a timestamp of 16:15 represents the power flow read by the meter between

16:01 and 16:15 in the afternoon. Delivered energy refers to energy provided to the building by the

grid during the 15-minute interval while received energy refers to energy exported by the building

back to the distribution grid during the time interval, both expressed in kilowatt-hours (kWh). Only

premises that have generation capabilities such as rooftop solar should ever have received values

greater than zero. For premises with PV, received and delivered values can be present in the same

timestamp as power flow can rapidly change direction (e.g. generation drops due to moving cloud,

or consumption increases from an appliance that is turned on). As discussed in the previous chap-

ter, measured received energy values greater than zero only occur when the building’s consumption

is less than the generation, exporting excess power back to the distribution grid.

Figure 2.1 below illustrates the recorded AMI data. Solid boxes represent metered readings

and dotted boxes represent unknown values.

Figure 2.1: AMI Data Visualization. Box P represents the delivered energy to the premise before PV

installation. Box ∆ represents energy delivered to the premise when some load is offset by unmeasured PV

generation (dashed green boxes). Box Π represents excess generated energy received by the distribution

grid from the premise when generation exceeds load.

Figure 2.2 displays ten days of energy consumption of a residential home before solar was

installed. Once a solar array is installed, energy flows bi-directionally across the meter. Figure
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2.3 exhibits this interaction: generation flowing back to the distribution grid (orange), and energy

consumed from the grid (blue).

Figure 2.2: Pre-PV AMI Data. Ten days of energy consumption from a residential premise before

rooftop solar was installed. As expected, received energy measurements are consistently zero. Late af-

ternoon/evening peaks are visible.

Figure 2.3: One week of AMI Data with PV. Displayed for a residential premise with rooftop solar.

During days of good weather, there are clear solar production curves that are immediately followed by the

predictable evening spikes in consumption.
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Figure 2.4 portrays one day of energy consumption and generation for a residential premise

with solar. The conundrum of invisible generation is observable around mid-day where generation

and consumption nearly cancel each other out in the AMI data.

Figure 2.4: Invisible Generation in AMI Data. 24-hours of 15-minute AMI data for a residential premise

with rooftop solar. As is evident by the dual-peaks of PV generation being exported back to the grid,

something occurred during the middle of the day. One scenario is that cloud cover significantly reduced

generation, leading to energy consumption from the grid (around noon in blue). Another scenario is that

load increased greatly, consuming most of the generation behind-the-meter, and decreasing exported energy

mid-day. Due to the nature of net-metering, it is impossible to know which case or combination occurred

solely based on the AMI data.

2.2 Weather Data

High granularity weather data were downloaded from an internet platform compiled by the

Department of Atmospheric Sciences at Colorado State University. This Department operates a

weather station located on the main campus of CSU in Fort Collins adjacent to the Lory Student

Center - a reasonably central location to FCU’s distribution system [33]. The weather station

provides 10-minute measurements of temperature, global horizontal irradiance (GHI), relative hu-

midity, wind speed and direction, air pressure, and soil temperature [33]. GHI is the total solar

irradiance arriving on a horizontal surface on Earth. For the scope of this work, temperature (°C),
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wind speed (m/s), and GHI (watts/m2) were obtained from January 1, 2015 through the end of

March 31, 2019.

Fort Collins snowfall data was obtained from the National Oceanic and Atmospheric Adminis-

tration’s Climate Data online portal [34]. The database provided daily snowfall (inches) and daily

accumulated snowfall (inches).

2.3 Distributed Generation Assets

Fort Collins Utilities also provided records of each photovoltaic system installed in the City’s

distribution network. The DG Aassets provided the following information as shown below:

Table 2.1: Distributed Generation Assets. Fields of information about PV systems interconnected in the

City.

Field Units

Premise ID Number

Installed Capacity kilowattsDC

Date of Installation

Inverter Manufacturer

Inverter Model/Quantity

Array Azimuth degrees

Array Tilt degrees

Billing Rate Class

From 1987 though Q1 2019, 1,389 PV systems, totaling a capacity of 13.1 MWDC, were

installed within the City. Of these, 1,298 (93%) PV systems were installed on residential premises,

with an average residential system capacity of 5.5 kWDC. Residential premises accounted for 7.3

MWDC of installed capacity, approximately 55% of total installed capacity within the City. Around

285 older systems, mostly installed before 2015, contained missing array tilt and/or azimuth values

in the City’s records. Using Google Earth and Google Street View, these values were estimated

and replaced the vacant values. Figure 2.5 below illustrates the growth in solar in Fort Collins,

Colorado.
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Figure 2.5: Historical PV Assets in Fort Collins. Cumulative PV assets in Fort Collins with cumulative

installed capacity (megawattsDC).

2.4 Privacy

AMI data is very sensitive because it can provide specific information about a consumer’s

energy usage. Behavioral patterns such as daily schedule, number of occupants, types of electron-

ics in the premise, or even the use of medical equipment may be discernible from the data [35].

Colorado State University and the City of Fort Collins entered into a data sharing agreement that

specified privacy considerations and managed the terms of any potential data sharing outside of the

University’s research team.

The DG Assets data was also treated as sensitive and not shared outside of the research group.

It should be noted that the City has a transparency initiative with an Open Data platform, and

detailed data about buildings with PV is accessible online [36].
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Chapter 3

AMI Model Methodology

All work presented in this thesis was performed at the Powerhouse Energy campus of Colorado

State University. The Powerhouse hosts a variety of research initiatives, mostly centered on clean

and efficient power generation and use. This chapter explicates the AMI model methodology,

Chapter 4 provides direct experimental results, while Chapter 5 describes the construction of a

validation tool to attempt to answer the research objectives. With this tool, Chapter 6 presents

computational results and discusses the findings. Finally, Chapter 7 briefly addresses the AMI

model to forecasting next-day load and PV generation.

The modeling work was written in Python utilizing the open-source integrated development

environment PyCharm. The Pandas software library for python was heavily utilized for data ma-

nipulation and analysis, and Matplotlib was used for plot-making. Other open-source software will

be mentioned in proceeding sections.

3.1 Basic Framework

The underlying assumption behind this model is that given similar conditions, electricity usage

in a building does not change after a PV system is installed. From this, based on comparable points

in time, the difference in delivered energy between pre- and post-PV periods can be calculated as

the assumed offset from behind-the-meter PV generation. Factoring out sources of variability in

electrical load by the comparison of times that have similar conditions enables this analysis.

Addressing and discussing the use of this assumption is necessary. Prior work has shown that

some segments of the PV-adopting population actually slightly increase their overall consumption

after system installation [37]. Recent work studying Arizonan solar owners found that overall con-

sumption actually rebounded by up to 18% higher than pre-PV consumption in summer months.

It should be noted this specific work was conducted in a region with likely higher cooling and

lower heating needs. The study also found that consumers in more liberal areas (like Fort Collins)
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experience lower or no rebound effects, which is consistent with existing literature [38]. Qui et

al. found that more environmentally-aware adopters, identified by progressive voter registrations

as a proxy, had a slight decrease (up to 6%) in overall consumption after system installation [37].

It should also be noted that unknown efficiency or appliance upgrades may also skew results from

studies on household consumption that have previously installed solar [37]. Thus, literature shows

that consistent consumption patterns before/after PV installation are sometimes (but not always)

present. However, for this research, consistent consumption is assumed to be the case for solar

adopters in Fort Collins, Colorado.

Weather impacts both building energy demand and solar generation. In buildings there is

temperature-dependent energy demand driven by heating or cooling [39], and periods of simi-

lar temperature should have similar heating/cooling loads [40]. Additionally, solar irradiance is

the energy source for a photovoltaic cell and available solar resource dictates the cell’s output. For

these reasons, temperature and GHI are considered in the pairing of timestamps for reconstructing

building load.

The basic approximation from this model for PV generation is P - ∆ + Π for any time duration

based on Figure 2.1. The values (∆) and (Π) are measured and recorded in the AMI data. It is

up to the model’s algorithm to match similar timestamps from pre- and post-PV periods, which

are used to calculate P, the estimate for total load for the building. Reconstructing this baseline

building consumption (total load) from net-metered AMI data represents the core contribution this

work.

Weather information is inputted into the model to build a dictionary containing the target times-

tamps and their comparable timestamps. A Python dictionary is a data structure used to store key,

value pairs, which allows for very efficient lookup of the values based on the key. In this case, the

keys are target timestamps, and the values are the comparable timestamps for the target.

The model then queries AMI data for the premise being analyzed, and uses the approximate

date of PV system installation to separate the AMI data into pre- and post-PV groups. Finally,

a series of algorithms attempts to estimate the building load from the groups of AMI data, using
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timestamp keys to isolate the comparable periods of AMI data. From this, PV generation is then

estimated, and Figure 3.1 below depicts the block diagram of this methodology.

Figure 3.1: Block Diagram of AMI Model.

3.2 Paired Timestamps

First, the 10-minute weather data was interpolated to 15-minute granularity in order to even-

tually pair with the corresponding AMI timestamp. After interpolation, each timestamp contained

the date, hour, minute, measured GHI, wind speed, and temperature for the 15-minute interval.

For computational efficiency, PV modeling occurs during the periods when the sun is above the

horizon. Only timestamps in which the sun is at least one degree above the horizon are included in

the modeling. These timestamps are identified by a sequence of solar position algorithms that will

be discussed in Section 5.2 and Appendix B.1.

Comparable timestamps must be within 15 days of the day of year of the target timestamp. This

creates a 30-day range from which the rest of this timestamp algorithm uses. This range contains

days that are similar in seasonal weather, with similar lengths of day and solar patterns.

From this 30-day subset, the following requirements are added:

1. The target timestamp occurs either during a weekday or weekend. Comparable timestamps

must be the same as the target timestamp, whether a weekday or weekend.

2. Comparable timestamps must be within +/- 4 hours of the target timestamp’s hour of day

(0-23).
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3. The sample standard deviation (σ) of the temperature and irradiance are calculated from the

subset.

4. The temperature of each potential comparable timestamp must be within 0.3 × σ of the

temperature subset.

5. The irradiance of each potential comparable timestamp must be within 0.4 × σ of the irradi-

ance subset.

Steps 4 and 5 are designed to remove timestamp outliers based on weather parameters.

6. Finally, major American holidays are removed as they occur during each year from 2015-

2019. Holidays are removed because they represent days in which large parts of the pop-

ulation are not in their normal daily routine. Some businesses are closed during the week,

and residential consumption may be dissimilar from a typical day. The removed holidays

are New Year’s Day, Memorial Day, Independence Day, Labor Day, Thanksgiving (both

Thursday and Friday), Christmas Eve, Christmas Day, and the day after Christmas (Boxing

Day).

The period of analysis from 01/01/2015 through 03/31/2019 contains over 72,000 daylight

timestamps. Upon completion of the comparable timestamp algorithm, the median and mean

number of similar timestamps for a given target timestamp was 118 and 129, respectively. The

range of the number of comparable timestamps was 0 to 460. Cases with less than 3 comparable

timestamps for a target timestamp are addressed in Subsection 3.3.3. Figure 3.2 visualizes the

matching of comparable timestamps.

3.3 Model Structure

3.3.1 Query AMI Data

Using pgAdmin4, an open-source and easily usable PostgreSQL database management tool,

the AMI data for a premise with PV was queried from the secure database hosted at CSU. The

18



Figure 3.2: Comparable Timestamps Visualization. The pairing of comparable timestamps based on

similar weather and temporal factors. This theoretical PV system could have been installed in early 2017.

To re-create building load, post-PV installed timestamps are matched with a set of similar timestamps, only

which occurred before the building had solar. Using the pre-PV timestamp data enables the total building

load to be estimated for the post-PV timestamp.

SQL query is keyed off the premise ID number, and the queried data is ordered by ascending

timestamp.

This AMI data is then divided into pre- and post-PV AMI datasets based on the commissioning

date of the system from the DG Assets. A 20-day buffer in each direction around the date of

installation is added to eliminate uncertainty in the exact day the system became operational. This

ensures the system was not producing energy during the pre-PV period and was functioning during

the post-PV period, or at the very least could be functioning. The algorithm does not correct for

the possibility that a system is offline for any reason post-installation. Indeed, this is a generally a

strength of the algorithm if it were utilized for an extended period: more matching days before/after

installation would eventually compensate for a system that was taken offline permanently, whereas

a physical model assumes the system is operating at all times.

The 20-day buffer is required to ensure that there was no PV production during the pre-

installation period. Figure 3.3 below illustrates the necessity of addressing this potential issue by
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showing a system with an incorrect commissioning date. Having a cushion safeguards the model

from analyzing incorrect energy consumption patterns.

