5,835 research outputs found

    A multiperiod multiobjective portfolio selection model with fuzzy random returns for large scale securities data

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordIt is agreed that portfolio selection models are of great importance for the financial market. In this article, a constrained multiperiod multiobjective portfolio model is established. This model introduces several constraints to reflect the trading restrictions and quantifies future security returns by fuzzy random variables to capture fuzzy and random uncertainties in the financial market. Meanwhile, it considers terminal wealth, conditional value at risk (CVaR), and skewness as tricriteria for decision making. Obviously, the proposed model is computationally challenging. This situation gets worse when investors are interested in a larger financial market since the data they need to analyze may constitute typical big data. Whereafter, a novel intelligent hybrid algorithm is devised to solve the presented model. In this algorithm, the uncertain objectives of the model are approximated by a simulated annealing resilient back propagation (SARPROP) neural network which is trained on the data provided by fuzzy random simulation. An improved imperialist competitive algorithm, named IFMOICA, is designed to search the solution space. The intelligent hybrid algorithm is compared with the one obtained by combining NSGA-II, SARPROP neural network, and fuzzy random simulation. The results demonstrate that the proposed algorithm significantly outperforms the compared one not only in the running time but also in the quality of obtained Pareto frontier. To improve the computational efficiency and handle the large scale securities data, the algorithm is parallelized using MPI. The conducted experiments illustrate that the parallel algorithm is scalable and can solve the model with the size of securities more than 400 in an acceptable time

    Uncertain random time-cost trade-off problem

    Get PDF

    Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Get PDF
    This paper considers linear programming problems (LPPs) where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables). New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time

    Interactive Fuzzy Random Two-level Linear Programming through Fractile Criterion Optimization

    Get PDF
    This paper considers two-level linear programming problems involving fuzzy random variables. Having introduced level sets of fuzzy random variables and fuzzy goals of decision makers, following fractile criterion optimization, fuzzy random two-level programming problems are transformed into deterministic ones. Interactive fuzzy programming is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance
    corecore