58 research outputs found

    A Class of Convex Polyhedra with Few Edge Unfoldings

    Get PDF
    We construct a sequence of convex polyhedra on n vertices with the property that, as n -> infinity, the fraction of its edge unfoldings that avoid overlap approaches 0, and so the fraction that overlap approaches 1. Nevertheless, each does have (several) nonoverlapping edge unfoldings.Comment: 12 pages, 9 figure

    Flat Zipper-Unfolding Pairs for Platonic Solids

    Get PDF
    We show that four of the five Platonic solids' surfaces may be cut open with a Hamiltonian path along edges and unfolded to a polygonal net each of which can "zipper-refold" to a flat doubly covered parallelogram, forming a rather compact representation of the surface. Thus these regular polyhedra have particular flat "zipper pairs." No such zipper pair exists for a dodecahedron, whose Hamiltonian unfoldings are "zip-rigid." This report is primarily an inventory of the possibilities, and raises more questions than it answers.Comment: 15 pages, 14 figures, 8 references. v2: Added one new figure. v3: Replaced Fig. 13 to remove a duplicate unfolding, reducing from 21 to 20 the distinct unfoldings. v4: Replaced Fig. 13 again, 18 distinct unfolding

    Band Unfoldings and Prismatoids: A Counterexample

    Get PDF
    This note shows that the hope expressed in [ADL+07]--that the new algorithm for edge-unfolding any polyhedral band without overlap might lead to an algorithm for unfolding any prismatoid without overlap--cannot be realized. A prismatoid is constructed whose sides constitute a nested polyhedral band, with the property that every placement of the prismatoid top face overlaps with the band unfolding.Comment: 5 pages, 3 figures. v2 replaced Fig.1(b) and Fig.3 to illustrate the angles delta=(1/2)epsilon (rather than delta=epsilon

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    Spiral Unfoldings of Convex Polyhedra

    Get PDF
    The notion of a spiral unfolding of a convex polyhedron, resulting by flattening a special type of Hamiltonian cut-path, is explored. The Platonic and Archimedian solids all have nonoverlapping spiral unfoldings, although among generic polyhedra, overlap is more the rule than the exception. The structure of spiral unfoldings is investigated, primarily by analyzing one particular class, the polyhedra of revolution

    Spiral Unfoldings of Convex Polyhedra

    Get PDF
    The notion of a spiral unfolding of a convex polyhedron, resulting by flattening a special type of Hamiltonian cut-path, is explored. The Platonic and Archimedian solids all have nonoverlapping spiral unfoldings, although among generic polyhedra, overlap is more the rule than the exception. The structure of spiral unfoldings is investigated, primarily by analyzing one particular class, the polyhedra of revolution

    Unfolding Orthogrids with Constant Refinement

    Full text link
    We define a new class of orthogonal polyhedra, called orthogrids, that can be unfolded without overlap with constant refinement of the gridded surface.Comment: 19 pages, 12 figure
    corecore