Figure 3.3: Inaccurate Commissioning Date. According to City records, the system was officially com-

missioned on October 28, 2016. However, plotting the pre-PV delivered and received AMI data displays

generation starting on October 14, 2016.

House G, with one of the sets of known generation data that will be explored and utilized later,

also exhibits this incorrect commission date incident. Records establish the system install date

on August 29th, however received energy is recorded beginning on August 8th of the same month.

Recorded commissioning errors can exist in both directions, thus the 20 day buffer before and after

the recorded commissioning date. It is not known if these commissioning date errors only occur

in one direction (systems operating before official commissioning date), therefore a buffer in both

directions was used.

3.3.2 Calculating Baseline Energy Load

The sets of pre- and post-PV installation AMI data allow the estimation of pre-PV baseline

load, box P in Figure 2.1.

Each target timestamp contains a set of comparable timestamps; using the date of install with a

20 day buffer in either direction, only comparable timestamps with pre-PV AMI data are grouped

into a set of timestamps known as comparable timestamps before PV, referred to as P . The
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target timestamps only ever represent times after the system is operational and the comparable

timestamps only ever represent times before PV was installed.

Median and mean energy delivered to the premise during similar points in time are calculated

from P, and symbolized as Pmed and P. The energy received by the grid (Π) during the comparable

timestamps is also obtained. This energy should always be zero because there is no generation at

the premise before the PV system is installed. This data check can be used to identify an incorrectly

recorded date of installation or malfunctioning smart meter.

Additionally, the quantity of corresponding P is obtained for each target timestamp. If a target

timestamp is tethered to less than three comparable timestamps, the aforementioned Pmed is cal-

culated as the prior target timestamp’s Pmed value. The prior timestamp is defined as timestampt-1

and represents the 15-minute period preceding the target timestamp’s interval.

Another term calculated from the AMI data will be discussed in the following section and is

used in irregular conditions. Comparable timestamps after PV, written as A, are the group of

comparable timestamps tethered to the target timestamp that occur after solar is installed. The

median delivered energy value from A is calculated as Amed. If there are no post-PV comparable

timestamps, Amed is null.

Here, all the inputs that are needed to calculate the projected energy output from the PV system

for each 15-minute period are available. The baseline equation for estimated generation (kWh) is:

Gen = Pmed − ∆ + Π (3.1)

Where Pmed is the Pre-PVDelivered median, ∆ is the delivered energy for premise at timestamp t,

and Π is the received energy from premise at the timestamp.

3.3.3 Irregular Conditions

Equation 3.1 is unable to logically calculate PV generation for all timestamps. There are nu-

merous irregularities that necessitate amended methods of calculating the PV generation for a
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given timestamp. For example, if there are less than three comparable timestamps associated with

a timestamp, the delivered and received data from the previous timestamp is used in substitution.

The primary irregular condition is when ∆ is greater than the Pmed term. Intuitively, energy

consumed from the grid will generally be lower after a premise has installed PV. However, there

are instances where occupancy or usage lead to post-installation timestamps with large amounts

of grid consumed energy. This scenario leads to a negative first term in Equation 1 that reduces

generation from the Π energy value. If the difference between Pmed and ∆ is greater than the value

of Π, a negative value will be calculated for PV generation. Logically, negative PV generation

does not exist, thus this condition must be addressed.

Analysis was conducted on the frequency of timestamps where actual delivered energy (∆)

was greater than the Pmed (estimated building load). Calculations from 846 residential premises

spanning 1-3.25 years show the average and median percentages of these irregular timestamps are

8.3% and 7.7%, respectively.

Steps are taken in the following series of estimation equations to handle these situations, and

are ordered from least to most proffered method of calculation. Additionally, if there are less than

3 comparable timestamps, the previous timestamp’s value for Pmed is used.

The process for calculating the estimated energy output begins at a default condition of zero

kWh for the timestamp and progresses through four calculations. A generation estimate of zero is

clearly the least desirable method of prediction while method (d) is the most desirable equation.

Generation is estimated to be:

a) If Π > 0 :

Π (3.2)

b) If Pmed > Amed :

Pmed − Amed + Π (3.3)

c) If P > ∆ :
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P − ∆ + Π (3.4)

d) If Pmed > ∆ :

Pmed − ∆ + Π (3.5)

These equations are used to calculate the estimated energy generation for each target timestamp

that occurs after a PV system is installed at an individual premise.

3.3.4 Snow Losses

Unlike a physical model, no additional intervention is needed for handling snowfall on PV

panels. Because the AMI model utilizes similarities in building energy load before and after PV

installation, a lack of generation from snow would innately be carried in the AMI data. Referring to

equation 3.1, the model assumes that building load for comparable periods of time will be similar

to a given timestamp’s energy load. If snow is covering the array, the delivered energy would

then be similar to the delivered energy from the comparable periods before the premise had PV.

The difference in these terms would be small; adding the near-zero received (produced) energy

would result in a low estimate for PV generation. Model prediction performance during periods of

snowfall will be explored in Section 4.3.2.

The AMI model does not use precipitation in the timestamp matching process. When rain or

snow occurs the irradiance will significantly decrease, thus matching periods of precipitation with

other high-cloudiness/precipitation periods.

3.4 Modeling Consumption Without PV

Another application of the timestamp matching AMI model is to predict electricity consump-

tion when PV is not being produced. This method allows the estimation of consumption of any

non-PV building, allowing a grid operator to estimate required load based solely on weather and

previous AMI data. Because no load is offset by PV, the equation for estimated energy consump-

tion during t is:
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Consumptiont = Comparable Deliveredmedian (3.6)

While estimating non-PV building load is not conducted in this work, consumption modeling

will be discussed as areas of future work.

3.5 Forecasting PV Generation

PV generation estimates are of most value when the model provides forecasted future energy

generation in real-time. An overarching goal of this research group was to explore the AMI model

using forecasted weather data to project next-day generation.

3.5.1 Access to Weather Forecasts

SNL has built a set of python-coded functions that allow for the easy retrieval of forecast data

for use in PV generation modeling. These functions utilize Unidata’s Siphon library to access real-

time forecasted weather data hosted by University Corporation for Atmospheric Research (UCAR)

in Boulder, Colorado. UCAR hosts the Thematic Real-time Environmental Distributed Data Ser-

vices (THREDDS) which provides these real-time and archived datasets for research and educa-

tion [41]. Among these datasets include forecasts from the Global Forecast System (GFS), the

North American Model (NAM), High Resolution Rapid Refresh (HRRR), and the Rapid Refresh

model (RAP) [42]. The table below provides details on each of these weather models.

Table 3.1: Weather Forecasting Models.

Geographic Time Forecast

Model Resolution Resolution Window Area

GFS 0.25 & 0.5 degree 3-hour to 7 days Any location on Earth

HRRR 3 km 1-hour to 30 hours Continental U.S. only

NAM 20 km 1-hour to 4 days North America

RAP 20 km, 40 km 1-hour to 36 hours Most of North America
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3.5.2 North American Model

The North American Mesoscale Forecast System is a model run by the National Centers for

Environmental Prediction. Four models are produced each day (every six hours) [43]. The parame-

ters available from the dataset query are: air temperature, wind speed, GHI, DNI, DHI, total cloud,

low cloud, mid cloud, and high cloud coverage [43]. Because of the model’s multi-day range at

1-hour granularity, this model was selected for forecasting use.

3.5.3 Single Premise PV Forecasting

Weather forecast data for the upcoming 48 hours was queried by a forecasting function in the

AMI model. For the purposes of this modeling effort, only air temperature (°C), wind speed (m/s),

and GHI (watts/m2) were utilized. The closest coordinate intersection modeled by the NAM was

approximately 12 kilometers (km) from the geographic coordinates of downtown Fort Collins.

In the same manner as described in Section 3.3, the AMI model compared forecasted times-

tamps to past comparable timestamps. For this analysis of the NAM forecast, 48 target timestamps

(one for each hour of forecasted weather) are matched to historic weather timestamps spanning

back to January 1, 2015. Using the same AMI model method, estimated output from comparable

timestamps are calculated.

The forecasted weather data was then inputted into the CSU-PVL model (described later in

this work) with the specific system parameters from each PV asset (tilt, azimuth, capacity, date

of installation, rate class) to create a PVL estimated time-series. Finally, these two outputs were

plotted for each premise. Preliminary results from AMI forecasting are discussed in Chapter 7.

It should noted again that the timestamp matching does not utilize precipitation. The forecast

model requires enhancement by adding a precipitation component. This element, combined with

ambient temperature below freezing, would allow for a snowfall trigger that could be applied to

the following day(s) to simulate snow coverage on panels. This is one element of this work’s PV

forecasting that needs further refinement.
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Chapter 4

Experimental Results Part 1

This chapter discusses the experimental modeling results and findings for four systems as com-

pared to their actual recorded generation.

4.1 Known Generation

Ideally, known generation from all or many residential arrays would be used to verify the

model’s performance. Unfortunately, large sets of actual generation from smaller PV systems

outside of research datasets are not commonly available. Actual generation from four small-scale

net-metered PV systems in Fort Collins were obtained and used to initially validate the accuracy

and robustness of the AMI model. Table 4.1 details these net-metered systems.

Table 4.1: Known Generation Data Sources.

Site Name Capacity (kWDC) Premise Type Granularity Duration

House G 5.04 Residential Daily 13 months

House Z 6.00 Residential Hourly 2 months

Timberline 20.59 Non-residential Hourly 8 months

Church 53.46 Non-residential Daily 12 months

House G had a PV system installed in mid-2016 with a tilt and azimuth of 26.5° and 160°,

respectively. House Z hosts a system installed in early 2019 with a tilt and azimuth of 27° and

244°, respectively. The Timberline array consists of a ground-mounted system with 180° azimuth

and 30° tilt. A local church in Fort Collins was outfitted with solar in fall 2016. The church has

two arrays, 11.9 kW with a tilt of 21° and azimuth of 90°, along with a south facing 41.6 kW array

at a 16° tilt.

These premises are a diverse and representative mix of net-metered solar assets. Most obvi-

ously, they span across a range of installed capacity and building types with different usages and
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load profiles. Residential buildings typically have two daily peaks; a small morning spike and

more substantial afternoon/evening increase in consumption. They also exhibit different energy

needs during the work week and on weekends. The Timberline Recycling Facility is a city-owned

building that is open 360 days a year and is served by a general service net-metered electricity

connection. The load profile at this premise is likely be characterized by consistent energy usage

during business hours every day of the week, with major fluctuations driven by HVAC needs. In

contrast, the energy needs of the Church are likely low during the week and vary on weekends

depending on the different services and one-off events that the site hosts.

These arrays also provide an assortment of orientation configurations for the AMI model to

be compared against. The Church has a due east facing sub-array, while House Z faces west-

southwest, with the Timberline and House G generally south facing systems. The tilt of these

systems vary between 16° and 30°. Having a variety of PV arrangements helps build confidence

in the robustness of the model on arrays of other potential designs.

4.2 Error Terms

There are several ways to prepare the data that can provide different views of the statistical

agreement and consistency of the AMI model to recorded PV generation. While the AMI model

operates sub-hourly, generation comparisons are conducted at hourly and daily resolutions.

The absolute percentage error, referred to as ε in this work, is a robust and commonly used error

term metric for comparing a modeled output to an known value. It can be used across different PV

systems with varying capacities. ε is defined as:

εt (%) = 100 ×
AMI t − Actualt

Actualt
(4.1)

Where AMIt and Actualt are the estimated and actual values (kWh) at time interval, t.

With modeled and ground-truth data both in time-series form, the mean (ε) and median (ε̂)

of the ε errors are useful to describe algorithm performance over the duration modeled. The ε is

defined as:
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ε (%) =
100

n
×

n∑

t=0

AMI t − Actualt
Actualt

(4.2)

The ε̂ is often reported in this work because it is more resilient to outliers than the ε and is defined

as:

ε̂ (%) = median(ε1, ε2, ... εn) (4.3)

Where ε is an absolute percentage error and n is the number of ε being considered.

