2 research outputs found

    An Innovative Signature Detection System for Polymorphic and Monomorphic Internet Worms Detection and Containment

    Get PDF
    Most current anti-worm systems and intrusion-detection systems use signature-based technology instead of anomaly-based technology. Signature-based technology can only detect known attacks with identified signatures. Existing anti-worm systems cannot detect unknown Internet scanning worms automatically because these systems do not depend upon worm behaviour but upon the worm’s signature. Most detection algorithms used in current detection systems target only monomorphic worm payloads and offer no defence against polymorphic worms, which changes the payload dynamically. Anomaly detection systems can detect unknown worms but usually suffer from a high false alarm rate. Detecting unknown worms is challenging, and the worm defence must be automated because worms spread quickly and can flood the Internet in a short time. This research proposes an accurate, robust and fast technique to detect and contain Internet worms (monomorphic and polymorphic). The detection technique uses specific failure connection statuses on specific protocols such as UDP, TCP, ICMP, TCP slow scanning and stealth scanning as characteristics of the worms. Whereas the containment utilizes flags and labels of the segment header and the source and destination ports to generate the traffic signature of the worms. Experiments using eight different worms (monomorphic and polymorphic) in a testbed environment were conducted to verify the performance of the proposed technique. The experiment results showed that the proposed technique could detect stealth scanning up to 30 times faster than the technique proposed by another researcher and had no false-positive alarms for all scanning detection cases. The experiments showed the proposed technique was capable of containing the worm because of the traffic signature’s uniqueness

    Intelligent Malware Detection Using File-to-file Relations and Enhancing its Security against Adversarial Attacks

    Get PDF
    With computing devices and the Internet being indispensable in people\u27s everyday life, malware has posed serious threats to their security, making its detection of utmost concern. To protect legitimate users from the evolving malware attacks, machine learning-based systems have been successfully deployed and offer unparalleled flexibility in automatic malware detection. In most of these systems, resting on the analysis of different content-based features either statically or dynamically extracted from the file samples, various kinds of classifiers are constructed to detect malware. However, besides content-based features, file-to-file relations, such as file co-existence, can provide valuable information in malware detection and make evasion harder. To better understand the properties of file-to-file relations, we construct the file co-existence graph. Resting on the constructed graph, we investigate the semantic relatedness among files, and leverage graph inference, active learning and graph representation learning for malware detection. Comprehensive experimental results on the real sample collections from Comodo Cloud Security Center demonstrate the effectiveness of our proposed learning paradigms. As machine learning-based detection systems become more widely deployed, the incentive for defeating them increases. Therefore, we go further insight into the arms race between adversarial malware attack and defense, and aim to enhance the security of machine learning-based malware detection systems. In particular, we first explore the adversarial attacks under different scenarios (i.e., different levels of knowledge the attackers might have about the targeted learning system), and define a general attack strategy to thoroughly assess the adversarial behaviors. Then, considering different skills and capabilities of the attackers, we propose the corresponding secure-learning paradigms to counter the adversarial attacks and enhance the security of the learning systems while not compromising the detection accuracy. We conduct a series of comprehensive experimental studies based on the real sample collections from Comodo Cloud Security Center and the promising results demonstrate the effectiveness of our proposed secure-learning models, which can be readily applied to other detection tasks
    corecore