11 research outputs found

    Recognising Multidimensional Euclidean Preferences

    Full text link
    Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferencesand the behaviour of other metrics, and survey a variety of related work.Comment: 17 page

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Structure in Dichotomous Preferences

    Full text link
    Many hard computational social choice problems are known to become tractable when voters' preferences belong to a restricted domain, such as those of single-peaked or single-crossing preferences. However, to date, all algorithmic results of this type have been obtained for the setting where each voter's preference list is a total order of candidates. The goal of this paper is to extend this line of research to the setting where voters' preferences are dichotomous, i.e., each voter approves a subset of candidates and disapproves the remaining candidates. We propose several analogues of the notions of single-peaked and single-crossing preferences for dichotomous profiles and investigate the relationships among them. We then demonstrate that for some of these notions the respective restricted domains admit efficient algorithms for computationally hard approval-based multi-winner rules.Comment: A preliminary version appeared in the proceedings of IJCAI 2015, the International Joint Conference on Artificial Intelligenc

    Are there any nicely structured preference~profiles~nearby?

    Get PDF
    We investigate the problem of deciding whether a given preference profile is close to having a certain nice structure, as for instance single-peaked, single-caved, single-crossing, value-restricted, best-restricted, worst-restricted, medium-restricted, or group-separable profiles. We measure this distance by the number of voters or alternatives that have to be deleted to make the profile a nicely structured one. Our results classify the problem variants with respect to their computational complexity, and draw a clear line between computationally tractable (polynomial-time solvable) and computationally intractable (NP-hard) questions

    Collecting, Classifying, Analyzing, and Using Real-World Elections

    Full text link
    We present a collection of 75827582 real-world elections divided into 2525 datasets from various sources ranging from sports competitions over music charts to survey- and indicator-based rankings. We provide evidence that the collected elections complement already publicly available data from the PrefLib database, which is currently the biggest and most prominent source containing 701701 real-world elections from 3636 datasets. Using the map of elections framework, we divide the datasets into three categories and conduct an analysis of the nature of our elections. To evaluate the practical applicability of previous theoretical research on (parameterized) algorithms and to gain further insights into the collected elections, we analyze different structural properties of our elections including the level of agreement between voters and election's distances from restricted domains such as single-peakedness. Lastly, we use our diverse set of collected elections to shed some further light on several traditional questions from social choice, for instance, on the number of occurrences of the Condorcet paradox and on the consensus among different voting rules

    A deep exploration of the complexity border of strategic voting problems

    Get PDF
    Voting has found applications in a variety of areas. Unfortunately, in a voting activity there may exist strategic individuals who have incentives to attack the election by performing some strategic behavior. One possible way to address this issue is to use computational complexity as a barrier against the strategic behavior. The point is that if it is NP-hard to successfully perform a strategic behavior, the strategic individuals may give up their plan of attacking the election. This thesis is concerned with strategic behavior in restricted elections, in the sense that the given elections are subject to some combinatorial restrictions. The goal is to find out how the complexity of the strategic behavior changes from the very restricted case to the general case.Abstimmungen werden auf verschiedene Gebiete angewendet. Leider kann es bei einer Abstimmung einzelne Teilnehmer geben, die Vorteile daraus ziehen, die Wahl durch strategisches Verhalten zu manipulieren. Eine Möglichkeit diesem Problem zu begegnen ist es, die Berechnungskomplexität als Hindernis gegen strategisches Verhalten zu nutzen. Die Annahme ist, dass falls es NP-schwer ist, um strategisches Verhalten erfolgreich anzuwenden, der strategisch Handelnde vielleicht den Plan aufgibt die Abstimmung zu attackieren. Diese Arbeit befasst sich mit strategischem Vorgehen in eingeschränkten Abstimmungen in dem Sinne, dass die vorgegebenen Abstimmungen kombinatorischen Einschränkungen unterliegen. Ziel ist es herauszufinden, wie sich die Komplexität des strategischen Handelns von dem sehr eingeschränkten zu dem generellen Fall ändert

    A characterization of the single-peaked single-crossing domain

    No full text

    A Characterization of the Single−Peaked Single−Crossing Domain

    No full text
    We investigate elections that are simultaneously single-peaked and single-crossing (SPSC). We show that the domain of 1-dimensional Euclidean elections (where voters and candidates are points on the real line, and each voter prefers the candidates that are close to her to the ones that are further away) is a proper subdomain of the SPSC domain, by constructing an election that is single-peaked and single-crossing, but not 1-Euclidean. We then establish a connection between narcissistic elections (where each candidate is ranked first by at least one voter), single-peaked elections and single-crossing elections, by showing that an election is SPSC if and only if it can be obtained from a narcissistic single-crossing election by deleting voters. We show two applications of our characterization
    corecore