A weighted error term (ω) is also calculated because errors of similar magnitude are not of the

same importance. A 10% ε at 7:00 am when generation is low is not as significant as a 10% ε in

the mid-afternoon when the system is maximizing production. The weighted error term minimizes

errors that occur during hours of lower generation and amplifies those that occur during greater

energy production. This is achieved by scaling ε by the ratio of the estimated generation during

the hour to the maximum estimated hourly generation for the system. The weighted error equation

for any hourly error is:

ωt (%) = εt ×
AMI t

AMImax

× 100 (4.4)

Where AMImax is the maximum estimated hourly value (kWh) from the AMI model; and AMIt is

the estimated value (kWh) at the hourly time interval. The weighted error term is only calculated at

hourly granularity, it is not used for analysis of daily generation. Throughout this work, a negative

error value always corresponds to the AMI model value being lower than the value it is being

compared to. Colloquially, a positive error means the AMI model overestimated relative to the

other value.
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The hourly mean (ω) and median (ω̂) weighted percentage error terms are found by the follow-

ing equations:

ω (%) =
100

n
×

n∑

t=0

ωt (4.5)

ω̂ (%) = median(ω1, ω2, ... ωn) (4.6)

4.3 Results

The time-series of modeled and actual generation from each of the four premises are plotted

together to graphically compare the two. Hourly generation at the Timberline and House Z arrays

enables hourly analysis, while House G and the Church can only be compared at daily resolution

due to data reporting limitations from the data acquisition system.

Residential modeling was characterized by daily ε between -4% to -26%, meaning that the

AMI model was underestimating generation on average. Hourly generation was not available for

House G, but for House Z the hourly ε̂ was -26.5%.

Interestingly, total generation aggregated over longer periods of time correlated better to ob-

served generation than at daily granularity. Over the course of one year at House G, the total sum

of actual generation was 6,570 kWh while the AMI model estimated 6,492 kWh, a difference of -

1.2%. Throughout the two months analyzed for House Z, the actual generation was 885 kWh while

the AMI model estimated 673 kWh, a difference of -23.8%. However, it is known that the occupant

of House Z is an energy engineer affiliated with this research and was aggressively shifting and

minimizing loads to minimize consumption during higher pricing periods. Speculatively, the win-

ter months modeled also may not have provided consistent weather and generation for evaluation

of this newer system (installed February 2019).

Figure 4.1 depicts the actual and modeled daily generation values for three months from the

House G system. Figure 4.2 portrays hourly recorded and modeled values from House Z.
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Figure 4.1: House G Daily Generation. 3 months of estimated daily generation aligned with recorded

generation. The daily ε̂ was -3.9%, that is, the AMI model typically underestimated daily generation by

around 4%. As the generation data was accrued by day, hourly errors cannot be calculated.

Figure 4.2: One Week of Hourly Generation Comparison for House Z. This hourly plot displays mod-

eled and recorded hourly PV generation. The model underestimates during both sunny and cloudy (days

2,8,9) periods. The AMI model was found to have a ε̂ of -26.5% and -25.8% at hourly and daily granularity,

respectively.

Statistically and graphically (Figures 4.3 and 4.4) the model performed best at Timberline.

At both hourly and daily resolution, agreement between modeled and actual data appear to be

quite strong. This may suggest that consumption patterns are very consistent at this municipally-

operated commercial site and did not diverge after PV system commissioning. Data from the
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Timberline facility shows over the course of eight months analyzed, the total sum of actual gen-

eration 16,607 kWh, while the AMI model estimated a total of 16,735 kWh, a difference of only

+0.8%.

Figure 4.3: Timberline Hourly Generation. Shown is the hourly generation estimate from the AMI model

plotted with actual generation. An hourly ε̂ of 1.7% was observed. An ω and ω̂ of +4.0% and +0.4% were

calculated.

Figure 4.4: Timberline Daily Generation. Shown is the daily generation estimate from the AMI model

plotted with actual generation. For the AMI model, a daily ε̂ and ε unweighted error of +0.3% and +3.6%

were observed.

31



The model accuracy for the Church was not as unblemished as the other non-commercial site at

Timberline. At the Church the daily ε̂ was -7.4% and inspection of Figure 4.5 illustrates the typical

underestimation error. Churches typically only have on-site activity a few days a week, and load

may be highly variable even between the weekend services and events. Different community events

may consume energy in very different quantities, leading to more uncertainty from estimating

generation from past consumption data.

Figure 4.5: Daily Generation Comparison for the Church. These daily plots display modeled and

recorded generation through various points of 2018. The model typically underestimates during both sunny

and cloudy periods. The AMI model was found to have a daily ε̂ of -7.4%.

The raw AMI data can provide insight into the consumption patterns of these buildings. From

Timerbline’s AMI data (Figure 4.6 below), it can be seen that there is a consistent afternoon/evening
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usage around 2.5 kW, with an overnight base load of around 2 kW. Of course, daytime consump-

tion is mostly hidden due to BTM generation usage; days of low generation such as Jan. 9th, 16th,

and 18th do display periods of daytime delivered energy. As shown in Figure 4.7, Church activity

is relatively easy to discern as weekend spikes in consumption, with green arrows indicating Sun-

days. Wednesday night services are also visible during the week in Figure 4.7. The consumption

on other days is usually less than array generation and thus not shown in the AMI data. Because

Timberline probably has more consistent day-to-day activities, logically the AMI model would

perform better at that site than at the Church.

Figure 4.6: Timberline Hourly AMI Data. Several days of invisible generation offsetting delivered energy

needs are visible on Jan. 9th, 16th, and 18th, 2019.

Figure 4.7: Church Hourly AMI Data. Sundays are denoted by green arrows.
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4.3.1 Monthly Estimates

For individual premises, modeling monthly generation provides a useful interval of estimation.

Most utility customers in the U.S. receive a monthly bill for total consumed energy (kWh) from

approximately the previous 30 days, and the Energy Information Administration reports monthly

electricity usage statistics [44]. This kWh total is converted to a dollar amount through various

billing structures. A residential solar system owner would likely want to compare their actual

monthly generation with predicted monthly generation to understand system performance and ex-

pectations for the payback period of the array. Thus, aggregated actual and estimated monthly

values are compared and discussed in this section.

In Figure 4.8 the aggregated monthly errors from each site are plotted together. As shown,

27 of 35 months plotted are within ± 10%. The greatest variance from known generation totals

occur from the two residential premises. Interestingly, the larger systems are better modeled at a

monthly level. This prediction accuracy to actual generation may suggest meaningful monthly or

annual predictions are possible with this model.

Figure 4.8: Aggregated Monthly Errors. 22 months of aggregated monthly generation errors presented

for 4 sites with known generation. Winter months appear to be the most difficult to consistently model. The

AMI model typically underestimates monthly generation by 0-10%.
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The cause of the large spike in error for House G in November and December 2017 is not

initially apparent. Closer inspection of the AMI data reveals that the smart meter at this premise

was malfunctioning for about 4 weeks spanning the two months. This artificially low delivered

energy (∆) is subtracted from the Pmed term in Equation 3.1 drastically increases the generation

estimate during the affected period. This overestimation is evident by the large error toward the

AMI model for those two months. Figure 4.9 below displays this incident with delivered values

plotted on top of received energy values.

Figure 4.9: Missing AMI Data at House G. Nearly one month of delivered energy values appear to be

missing, denoted by the blue line. The orange line represents recorded hourly received energy to the grid.

Data quality issues from this small sample size have significant impact on monthly error re-

sults, and AMI data quality and cleaning issues are discussed in Section 6.5. While more known

data for comparison is needed, the general trend of the AMI model slightly underestimating gen-

eration is visually apparent in Figure 4.8. The causation of this underestimation pattern is not fully

understood and may be a result of behavioral changes in energy use after solar is installed. This

explanation would imply energy consumption at a premise rising slightly after installation, causing

the overall estimated PV generation term decrease slightly. As mentioned in Section 3.1, this pat-

tern has been been observed in behavioral research as the rebound effect after PV is installed [37].
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Nonetheless, in summary, these monthly comparisons reinforce the notion that the AMI model

achieves reasonable precision within ± 10% from actual generation.

4.3.2 Snowfall Performance

Estimating PV generation during or after snow events is tedious and experimental. Cloud

coverage and precipitation distribution are unpredictable and highly variable across small areas,

lending to uncertainty in prediction. Because post-snowfall temperature and sunlight is a key

driver of snow melting, the following days’ weather are important to determine panel clearing and

resumption of unobstructed generation. The inherent nature of the AMI model positions it to be

well-suited at predicting generation reduction due to snow coverage. The AMI data describes what

is happening within the building’s load, not just on the roof under snow. Net-load is inclusive of

panel snow coverage and other losses, by-passing the various physical model external variables

that must be factored in.

The following plots display modeled and actual generation for two snowfall events at two

different arrays. An accurate estimate of generation per the AMI model is displayed in Figure

4.10 below. Between October 6-11, 2018, a mix of rain, light snow, and heavy cloud cover was

observed, greatly reducing generation over the six-day period as shown by measured generation

plotted in green. Reduced generation during these overcast and pluvious days is shown in the AMI

estimate (orange), considered to be in high agreement with known generation.
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Figure 4.10: Model Performance During Precipitation Period at Timberline Site. Poor weather was

observed from October 6 through October 11, 2018 in Fort Collins, which is reflected in the AMI model and

recorded generation data.

Figure 4.11 displays a heavy snow event on March 2, 2019 in which Fort Collins received over

7-inches of snow. In addition to no generation on March 2nd, two succeeding days of negligible

generation due to snow coverage are shown by the AMI model and recorded generation data.

Figure 4.11: House Z Generation during Snow Event. On March 2, 2019, Fort Collins received over 7

inches of snow.
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The AMI model is responsive to the effects of snow coverage during and after the snowfall

event. While by no means perfect, the AMI model’s structure produces generation estimates that

are not “fooled” by high irradiance periods while an array lies under inches of unmelted snow. This

capability provides a competent alternative to prior snowfall modeling approaches: AMI snowfall

performance compared to physical models will be discussed in Section 6.4.

4.4 AMI Validity

Overall, the AMI model accomplishes the objective of achieving reasonable accuracy via com-

parison to known generation. Although fine and aggregated errors exist, nothing in these results

suggest the experimental method is deeply flawed. A foundation for disaggregation of net-metered

data was constructed and tested on two residential and two commercial systems representative of

a variety of array configurations.

To test the robustness of the model across thousands of systems in a distribution network,

greater effort was expended on the remainder of the modeling activities in this work. Without the

luxury of actual generation data, a surrogate for output was needed. Consequently, a detailed and

input-intensive physical model was built, which acted as a proxy for known production. Generation

estimates born from the AMI data of 846 PV systems in Fort Collins were compared against this

physical-modeled output. Chapters 5 and 6 describe and discuss the outcome of this portion of the

work.
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Chapter 5

Development of PVL

FCU does not have access to actual generation data for nearly 1,300 residential PV systems in

Fort Collins. Because FCU has recorded basic array characteristics, a physical model to estimate

generation provided a proxy for these premises. This physical model was used as a validation tool

by comparing the PVL output to the AMI model’s output for these arrays.

Prior PV performance models developed by Sandia National Laboratories were chosen as a

template for this physical model. The modeling components in this thesis work were based on

the Sandia National Labs PV Performance Modeling Collaborative. All the information from the

PVPMC is open-source and available online [31]. This PV library provided the methodology

framework for the model, named “CSU_PVL”, built by the CSU research team.

The CSU-PVL model is a physical model that incorporates solar irradiance, thermal, electrical,

mechanical, and optical components [30, 31, 45]. The model also built off prior work by CSU

research associate John Bleem [46], who developed a similar solar model based on the PVPMC

and related sources [30,31,45,47,48]. Inputs into CSU-PVL are the same weather data in Chapter

2, along with physical inputs for each array such as tilt, azimuth, and capacityDC from the City’s

DG Assets. Performed on each premise with PV, the model’s estimated generation time-series

provided surrogate generation output to determine the precision of the AMI model in the absence

of known generation data.

The following sections in Chapter 5 superficially discuss the model’s development based on

Bleem’s prior work [46]. Appendix B provides a more detailed step-by-step description, along

with the assumed variable values and coefficients used in the CSU-PVL model.

5.1 PVL Model Inputs

The PVL model was designed to accept weather data at any temporal resolution. The weather

parameters needed are the timestamp’s GHI, wind speed, and ambient air temperature.

39



There are three functions within the model that are run in series order. First, the solar posi-

tioning algorithms calculate the solar azimuth and zenith at each inputted timestep. Next, the Erbs

model is used to derive DHI and DNI from the measured GHI. Finally, energy output is calculated

incorporating temperature correction, system efficiencies, losses, and array capacity. Coefficient

values can be found in Appendix B.

5.2 Plane of Array Irradiance

The fundamental action in calculating PV cell performance is to ascertain the irradiance in-

cident on the surface plane of the array (POA) as a function of time. This POA irradiance is a

function of the position of the sun, the orientation of the array, the solar resource, albedo, and cov-

erage losses such as shading, soiling, or snow cover. The equation for energy from POA irradiance

is shown below:

EPOA = Eb + Eg + Ed (5.1)

The two major components of EPOA energy reaching the PV cell are the beam component (Eb) and

the irradiance diffused through the atmosphere (Ed). Beam energy is from irradiance that is directly

normal from the sun to a horizontal surface on Earth, which is known as direct normal irradiance

(DNI). DNI is used to calculate Eb based on Equation 5.2. Diffused horizontal irradiance (DHI)

entering the atmosphere is used to calculate Ed in Equation 5.5. and relies on empirical modeling

to determine. Figure 5.1 illustrates the two major components of incoming solar irradiance. The

ground reflected component of irradiance (Eg) is not considered in this version of the PVL model.

5.2.1 Solar Position Calculation

Direct normal irradiance (DNI) is the incident irradiance caused by direct beam from the sun

- i.e. does not include any atmospheric scattering or ground reflection. The beam component is

calculated as:

Eb = DNI × cos(AOI) (5.2)
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Figure 5.1: Direct and Diffuse Solar Irradiance. The solar zenith angle (θZ) is shown, which can be used

to calculate the solar altitude angle (90° – θZ). Image adapted from [49].

Where AOI is the angle of incidence between the sun’s direct normal ray and the PV cell, found

as:

AOI = cos−1 [ cos(θZ) × cos(θT ) + sin(θZ) × sin(θT ) × cos( θA − θarray ) ] (5.3)

Where θA and θZ are the solar azimuth and solar zenith angles. θT and θarray are the tilt and

azimuth angles of the PV array, in which an azimuth of 180° is a system facing due south.

The solar zenith is measured as the angle of the sun in the sky relative to a location on the

surface of earth. A zenith of 0° is defined as the sun being directly overhead, while a zenith angle

of 90° occurs when the sun is directly horizontal to the observer on the horizon. The solar azimuth

angle is the sun’s relative direction from an observer on Earth, with north having an azimuth of 0°

increasing in the clockwise direction from north. Calculating the solar zenith and solar azimuth for

a given point in time is a complex process that is described in greater detail in Appendix B. Figure

5.2 displays the relationship of these solar angles.
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Figure 5.2: Solar Zenith and Solar Azimuth Angles. Visual definition of the solar zenith angle (θZ) and

solar azimuth angle (θA). Image from [50].

5.2.2 Calculating DNI and DHI from GHI

Typical measurements of solar irradiance consist of the global horizontal irradiance and do not

individually measure DNI and DHI. The relationship between the two components depends on the

clearness of the sky at the given point in time; on clearer days more of the irradiance will arrive as

direct beam radiation.

Empirical models have been developed using decomposition models to estimate the diffuse

fraction (kd) of irradiance based on a clearness index. The index of clearness through the atmo-

sphere (kt) is defined as as the ratio of irradiance reaching the surface to available extraterrestrial

irradiance. The diffuse fraction (kd) is calculated from a piecewise range of kt values. The PVPMC

provides three decomposition models; the Erbs model was selected for this work because it was

developed with data collected from weather stations in the U.S.A. at latitudes near that of Fort

Collins [51]. Further explanation of Erbs and the derivation of Erbs decomposition constants can

be found in Appendix B.2.
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Once the empirical kd is derived, DHI reaching a flat surface is calculated using GHI:

DHI = GHI × kd (5.4)

To calculate the diffuse radiation on a tilted surface, another empirical model has been developed

[52]:

Ed = DHI ×
1 + cos(θT )

2
+ GHI ×

(0.012θZ − 0.04) × (1− cos(θT ))

2
(5.5)

Where θZ is the solar zenith angle and θT is the tilt angle of the PV array. Further, DNI is calculated

as:

DNI = (GHI −DHI) × cos(θZ) (5.6)

And can be used to calculate the beam component Eb solving with Equation 5.2. Once EPOA is

calculated as the sum of Eb and Ed, factors that affect the conversion of EPOA to alternating current

electricity from the cell and inverter are considered.

5.3 Temperature Effect on Modules

PV cell performance is impacted by the module temperature as higher panel temperatures pro-

duce lower energy output, especially in commonly-used silicon-based cells [46]. Based on a model

developed by SNL, module temperature is primarily governed by heat from solar irradiance, am-

bient air temperature, and cooling effects from wind [53]. These inputs calculate a temperature

correction later factor applied to the power output from the PV cell. The temperature correction

factor is defined as:

Tcorrection = 1 + TC × (TM − Ttest) (5.7)
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Where TC is a calculated temperature coefficient, TM is the calculated module temperature, and

Ttest is the standard test temperature of 25 °C. The derivations for TC and TM and needed empirical

coefficients are found in Appendix B.3.

5.4 Equipment Efficiencies and Losses

Array generation is also a function of various system characteristics, some of which may not

typically be known to the modeler and must be estimated. The panel and inverter efficiencies

(ηpanel and ηinverter) are denoted as fractional efficiencies out of 1. Other system losses such as

wiring losses, aging degradation, and inverter clipping also effect the final output from the system.

Another required input into the PVL model is the PV cell area, Acell, which is the total area of

PV cells within an array (m2). If the specific module cell area’s are not known, approximations

must be made in order to convert CapacityDC into PV cell area. The general equation for calculating

cell area is:

CellArea (m2) = CapacityDC × 1000 × (Areamodule/Wattagemodule) (5.8)

Where CapacityDC is in kilowatts, module area in m2, and module rated power in watts. A utility

will often not know the specifications of the modules installed in the array, requiring approxima-

tions to convert CapacityDC into cell area.

The model used an estimate of ηpanel = 16.2% and a module power rating of 250 watts, based

on NREL’s 2018 PV System Benchmark report. From an average phsyical panel size of 1.63 m2,

an average model area of 1.55 m2 was calculated. This is from the assumption that the cell area

of a panel encompasses 95% of the total panel area. Physical panel area was found by comparing

numerous commercially available modules and calculating the average area of these panels. These

assumptions are explained in greater detail in Appendix B.4.

Inverter clipping is another factor that causes a reduction in power generated by the array.

Formally known as inverter saturation, inverter clipping occurs when the DC power from the array

is greater than the maximum input for the inverter [54]. While the DC rating of an array commonly
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exceed the input capacity of the inverter to maximize long-term energy yield, at a certain point the

inverter will regulate power input and clip potential generation from the array [54]. Because the

City’s PV records contained inverter quantity and model, the maximum AC output (ACmax) from

the premise can be determined from the different inverter specification sheets. When modeled AC

output (PAC) exceeded ACmax, the output was reduced to ACmax if coherent inverter information

was available.

Figure 5.3 below displays inverter clipping during summer days at CSU’s Student Recreation

Center (SRC), which hosts a 544 kWDC system. The horizontal red line expresses the maximum

AC output of the array, which is 437 kWAC based on the site’s inverter data.

Figure 5.3: Inverter Clipping at the CSU SRC. DC components are often over-sized to maximize gener-

ation yield.

From DG Assets, inverter information enables an ACmax value to be determined for 88% of

premises. In Fort Collins, the average inverter load ratio was only 1.02 from these premises. If

inverter information was not available or incomplete, inverter clipping and maximum AC power

output were not considered for the premise modeled.

Inverter efficiencies were also available from the numerous inverter product specification sheets.

Over 120 inverters are present in Fort Collins and their California Energy Commission (CEC) ef-

ficiency values were compiled. The CEC rating is a standard designed to allow a less complex and
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more accurate method of calculating inverter efficiency [55]. The average CEC efficiency present

in Fort Collins was calculated to be 96.1%. A rounded value of 96% was used in the model for

ηinverter.

To encompass wiring losses, aging degradation of equipment, soiling, outages, and other mis-

cellaneous losses, additional system losses (SL) were set to 8.7% based on prior PV modeling

experience from [46]. Table B.1 contains a comprehensive list of assumed values and coefficients

used the PVL model.

5.5 Power Production

As outlined by SNL and Bleem, AC power (PAC, in watts) can be calculated using the previ-

ously determined variables as discussed in this chapter [46, 56]. AC generation is found as:

PAC = [ PDC × (1 −
SL

100
) × ( 1 −

ηinverter

100
) / 1000 ] (5.9)

Where SL is system losses (%), ηinverter is inverter efficiency (assumed as 96%), and PDC is DC

power from array side of the inverter. PDC is found as:

PDC = [ EPOA × ηpanel × Areacell × [ 1 + TC × (Tcell − Ttest) ] ] (5.10)

Where EPOA is the plane of array energy found in Equation 5.1. Tcell, Ttest, and TC are the cell

temperature (°C), reference test temperature (25 °C), and the temperature coefficient, respectively.

Areacell is the cell area (m2), and ηpanel is panel efficiency, which is assumed to be 16.2% in this

work.
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5.6 Snow Coverage Reduction

Typically, physical models approach snowfall correction by using the tilt, ambient temperature,

and plane of irradiance to determine snow sliding down a panel [57]. This phenomena is displayed

on the CSU Powerhouse’s array (tilt = 15°) in Figure 5.4 below.

Figure 5.4: Powerhouse Array with Snow. Partial coverage of a PV array after a snowfall event in Fort

Collins. Photo taken May 9, 2019 at the CSU Powerhouse Energy Campus by Wendell Stainsby.

A slide amount is calculated to determine exposed panel surface based on an empirically de-

rived sliding coefficient and a function of the steepness of array tilt [58]. As the panel and envi-

ronment warm, snow melts and/or slides further off the panels, and generation increases until the

snow has expired.

This snowfall correction method is used by NREL’s System Advisor Model (SAM) for PV

projects. While this snowfall correction was shown to improve the SAM estimates by 4-8%, it is

an imperfect process [57]. To this point, NREL’s report on the validation and application of the PV

snow coverage model states [57]:

The snow model is observed to both over-predict and under-predict energy esti-

mates in an unforeseeable fashion on a monthly, daily, or hourly basis. This is expected

behavior, however, since Marion et al. (2013) states that the original model performs
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well on an annual average despite the fact that “large differences between modeled

and measured energy losses should be expected for monthly or shorter time periods”.

For this reason, results from the model implemented in SAM should only be factored

into annual considerations and not applied to monthly or shorter time periods.

Unrelated prior work from the Department of Energy determined rough estimates of system

output reduction over time based on the tilt of the panel [59]. Brench determined average energy

losses for 30° and 40° panels for various snow coverage and weather scenarios [59]. These energy

reductions were extrapolated from flat (0°) to 45° systems and applied to the hourly generation

estimates. For this work, daily snowfall data from NOAA was utilized. Snowfall reduction was

triggered if an hour occurred during a day which recieved at least 1-inch of snow that day, or had

at least 3-inches of accumulated snow from a prior event during the calendar day.

The following table displays the different hourly snowfall reduction factors based on extrapo-

lation of panel tilt from [59]. The panel tilts listed represent the upper bin limit of the angle for the

reduction factor.

Table 5.1: Energy Loss Based on Panel Tilt.

Tilt (°) Loss Factor (%)

5 92.5

10 83.0

15 73.5

20 64.0

25 54.5

30 45.0

46 26.0

The snowfall modeling reduction effect is displayed in the figures below, which depict two

snow events in March 2019 with actual generation data from House Z. On March 2, 2019 Fort

Collins received 7.3-inches of snow that persisted as accumulated snow until March 6, 2019. From

Figure 5.5, the generation reduction from panel coverage in spite of good weather conditions is

shown. March 4th & 5th were sunny days, and the uncorrected PVL model (dashed red) grossly
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overestimates generation compared to actual generation (green). While a corrected PVL estimate

(blue) still overestimates generation, it is a substantial improvement from the uncorrected output

estimate.

Figure 5.5: Multiday Snowfall Effects on PVL Model. The effect of snow coverage on modeled gener-

ation is shown. Uncorrected generation has poor performance during ensuing days with inundated panels.

Snowfall correction from March 3-5 was conditional on daily accumulated snow measured to at least 3-

inches.

On March 13, 2019 Fort Collins received 2.8-inches of snow that melted away by the next

day and only March 13th triggered snowfall reduction. While the weather dictated the uncorrected

PVL model to estimate low generation, the corrected estimate aligns even better with the actual

generation. Further, good alignment with between actual and uncorrected estimated generation is

achieved the following day, confirming that the snow did in fact melt by March 14th.
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Figure 5.6: Single Day Snowfall Effects on PVL Model. High accuracy is achieved for the corrected esti-

mated relating to recorded generation. As snow melts away by the next-day, recovery of system production

is impressive.

As previously stated by NREL researchers, modeling snowfall generation reduction at fine

temporal resolution is very difficult to perform. Nonetheless, this work attempts to incorporate

snowfall reduction that consistently improves the estimate. Greater improvement than what was

already achieved by the PVL snowfall correction would require arduous modeling that is outside

of the scope of this work.

5.7 PVL Verification

The PVL model was verified with known generation from ten array sites, and the details of

these systems are shown below in Tables 5.2-5.4. While sites such as the CSU Powerhouse and

the 222 City building are also net-metered, they were not used to verify the AMI model in Section

4.3 because the systems were installed before the January 1, 2016 cutoff. Larger systems in Table

5.4 are independently metered and were also installed before 2016.

Table 5.2: Residential Known Generation Sources.

Site Name Capacity (kWDC) ACmax Output Granularity

House G 5.04 4.5 Daily

House Z 6.00 5.4 Hourly
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Table 5.3: Commercial Known Generation Sources.

Site Name Capacity (kWDC) ACmax Output Granularity

Timberline 20.59 19.72 Hourly

CSU Powerhouse 21.6 20 Hourly

Church 53.46 43.2 Daily

Firehouse Alley Garage 93.84 90 Hourly

222 City Building 103 99.1 Daily

Table 5.4: Utility-scale Known Generation Sources.

Site Name Capacity (kWDC) ACmax Output Granularity

CSU Vet Teaching Hospital 220.2 184 Hourly

CSU Student Rec. Center 544.7 437.6 Hourly

Bella Site 971 784 15-minute

Analysis was conducted using the PVL model along with actual generation, and the outputs

were statistically compared. The first statistic that was used was total generation error, the inte-

grated amount energy produced during the durations modeled expressed in kWh or MWh. The

second statistic reported was ε̂, the median value of daily error between PVL and actual genera-

tion. The two figures on the following page present these errors, both expressed as percentages,

for the ten sites. Each marker on the scatter plots is scaled to the system’s capacity to illustrate the

range of system size in this analysis. The systems are color-coded to group similar building and

size types: residential (blue), commercial (red), and utility-sized (green).

Total generation error, a measure of long-term precision, is shown in Figure 5.7. The two

residential premises displayed the highest PVL overestimation, but there does not appear to be a

correlation of system-size and this measure of accuracy. All systems but the Bella Site expressed

positive total generation error, meaning that the PVL model overestimated the other nine systems,

ranging from 0.3%-13%.
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Figure 5.7: Total Generation Error from PVL Model for 10 Sites. The residential premises display the

highest PVL overestimation, but there does not appear to be a trend in error based on array size.

Figure 5.8: Median Daily Error from PVL Model for 10 Sites. The median of daily error is ±10% for

all systems except House G, which has known shading present.

All but one system had a ε̂ daily error less than 10% from actual generation as displayed in

Figure 5.8. A noticeable difference between the two plots is the negative ε̂ value for House Z

while the premise had an positive and relatively large total generation error.

Several of the systems in this Actual-to-PVL analysis are detailed individually in the following

pages. House Z, as previously described, has a 6 kWDC array. Total recorded generation over

the period analyzed was 888 kWh, with a modeled generation total of 993 kWh, a difference of

+11.8%. The ε̂ at daily granularity was -1.2%. and Figure 5.9 below displays these outputs.
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Figure 5.9: House Z Actual and PVL Generation. House Z exhibited a negative ε̂ value, indicating that

PVL is likely typically underestimating with a few outlier days of overestimation.

Timberline has a 20.59 kWDC array. Total recorded generation over the period analyzed was

16,590 kWh, with a modeled generation total of 16,789 kWh, a difference of +1.2%. The ε̂ at daily

granularity was 0.4%, showing model precision at this site. Figure 5.10 below depicts Timberline’s

actual and PVL generation outputs. The CSU Powerhouse houses a 21.6 kWDC array. Total

Figure 5.10: Timberline Actual and PVL Generation. Cloudy days (low GHI) are shown, with effective

PVL sensitivity in the hourly generation plot.

recorded generation over the period analyzed was 30,767 kWh, with a modeled generation total of
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30,859 kWh, a difference of +1.2%. The ε̂ at daily granularity was +7%. Recorded and estimated

output is found in Figure 5.11.

Figure 5.11: Powerhouse Actual and PVL Generation. Hourly generation is shown, with slight PVL

overestimation visible during many high-production days.

The Firehouse Alley Garage is a 94 kWDC system flat-mounted system on top of a parking

garage in downtown Fort Collins. Total recorded generation over the period analyzed was 91.7

MWh, with a modeled generation total of 94.9 MWh, a difference of +3.5% and plotted below in

Figure 5.12.

Figure 5.12: Firehouse Garage Actual and PVL Generation. While hourly generation is shown, the ε̂ at

daily granularity was 0.62%.
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222 Laporte Avenue is a city building that houses several departments of Fort Collins City

staff. The building hosts a 103 kWDC at a low tilt angle of 5°. Total recorded generation over the

period analyzed was 127.0 MWh, with a modeled generation total of 140,279 MWh, a difference

of +10.4%. A daily ε̂ of 5.9% was observed and daily output is shown in Figure 5.13 on the

following page.

Figure 5.13: 222 Laporte Avenue Actual and PVL Generation. Daily generation comparison is shown.

Colorado State University’s Veterinary Teaching Hospital hosts a 220 kWDC system. Total

recorded generation over the period analyzed was 312.7 MWh, with a modeled generation total of

327.5 MWh, a difference of +4.7%. A daily ε̂ of 3.6% was observed and daily output is shown in

Figure 5.14.
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Figure 5.14: CSU Veterinary Teaching Hospital Actual and PVL Generation. Hourly generation com-

parison is shown.

The CSU Student Recreation Center (SRC) has 544 kWDC array with a maximum AC output

of 437 kWAC. Total recorded generation over the year was 760.7 MWh, with a modeled generation

total of 771.4 MWh, a difference of +1.4%. The ε̂ at daily granularity was -0.2%. The unweighted

hourly ε̂ was 1.8%, with hourly ω and ω̂ of 22% and 0.0006%, respectively. Clearly, the average

error terms are much more susceptible to outlier generation mis-estimates. Two figures of the SRC

array are presented below. Figure 5.15 displays hourly alignment between known and modeled

generation while Figure 5.16 displays daily generation agreement.

Figure 5.15: CSU SRC Actual and PVL Generation Hourly.
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Figure 5.16: CSU SRC Actual and PVL Generation Daily.

As shown, the PVL model both under- and overestimated to actual generation among these

systems. Easily identifiable causes are the use of assumed values for module rated power, inverter

efficiency, etc. that certainly vary between arrays. While these site-specific inputs could have been

used to better model these ten sites, they were not used because these site-specific details will not

be available for the majority of modeled systems. The intent of this verification was primarily to

build confidence that the stock PVL model with standard assumptions/coefficients was capable of

modeling this variety of systems to within reasonable accuracy. Therefore, the ten systems being

modeled within ±10% of actual generation was sufficient for this confirmation of viable operation

of the PVL model.

5.8 PVL Uncertainties and Limitations

This PVL model does not encompass every element that influences physical modeling. Pe-

ripheral, minor components of high modeling difficulty are not included for the sake of time and

resources, and exemplify the need for alternative methods of estimating PV generation.

For example, light reflected from the ground onto the array, known as albedo, is not modeled

and would increase energy production by a few percent. The equation for albedo (Eg) is defined

as:
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Eg = GHI × albedo × [ 1 − cos(θT ) ]/ 2 (5.11)

Where θT is the array tilt, GHI is the irradiance value, and albedo is a normalized value for ground

reflectivity. NREL’s PVWatts uses a default albedo input value of 0.2 [28]. For context, a system

with a tilt of 45° and an albedo value of 0.2 would see a POA energy increase of nearly 3%. This

ground reflected component of POA energy will be added in future work as the CSU-PVL model

is refined.

Incorrectly recorded system configurations in the City’s records also implant large PVL er-

rors into the results. When premises have multiple sub-arrays, the azimuth and tilt values for the

premises appear to sometimes be the average of the two (or three). For example, on a home with

a gabled roof and sub-arrays facing both east (90°) and west (270°), an average azimuth value of

180° may be recorded. For houses with several hipped and gabled planes, multiple arrays of var-

ious tilts may be represented by one value. Also affecting energy generation was the uncertainty

from the unknown tilt/azimuth values that were estimated through satellite analysis. Depending

on the direction and magnitude of estimation error, generation may increase or decrease. Section

6.2.1 discusses many of these types of error and provides examples of the occurrences.

Better aging losses also can be factored in to replicate real world wear and tear. Another

component of modeling that would certainly trim down generation estimates is shading. Shading

is variable for every site and the amount of shading loss also fluctuates through the year due to

foliage or structure locations. As will be shown and discussed in the following chapter, the PVL

model generally overestimated generation relative to the AMI model. It is speculated these shading

losses, inverter operating limitations and other losses that are not fully accounted for in the physical

model lead to this model diversion.
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Chapter 6

Computational Results Part 2: Validation

In this chapter the agreement precision between the AMI and PVL models are presented. Ev-

idence of adequate precision between the AMI and PVL model, and that the AMI model is valid

alternative to the PVL model are presented in this chapter. Individual premise-level estimations

will be examined, followed by a discussion of portfolio-wide aggregation of residential systems

within the City of Fort Collins.

846 residential premises are included in this two-model computational investigation. Although

there were almost 1,300 residences with PV, data requirements trim down this group. First, at

least one full year of pre-PV AMI data is required for AMI model operation based on a full year

of comparable periods of time. Accordingly, only PV systems installed after Jan. 1, 2016 are

included, providing the 2015 year of data. Building off this precondition, arrays installed on newly

constructed homes also cannot be currently analyzed due to lack of historical consumption data.

Consequently, 438 premises with a combined capacity of 2.1 MWDC are excluded, including 54

systems on newly constructed buildings. An additional 14 residences that have batteries installed

at the premise are also excluded. Nonetheless, the 846 systems analyzed had a combined capacity

of 5 MWDC, representing 65% of residential systems and 70% of installed residential capacity in

Fort Collins. Figure 6.1 displays cumulative growth of residential PV in Fort Collins. The shaded

area represents the capacity of systems included in this analysis.
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Figure 6.1: Cumulative Residential PV Growth. Historical trend of residential PV in Fort Collins, CO.

The shaded area represents the capacity of the 846 premises included in this validation analysis.

6.1 Error Terms

The previous mean and median absolute percentage errors (ε, ε̂) rely on employing a ground-

truth value in their equations. Now, because both the AMI and PVL models provide estimations,

measures of absolute accuracy cannot be calculated. Contrarily, relative error (RE) is a measure of

precision: the absolute error between the two estimates relative to the magnitude of the estimates.

This relative error provides feedback for how close in agreement the two observed values are. Like

the prior error terms, relative error is expressed as a unitless percentage, denoted as Γ and defined

as:

Γ (%) = 2 ×
AMI t − PV Lt

AMI t + PV Lt

× 100 (6.1)

Where t is a time period in which the premise had a PV system installed. Γ can be calculated

at any granularity from 15-minute, hourly, daily, to annually. From the numerator in Equation 6.1,

a positive Γ equates to the AMI estimate being greater than the PVL estimate. All premises in this

analysis were modeled through March 31, 2019.

The mean relative error (Γ) and median relative error (Γ̂) are also used in place of ε and ε̂, with

Γ denoted as:
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Γ (%) =
1

n
×

n∑
Γ (6.2)

And Γmd presented as:

Γ̂ (%) = median ( Γ1,Γ2, ... Γn ) (6.3)

Where Γ are the relative error percentages and n is the number of Γ being considered.

A weighted relative error is also utilized for hourly resolution, similar to the previously defined

weighted absolute error. The term attempts to minimize errors between the two models that occur

during hours of lower generation and amplifies those that occur during greater energy production

periods. A weighting factor is applied to each relative error that is proportional to the estimated

energy generation versus the maximum estimated generation of the array. In order to calculate the

more conservative weighted Γ, the estimated generation for any time step (Et), is defined as the

larger estimated value of the two modeled values. The maximum estimated hourly energy produced

by the system over the whole period of analysis (Emax), is used as the denominator of the weighting

term. As the ceiling of predicted energy generation, all other estimates and associated errors are

weighted in proportion of their magnitude versus Emax. The definition of weighted relative error

for any hourly error is:

ωΓt (%) = Γt × (
E t

Emax

) × 100 (6.4)

Where t is an hour of analysis between the two models. The mean and median weighted relative

error (ωΓ, ωΓmd) were calculated at hourly resolution for each time-series of the analysis.

6.2 Individual Residential Systems

AMI model precision with the PVL model were first evaluated across unique premises to at-

tempt to quantify meaningful characteristics of the comparisons. For each premise analyzed, the
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two estimated generation time-series’ were plotted together and the various relative error statistics

were assembled.

601 premises each had a daily Γmd between ±20%, while 526 each had a daily Γ between

±20%. 511 premises were part of both ±20% groups. Across the 846 premises, the average daily

Γ and Γmd was found to be -14.1% and -8.8%, respectively, toward PVL. Average hourly errors

across all premises had a ωΓ of -3.7% and an ωΓmd of -1.5%.

An example of this two model plot is shown in Figure 6.2, displaying the daily output from

both models for a 9.15 kWDC system. From this array, the average daily Γ of -10.5%, a daily Γmd

of -7.5%, and a total generation Γ of -4.5% were computed.

Figure 6.2: Daily Time-Series Outputs Plotted. Daily model comparison for a 9.15 kWDC array installed

in July 2018 with AMI (orange) and PVL (blue) estimations.

The following pages contain three additional premise plots to display the variation in duration

and precision across premises in this work. Long periods of poor precision are show in Figures

6.4 and 6.5. The causes for divergence are discussed in Section 6.5 and causes for PVL model

overestimation were also discussed in Section 5.8.
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Figure 6.3: 12.2 kW system installed February 2019. AMI (orange) and PVL (blue) model estimations

are shown.

Figure 6.4: 3.6 kW system installed September 2017. PVL overestimation in winter periods is apparent.

Figure 6.5: 7.9 kW system installed May 2018. Very poor model precision is displayed.
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6.2.1 Total Lifetime Error

Integrating the two generation curves provided cumulative values of total generation produced

during each system’s applicable period of production. These two totals were used to find the

lifetime relative error between the two modeled outputs for each system. The individual lifetime

errors of each premise provide insight into longer-term precision between the models.

The average lifetime Γ for all premises was -4.5% and a scatter plot of individual lifetime errors

is presented in Figure 6.6 below. 584 premises had a lifetime Γ of ±20% between models, shown

in green. On the right tail of the errors (AMI estimating greater), 39 premises were between 20%

and 50% and only four had worse alignment than that. However, the left error tail suggests a skew

toward PVL overestimating lifetime error as 25% of all premises had a lifetime Γ magnitude of

more than 20% toward PVL.

Figure 6.6: Lifetime Generation Sorted Relative Errors. Total relative error provides an analogous metric

of precision for the different durations that each array was in operation. The bias toward PVL estimation is

visible on the left side of the plot.

The worst errors may be attributed to several factors that are reoccurring themes in this chapter.

Speculating, the PVL model can grossly overestimate numerous systems because system misinfor-

mation undermines the input parameters. Incorrectly recorded array characteristics such as size,

tilt, and azimuth can drastically dictate the PV generation. Further, changes to the system such as

array modifications or upgrades may not have been recorded in the City’s records. Additionally,
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two key external factors are only partially addressed by the PVL and other physical models. As

discussed in Chapter 5.6, snow coverage reductions must be incorporated during days of snow

fall and, more importantly, periods after snow events when the weather is favorable but the panels

remain inundated by accumulated snow. However, these modeling reductions are complex and ir-

regular across events; a general reduction has been built into the PVL model but it has only limited

sensitivity to different snow and array conditions. Critically, modeling array shading from build-

ings or trees is an intricate and tedious task by and of itself, and accounting for variable shading

reduction at hundreds of premises is not feasible in this work or for a utility.

Because the AMI model accounts for reduced generation due to shading, as it uses measured

data, many premises with shading would have lower AMI estimates. Since the PVL model does

not currently consider shading, this may be a major reason for the numbers of premises with greater

PVL estimates.

From the worst premises in red on the left-side of Figure 6.6, spot checks were conducted to

verify installed configuration versus recorded system configured. Figure 6.7 illustrates one major

cause of modeling error, when an array is split between multiple roof pitches and the recorded

tilt/azimuth are not accurate for the installed system. The house on the left had east and west

facing sub-arrays, and a the recorded value appears to split the difference between these. The

house on the right has three arrays: ones facing east and west, and a larger one facing south. As

shown, the recorded azimuth for the entire array was due south. Shading is also evident from a

south-easterly direction.

Other recording errors are shown on the left house in Figure 6.8, where the recorded azimuth

was a completely different direction than the installed system. While the system would have been

better suited with the 140° orientation, field conditions sometimes lead to installed arrays on less-

optimal roof pitches that are clear of obstructions and easier to install the system.

In the right side of Figure 6.8, an array with considerable shading is shown, which would be

another leading cause of PVL providing much greater estimation estimates as evidenced by the

left-side of the lifetime error plots.
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Figure 6.7: Sub-arrays with Incorrect Recorded Values. Sub-arrays on different roof planes are shown

with the recorded azimuth value. Yellow arrows depict actual and recorded array azimutsh and the red

dashing denotes roof ridges. Both premises were located in the left red grouping on Figure 6.6.

Figure 6.8: Causes of Greater Estimation by PVL. Field conditions do not always match recorded system

configuration, shown by the left premise. Array shading is a serious issue at other premises. Yellow arrows

depict actual and recorded array azimuths and the red dashing denotes roof ridges. Both premises were

located in the left red grouping on Figure 6.6.

In summary, these exogenous components of generation modeling likely lead to greater esti-

mation in the PVL model’s values for many systems. Modeling limitations for the PVL model

were also discussed in Section 5.8.
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6.2.2 Monthly Aggregation

As outlined previously, modeling individual premises at a monthly timespan is a beneficial

exercise that is relatable to consumers with rooftop solar. Each premise’s two modeled outputs

were separately aggregated by calendar month for performance comparison and monthly relative

error was calculated.

For insight into the monthly agreement, the average of the monthly Γ for each system was

calculated from the set of available individual monthly Γ present through the lifetime for each

system. Further, from each premise’s set of monthly Γ, a 90% empirical confidence interval of

monthly error was constructed for each premise. That is, an empirical confidence interval was

constructed from the distribution of the premise’s monthly errors. The following plot contains the

average Γ and 90% empirical confidence interval of monthly error for each premise.

Figure 6.9: Average Monthly Error Between Models. The x-axis is ordered by ascending average

monthly error. The green shaded area is the 90% empirical confidence interval of monthly error for each

premises.

A negative Γ corresponds to the monthly PVL model estimate being greater than the monthly

AMI estimate, and vice versa for positive error values. 544 premises had negative average monthly

Γ while 301 had positive average monthly errors, indicating a slight bias toward the PVL model

estimating higher generation than AMI. The premises in Figure 6.9 are ordered by ascending aver-
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age monthly relative error. As the lifetime of data varies between systems, the number of months

in which production estimation data is available also varies. A system installed in April 2016 has

35 monthly estimation sets and 35 monthly REs, while a system installed in January 2019 would

only have 3 estimation sets and 3 errors.

From the figure, there is a gently sloping monthly error curve bounded by two elbow regions

on the curve extremities where the error greatly increases. Just as with the lifetime error plot

from Figure 6.6, in Figure 6.9 the precision deteriorates on the left side of the error curve as

PVL persistently estimates higher generation. Visually there are months with very large empirical

intervals, these tend to lie on the left-side of the plot. These inconsistencies are assumed to be

from the same fundamental reasons as previously discussed: system misinformation, along with

unaccounted shading, variable snowfall losses, and other minor losses.

6.3 Portfolio-Wide Residential Aggregation

Aggregation of many residential systems is more insightful from the perspective of a distri-

bution operator such as Fort Collins Utilities. This section discusses the relative errors between

the two models aggregated to both hourly and daily resolution across all premises and grouped by

calendar month. When results are grouped monthly, months are color-coded by a qualitatively-

derived “season” as found in Table 6.1. All premises in this analysis were modeled through March

31, 2019.

Table 6.1: Seasonal Categories.

Season Corresponding Months

Winter December, January, February, March

Spring April, May

Summer June, July, August, September

Fall October, November

The following box and whisker shapes plotted each represent all of the days or daylight hours

of each calendar month, as specified. The whiskers represent the 5th and 95th percentiles of the
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data. That is, if a boxplot of daily Γ are presented, the whiskers represent the inner 90th percentiles

of the month’s daily Γ . Presented below, the boxes show the 25th, median, and 75th quartile of

each month’s set of daily Γ. The lower box edge represents the 25th percentile, the middle line

represents the median, and the upper box edge represents the 75th percentile of the data.

Figure 6.10: Boxplot Diagram. Daily or Hourly Γ’s are the input data used to construct each month’s box

and whisker figure, shown in Figure 6.11. The whiskers represent the inner 90th percentile of each month’s

errors.

The months of January 2016, February 2016, and March 2016 were discarded from analysis

because these months had fewer than 30 premise sampling groups, which is typical of a minimum

number of samples in statistical analysis. January 2016 only had 7 premises, February 2016 had

10 premises, and March 2016 had 29 premises. In contrast, months occurring in 2019 incorporated

over 800 PV systems for modeling.

6.3.1 Daily Aggregation

The daily generation time series from both models for each premise were aggregated to create

a portfolio-wide daily time series of generation. Fundamentally, this plot is the purest visualization

of relevant modeled data for a utility: the modeled generation of a portfolio of assets. Generation

increases as more systems are interconnected. As mentioned, in Fort Collins there are were also
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438 residential PV systems excluded; their generation (2.1 MWDC) is not represented on the plots

or in this analysis.

Figure 6.11 depicts the increasing generating capacity with seasonal trends as systems are

continually installed. Generation per day can be normalized by installed capacity to highlight

the periods of the year which produce more energy. This allows a comparison between different

summer months across the three years shown in the figure below. The normalized generation

potential per month is displayed as the purple line in the top of Figure 6.12.

Figure 6.11: Daily Aggregated Portfolio Generation. Through the end of Q1 2019, a cumulative 846

residential arrays are considered with a final cumulative capacity of 5 MWDC.

The plot below displays the individual daily Γ between estimating system-wide PV production

from only AMI data versus estimating system-wide PV production from a physical model. Daily

Γ’s are grouped by calendar month. The y-axis shows the percent relative error with positive errors

representing the AMI model overestimating compared to the PVL model. The bold numbers across

the top represent the number of premises available for analysis during that month. The right y-axis

shows the estimate of PV production normalized by installed capacity during each month. The

boxes are ordered left to right from least to highest monthly normalized production. The average

daily Γ was -7.7% from 1,093 days of modeled generation comparisons, and is displayed as the

red horizontal line.
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Figure 6.12: Portfolio-wide Daily Aggregation Errors Grouped by Month. Months are ordered esti-

mated normalized production. The blue interval represents the 90% empirical interval of each month’s daily

errors.

Portfolio-wide precision is confirmed at the daily aggregation level. In every month of analysis,

50% or more of all days in the given month had an inter-model precision within ±20%. 10 months

had at least 50% of all days within ±10%. Further, 21 of 36 months contained an inner 90%

empirical interval of modeled days that were within ±20% of each model. 9 of the 10 highest

producing months were within this group, and this consistency, especially in higher producing

months, builds confidence in the AMI model’s capabilities.

Even at good precision, it is clear statistically and visually from the boxplots that most days

exhibit PVL overestimation bias. 25 months contained 75% or more days that had negative Γ’s,

meaning bias was toward PVL estimating greater generation relative to the daily output of the

AMI model. Among these 25 months were the 12 most-productive solar months. All but one

month (Jan. 2019) had a negative Γmd, and the average monthly Γmd was -7.5%.

In another measure of precision, 28 months had at least 50% of days spread to within 20%

of each other, calculated as the difference in Γ between the 25th and 75th percentile. Further, 12

months had at least 90% of days spread within only 20% of each other, calculated as the difference
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between the 5th and 95th percentile values. Four of these were summer months, four were spring,

and two each were fall and winter months.

Another observation is that fewer numbers of premises aggregated do not impact the precision

between models. April 2016 (54 systems), May 2016 (75 systems), and June 2016 (91 systems)

exhibited 90% empirical ranges of 30%, 30%, and 20%, respectively. That is, 90% of all days in

those months had Γ agreement within those ranges, which is not unreasonable precision.

A trend emerges that winter months have less agreement and alignment between the two mod-

els. 8 of 12 winter months contained a 90% interval that spanned outside of ±20% Γ precision,

and the six worst (widest) 90% intervals belonged to winter months. Intuitively, winter months

also represent periods that account for some of the lowest amounts of normalized PV generation.

The purple line displays normalized production estimated for each calendar month. From the fig-

ure, correlation of months of lower production having larger error bounds is observable; higher

production months on the right of the figure tend to have tighter error intervals.

This is consequential because loads are higher in summer months and more solar generation

offsetting some load has greater significance. To exemplify this, Platte River Power Authority

encountered the 2018 peak load hour on July 10, 2018 from 5-6pm at 686 MW [60]. The lowest

monthly peak load hour occurred during April 6, 2018 at 412 MW. Winter 2018 monthly peak

loads never exceeded 479 MW, 30% less than the annual peak seen in the summer. With these

higher loads, predicting load offset due to PV generation during summer months then is inherently

more significant for managing generation assets and operational awareness.

6.3.2 Hourly Aggregation

This section discusses the hourly relative errors between the AMI and PVL models. The hourly

time series of the two generation estimates for each premise were aggregated to create portfolio-

wide hourly time series.

Because of the weighting, hourly errors in lower-producing months are minimized while errors

in high-generation periods are not. For the aggregated weighting factor, the normalized generation
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per installed capacity is used instead of generation because the capacity changes over time, and

hourly generation potential changes drastically from 2016 to 2019.

The plot below displays the individual hourly weighted relative errors (ωΓ) between estimating

portfolio-wide PV production from only AMI data versus a physical model. Hourly ωΓ are grouped

by calendar month. The y-axis shows the percent relative error with positive errors representing

the AMI model overestimating compared to the PVL model. The bold numbers across the top

represent the number of premises available for analysis during that month. The boxes are ordered

left to right from least to highest monthly normalized production. The hourly ωΓ was -3.0% from

12,831 hours of modeled generation, and is displayed as the red horizontal line.

Figure 6.13: Portfolio-wide Weighted Hourly Aggregation Errors Grouped by Month. Months are

ordered estimated normalized production. The blue interval represents the 90% empirical interval of each

month’s hourly errors.

Because weighted errors are used with normalized generation, descriptive statistics regarding

the two models’ precision are not as straightforward. However, it is still possible to gain insight

into the direction of bias and precision among different periods of the year.

The ωΓmd for every month was negative, reinforcing that was PVL institutionally estimating

greater generation than AMI. 29 months had at least 90% of hours within ±20% ωΓ, adding to
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confidence in precision between models at the most important hours of generation. The PVL bias

is evident by 16 upper bounds (95th percentile) that do not exceed 10% ωΓ toward the AMI model,

while only one lower bound (5th percentile) does not exceed -10%ωΓ toward PVL (December

2018).

The propensity of winter months being the most difficult to model is reinforced by the hourly

boxplot. Comparing 90% percentile spread magnitude, the worst six months are winter months,

and six of seven months with a 90% percentile spread that exceed ±20% ωΓ were winter months.

Although much less obvious due to the weighting scaling, some lower generation months on the

left of the figure have noticeably larger error bounds than higher production months on the right.

The purpose of comparing hourly errors is for consideration of the model to be useful at sub-

daily intervals for a utility. This initial work shows that normalized, weighted errors are lower,

thus a perceived achievement of better agreement between models. However, raw hourly errors

inherently fluctuate and deviate more, and hourly granularity and may be a less useful modeling

interval due to higher uncertainty. What can be concluded is that at both daily and hourly reso-

lution, the AMI model performs with better precision at higher producing periods with the PVL

proxy. Performance difficulty with snow/winter months will be discussed in the following section.

6.4 Snowfall Performance

Apparent difficulty of modeling precision in winter months may be less of an issue with the

AMI model and more to do with performance limitations in snowfall correction from contemporary

physical models.

The first two figures below show actual generation, the PVL and AMI modeled outputs, and

solar irradiance during two snowfall events. Even with snowfall reduction in the PVL model, the

ability of the AMI model to better predict generation after snowfall is evident. In Figure 6.14 the

day of snowfall (Feb. 6, 2019) is modeled relatively correctly by both models. This is expected

because the weather during a snow storm has very low GHI and temperature values that both

models would pick up on the lack of generation.
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However, due to snow coverage, the following day exhibits the divergence in model accuracy.

Because it was a sunny on Feb. 7th (GHI plotted in dashed pink), the corrected PVL model still

estimates up to around 14 kW of generation during mid-day. In fact, building load was not offset by

nearly any PV generation - thus the difference between delivered energy and comparable delivered

energy was minimal. This enabled the AMI model to predict very low generation with relatively

good accuracy to actual generation.

Figure 6.14: Comparison of Model Performance with Snow Coverage at Timberline Array. Hourly

recorded (green) and estimated generation (orange, blue) at the Timberline array, with solar irradiance

(dashed pink). On Feb. 6, 2019, Fort Collins received 2.8-inches of snow. Snowfall correction factors

as discussed in Section 5.6 have been applied to the PVL estimate.

Figure 6.15 displays two additional days of panel coverage and the modeling impacts at the

Timberline array. On March 2, 2019 Fort Collins received more than 7-inches of snow. The PVL

model estimated large amounts of generation on the following two days because the weather was

fair on March 3rd and sunny on March 4th. The hourly AMI model’s estimate (orange) aligns much

better with recorded generation (green) than the PVL model.
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Figure 6.15: Comparison of Model Performance with Snow Coverage at Timberline Array. Hourly

recorded (green) and estimated generation (orange, blue) from Timberline, with solar irradiance (dashed

pink). Snowfall correction factors as discussed in Section 5.6 have been applied to the PVL model.

Shown below in Table 6.2 are annual statistics of days that triggered snowfall correction cal-

culations, with 2019 data only including the first quarter of the year. From 2016 through Q1 2019

(the period compared between AMI and PVL), only 83 of 1,176 possible days triggered snow cor-

rection action by the PVL model. At worst, snowfall correction occurs at up to 10% of the days

of a given year (as seen in 2016). Because generation is low in winter months, these 10% of days

likely generate less than 10% of annual generation. This means that while snowfall prediction is

important, a sensible method of correction can mitigate a reasonable portion of inaccuracy within

a physical model.

Table 6.2: Annual Snowfall Statistics and Correction Events. NOAA records for Fort Collins, Colorado

and number of unique correction events.

Year Days of New Avg. Depth Accumulated Snow Avg. Depth Unique

Snow (> 1 inch) (inches) Days (> 3 inches) (inches) Events

2015 16 2.86 40 4.31 43

2016 10 5.47 42 5.81 44

2017 13 2.61 10 4.40 17

2018 12 2.69 9 3.66 14

2019* 6 3.14 6 4.17 8

* denotes partial year of data for 2019.
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While physical models readily model the reduced insolation occurring during snowfall, these

models have difficulty modeling the reduction in PV output after snow events when solar insolation

is high but the panels are covered by accumulated snow. These modeling reductions are complex

and irregular across events. The inability of this basic snow-correction in the PVL model is appar-

ent from the time-series generation plots. To further visualize the correlation between snowfall and

large PVL overestimation errors, aggregated hourly ωΓ have been plotted against days of snowfall.

The weighting during low-production winter months decreases the negative relative error; they

would actually be even more pronounced if not weighted. The upper blue plot displays the ag-

gregated hourly weighted relative error, with negative spikes of PVL estimating greater generation

shown. The lower orange plot aligns daily snowfall. The visual trend between snowfall and greater

disagreement between models is apparent.

Figure 6.16: Snowfall Correlation with Model Disagreement. Aggregated hourly ωΓ plotted in blue

above, with daily snowfall (inches) plotted in orange.
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Although the AMI model does not match periods based on precipitation, it is responsive to the

fact that delivered energy is higher on a sunny day when snow is covering the array panels than the

delivered energy would have been had the array producing power. The AMI model intrinsically

captures reduced generation from structural factors – shading, soiling, or general aging degradation

– and provides some insight into the snow reductions. Because snowfall events are discrete events,

they are more quantifiable and discernible phenomena than a complex shading metric.

6.5 Model Limitations and Uncertainties

The total reliance on AMI data leads to the exclusion of premises if there is not 12 months

of pre-PV data available. The consequence is that older systems or systems on newly constructed

buildings cannot be analyzed as the method currently stands. Although a proxy for pre-PV AMI

data perhaps could be constructed from similar premises, it would increase involvement and bog

down the process. Relief from input-intensive modeling requiring specific known data was one of

the original intents of conducting this work and must be kept in view.

A rebuttal to this issue notes that solar is being installed at a rapid rate in Fort Collins, as shown

by Figure 2.5 and Figure 6.1. Most future systems will be installed on already-built structures,

meaning that the number of premises that cannot be modeled will be an ever-decreasing fraction of

the total asset pool. As time progresses, these few hundred legacy systems will comprise a smaller

minority of solar systems in the City.

One way to avoid this exclusion going forward is for new premises to be required to provide

generation data access from internet-tied inverters at these net-metered arrays. Automated data

collection architecture will be critical to minimize the effort and time required to work with these

datasets. It will be up to distribution utilities to weigh the privacy and effort considerations for

implementing some type of data sharing requirement.

Uncertainty was also derived from external sources to the model. The model operates under the

assumption that energy consumption habits do not significantly change once PV is installed. As

addressed, some research suggests that this assumption may not always hold true, but in some or
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many instances there may not be significant changes. Efficiency upgrades or changes in appliances

would also externally impact the consumption patterns of the premise, and the occurrence of these

events was not known. Additionally, there were two other interventions that would may cause the

premise’s energy usage to change that were not accounted for in this current methodology. First

and foremost, it was not known when occupancy changed in any of the homes with PV. As homes

are rented or sold, new occupants indubitably will change the energy consumption patterns found

in the AMI data and lead to greater uncertainty and error in the modeling. Regardless of whether

this information is known, actually accounting for it may eventually prove to be too complicated

to be justified.

A second external force that influenced home energy consumption was the November 2018

implementation of Time-of-Day (TOD) electricity rates in Fort Collins. Changing the rate structure

from fixed prices to a TOD price is inherently designed to change energy consumption patterns.

Shifting electricity use from on-peak to off-peak times would greatly impact hourly model

performance, and accounting for these possible behavioral shifts was not factored into this AMI

procedure. It is possible that daily aggregation of estimated generation from AMI data is more

resilient to the effects of inter-hour pricing than hourly modeling. Understanding the behavioral

impact of this price change provides numerous other areas of future work with the City of Fort

Collins.

Additionally, this work is not exempt from data quality concerns. There were rare instances

were an individual smart meter was malfunctioning or the data acquisition system did not record the

data to the premise account properly. Missing fragments of AMI data are obviously detrimental on

an individual premise modeling level but are likely washed out when many systems are aggregated

together. The addition of a function to identify and interpolate missing data is appropriate. Another

beneficial data quality exercise would be exploration of premises without recorded solar installs

that have AMI data containing received kWh values.

Moreover, while this analysis was conducted on a significant number of premises, the investi-

gation only occurred upon one geographical location. Partnering with other distribution operators
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that have installed smart meters could be pursued for future work to characterize robustness across

areas.

Although there are limitations and various layers of uncertainty, the qualitative agreement with

the physical model and to known generation data speaks to the model’s value. Whereas individual

system accuracy varies, the AMI model’s ability to estimate portfolio-wide daily PV generation

to precision within ± 20% is a strength, especially in higher generation months. While there is

surely room for refinement, this AMI model does provide fundamental insight into a method to

disaggregate PV generation from net-metered load data.

80



Chapter 7

AMI-based PV Forecasting

The PV forecasting arm of the AMI model was in the preliminary stage of development at the

time of writing. Early findings are discussed and several examples of forecasted generation are

presented. At this phase of development, the initial results appear promising and future work in

this area is needed.

7.1 Preliminary Model Runs

Known generation from House Z was compared to forecasted generation from the AMI model.

As seen in the other estimates from this premise, the AMI model underestimated compared to

actual energy produced. Over the two forecasted days, the model estimated a total generation

of 45 kWh while the system actually produced 59 kWh, and the average hourly error was -20%.

Figure 7.1 below displays the two day forecast.

Figure 7.1: Actual and Forecasted Generation from House Z. Two days of recorded and forecasted

generation from a 48-hour weather forecast.
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As previously discussed, actual generation from most premises is not known, therefore the PVL

model is useful for comparison to the AMI model’s output. Using the same forecasted weather

inputs from the NAM, the two models were run through numerous sets of 48-hour forecasts. Two

of these forecasting runs are displayed below in Figures 7.2 and 7.3.

Figure 7.2: 48-hour generation forecast from AMI and PVL models. A 3.25 kWDC array using both

models to forecast generation for the next 48-hours.

Figure 7.3: 48-hour generation forecast from AMI and PVL models. A 5.1 kWDC system using both

models to forecast generation for the next 48-hours.

Actual generation from only House Z is available in real-time for use with forecasted weather.

While initially modeling efforts may suggest precision between the PVL and AMI output, the
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quality of the inputted forecast data is not known. The accuracy of these models against actual

generation has not been studied enough and should be pursued further.

7.2 Portfolio-wide PV Forecasting

Aggregated forecast comparisons between the PVL and AMI models with the fleet of systems

in the City has not yet been conducted. This thesis work focuses primarily on the creation of the

AMI methodology, with resulting comparisons based on actual generation and the PVL estimates.

These analyses utilize observed weather data, eliminating uncertainty from the weather variables.

However, using forecasted weather data introduces greater uncertainty in the modeling. Days

with more accurate weather forecasts will obviously provide better PV forecasts. Because daily

aggregation appears to be more accurate than hourly aggregation in the general AMI model, day-

ahead generation may be more easily attainable than next-day hourly estimates. Depending on the

accuracy of traditional temperature-based regression models, the AMI model may provide more

accurate forecasts than what some utilities currently operate. Further work is needed in this space

to understand the usability of these potential forecasting products.
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Chapter 8

Conclusions and Future Work

High-confidence estimates of renewable generation are needed in the delicate and dynamic

balancing of load with intermittent and dispatchable generation by grid operators. Estimating PV

generation from thousands of small, behind-the-meter systems, is an important and non-trivial task

using existing physical models or algorithms that require actual generation data. Thus, as rooftop

solar deployment increases, the ability to disaggregate invisible generation and total load from

net-metered AMI data will be necessary for better management of the distribution of electricity.

Validation of the matching timestamp algorithm from this study enables greater information

capabilities for utility operators and planners. The model utilizes readily available AMI data, and

requires very little other data, unlike contemporary tools. This is advantageous for use by utilities

that previously have missing, or no recorded residential PV install data – and serve as an example

of other areas where utilities lack performance data. Unlike physical models, the AMI model is

responsive and will adjust over time to changes in system performance, such as snow coverage,

changes in shading, or decommissioned systems; a physical model will not. This type of model is

an example of how AMI data analytics provides adaptable estimates of PV performance.

At its core, the comparable timestamp methodology is an exercise in estimating building load

and can be useful in many other energy services applications. Creating before/after periods of

AMI data allows analysis around an intervention date, such as the implementation of time-of-

day pricing, efficiency education, weatherization, or building appliance upgrades. Energy load

estimation on thousands on non-PV associated buildings can be performed from datasets like the

one used. Perhaps of even greater value than PV forecasting is next-day load forecasting for

a City’s population of buildings, successfully leveraging end-use AMI data for more informed

distribution.

Further, the timestamp matching method provides new avenues of theft detection using AMI

data by utilities. Additionally, for residents interested in comparing their expected and actual
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PV generation, the foundation of a viable tool is built without using an input-intensive physical

model. Next-day PV forecasting techniques were superficially explored in this work and may be

a promising new tool in this space. The method and computational results build a foundation for

much future research on disaggregation of BTM generation from net-metered loads for use in PV

and load forecasting.

In summary, this work shows that AMI data can be leveraged to predict energy generated

over varying durations to a similar consistency and confidence as more technically-dense physical

models. Using these simple algorithms and approach, one can estimate PV system generation,

while knowing nearly nothing about the systems themselves.

8.1 Future Work

This study revealed a promising new method for PV estimation and the groundwork is laid for

meaningful subsequent work. Given the numerous shortcomings of this initial experimentation,

there is plentiful opportunity for improvement and model refinement. Foremost, more sophisti-

cated sensitivity analysis of the timestamp matching algorithms is needed to optimize constraints

around removing variability in energy use. Once this method is shored up, expected improved

model performance positions the model for succeeding projects. Partnering with distribution util-

ities from other cities that have installed smart meters to examine replicability of the AMI model

in other geographic locations should also be pursued.

As this methodology can be used to estimate building load, analysis of historical or future

load is poised for greater research. In late 2018 Fort Collins transitioned to time-of-day pricing; a

planned project with this CSU research team and the City will examine the consumption patterns

within this first year of implementation. By estimating building load after TOD rates, actual energy

consumption can be compared to find if the rates apply a behavioral change by shifting customers

usage to off-peak periods.

Finally, future work should investigate the accuracy of PV generation estimates based on next-

day weather forecasts. If the model shows estimation precision comparable to physical models
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or current utility regressions, it will provide a valuable prediction instrument to utility planners

overseeing a fleet of behind-the-meter solar systems. In closing, an accurate and real-time PV

forecasting tool using AMI and weather data is a quintessential objective that motivated this work

and should be seen to fruition.
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Appendix A

AMI Model Software Package

Example code as a Jupyter Notebook is uploaded and available in a GitHub repository.

These are located at < https://github.com/wstainsby/AMI-Model-2019/ >.
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Appendix B

PVL Modeling Functions

This chapter explicates the physical model developed by CSU researchers for use as a vali-

dation tool. First, the solar positioning algorithms calculate the solar azimuth and zenith at each

inputted timestep. Next, the Erbs model is used to derive DHI and DNI from the measured GHI.

Last, energy output is calculated incorporating temperature correction, system efficiencies, losses,

and array capacity. The table below contains coefficients and parameters used in the model. The

following sections delve further into these functions of the model.

Table B.1: PVL Model Coefficients

Parameter Symbol Value Units

Panel Efficiency ηpanel 16.2 %

Module Wattage Wattagemodule 250 watts

Inverter Efficiency ηinverter 96 %

Module Area Areamodule 1.55 m2

Miscellaneous Losses SL 8.7 %

Temperature Coefficient TC -0.0043

Solar Constant ESC 1,367 watts per m2

B.1 Solar Position Calculations

The solar zenith angle (θZ) and the solar azimuth angle (θA) rely on calculations for the the

equation of time (Eqt), solar declination angle (θd), hour angle (θhr), and latitude angle (λ):

θZ = cos−1[sin(λ)× sin(θd) + cos(λ)× cos(θd)× cos(θhr)] (B.1)

and the solar azimuth angle (θA) is found as:

θA = Arctan2 { sin(θhr) / [cos(θhr) × sin(γ) − tan(θd) × cos(γ)] } + 180 (B.2)
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where both angles are in degrees. The equation of time is the calculated difference between solar

time and locate time and is a function location and time of year. The equation of time is calculated

as:

Eqt = { 229.18× [0.000075 + 0.001868× cos(γ) − 0.032077 × sin(γ)

− 0.014615× cos(2× γ)] − 0.040849 × sin(2× γ) }

(B.3)

where Eqt is in minutes and γ is the fractional year:

γ = (2× π/365) × [n− 1 + (hour − 12) / 24] (B.4)

where n is the day of the year and hour is the hour in standard time. To calculate hour angle (θhr),

calculating solar time (Tsolar) is required. From [48], solar time (in minutes) is found as:

Tsolar = [ hour × 60 + min + sec/60 + time offset ] / 60 (B.5)

where hour is the hour of the timestamp, min is the minute, and sec is the second. Time offset

between local and solar time is found as:

time offset = Eqt + 4 × longitude − 60 × timezone (B.6)

where longitude is in degrees, and timezone is in hours from Coordinated Universal Time (Moun-

tain Standard Time is 7 hours from UTC). With Tsolar calculated, the hour angle can now be found

in radians:

θhr = (π / 12) × (Tsolar − 12) (B.7)

At this point, θA and θZ can be calculated and are used to calculated the angle of incidence in

Equation 5.3.
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B.2 Erbs Decomposition Model

As global horizontal irradiance (GHI) is the typically measured form of irradiance, relation-

ships between the irradiance reaching Earth’s surface and extraterrestrial irradiance are used to

estimate the diffuse (DHI) and direct (DNI) irradiance components. This section is directly based

on Bleem’s work [46].

A clearness index (kt) is used to decompose DHI and DNI from GHI. The more clear the sky

is, the greater the proportion of beam radiation from the incoming irradiance. The clearness index

is defined as:

kt =
GHI

EaH

(B.8)

where GHI is total horizontal irradiance reaching the Earth’s surface and EaH is the horizontal

component of extraterrestrial irradiance. EaH is determined from the extraterrestrial radiation Ea

reaching the top of the Earth’s atmosphere on a plane normal to the Sun. This radiation varies

through the year and is empirically calculated as:

Ea = ESC × [1.00011 + 0.034221× cos(B) + 0.00128× sin(B)

+0.000719× cos(2× B) + 0.0000077× sin(2× B)]

(B.9)

where:

B = 2 × π ×
n

365
(B.10)

and where n is the day of year and ESC is the solar constant equal to 1,367 watts/m2. The horizontal

component of the extraterrestrial irradiance is now:

EaH = Ea × cos(θZ) (B.11)

where θZ is the zenith angle of the Sun.
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Once kt is calculated, three curve fits are used across the range of kt values to calculate the

diffuse fraction, kd. The Erbs model constructed these three curve fit equations:

kd = 1− 0.09 × kt kt ≤ 0.22 (B.12)

kd = 0.9511− 0.1604× kt + 4.388× k 2

t − 16.638× k 3

t + 12.336× k 4

t

0.22 < kt ≤ 0.80

(B.13)

kd = 0.165 kt > 0.80 (B.14)

Once kd is derived, DHI reaching a flat surface is calculated in Equation 5.4.

B.3 Temperature Correction Factor

A temperature correction factor is found and applied to the DC energy output from the array:

Tcorrection = 1 + TC × (TM − Ttest) (B.15)

Where TC is a temperature coefficient, TM is the module temperature, and TM is the standard

test temperature of 25 °C. Different module materials dictate use of various derived constants and

are used in Equation B.16 to calculate module temperature [53]:

TM = EPOA × (ea+b×WS) + TA (B.16)

Where EPOA is the solar irradiance incident to the module (watts/m2), TA is the ambient air tem-

perature (°C), and WS is the wind speed (m/s). Constants a and b are empirical constants based
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on the module material and construction, along with the panel mounting configuration [53]. The

resulting TM is used to calculate an estimate for the temperature coefficient, TC, which used to

correct PV generation output. Tcorrection is defined in Equation B.15 and ∆T is shown in Table B.2

below:

Tcell = TM + (
EPOA

1000
) × ∆T (B.17)

The following table is adapted from the Sandia PVPMC temperature model literature and con-

tains values for various module and mounting types [53].

Table B.2: Temperature Coefficients for Different PV Configurations

Module Type Mount Configuration a b ∆T (°C)

Glass/cell/glass Open rack -3.47 -0.0594 3

Glass/cell/glass Close roof mount -2.98 -0.0471 1

Glass/cell/polymer sheet Open rack -3.56 -0.0750 3

Glass/cell/polymer sheet Insulated back -2.81 -0.04554 0

Polymer/thin-film/steel Open rack -3.58 -0.113 3

B.4 Panel Efficiency and Size

Figure B.1 is adapted from NREL’s 2018 PV system benchmark report [61]. Shown are annual

residential module power and efficiency data from the California Net Energy Metering Database,

which provides a large dataset of PV statistics. For the PVL model, an average module power

rating of 250 watts and efficiency of 16.2% were chosen as input constants.
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Figure B.1: Residential Module Power and Efficiency Trends. 8 years of PV equipment trends from

California’s NEM database from [61].

The assumed panel area was determined from a list of ten common solar panel products [62].

The dimensions of this group of ten panels are shown below in Table B.3 with brand, model, and

panel area. Based on the panel areas in the right-most column, the median of these was 1.63 m2,

thus a panel area of 1.63 m2 was used in this PV model. An anecdotal proportion of 95% of a panel

area being cell area was used to calculate an assumed cell area of 1.55 m2 as shown in Table B.1.

Table B.3: Common Residential Solar Panel Dimensions from [60].

Brand Model Length (m) Width (m) Area (m2)

Trina Solar TSM-260-PD05 1.651 0.991 1.63

Canadian Solars CS6K-275 1.651 0.991 1.63

Jinko Solar JKM250P-60 1.651 0.991 1.63

JA Solar JAM6 60/250-270 1.651 0.991 1.63

Hanwha Q.Pro-G4 255-265 1.676 0.991 1.66

First Solar Series 5 1.854 1.194 2.21

Yingli Green YLM 60 Cell 1.651 0.991 1.63

Suntech STP 280S-20Wem 1.651 0.991 1.63

ReneSola JC270 S-24 1.651 0.991 1.63

SunPower E20-327 1.557 1.046 1.63
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