865 research outputs found

    Proving Correctness and Completeness of Normal Programs - a Declarative Approach

    Full text link
    We advocate a declarative approach to proving properties of logic programs. Total correctness can be separated into correctness, completeness and clean termination; the latter includes non-floundering. Only clean termination depends on the operational semantics, in particular on the selection rule. We show how to deal with correctness and completeness in a declarative way, treating programs only from the logical point of view. Specifications used in this approach are interpretations (or theories). We point out that specifications for correctness may differ from those for completeness, as usually there are answers which are neither considered erroneous nor required to be computed. We present proof methods for correctness and completeness for definite programs and generalize them to normal programs. For normal programs we use the 3-valued completion semantics; this is a standard semantics corresponding to negation as finite failure. The proof methods employ solely the classical 2-valued logic. We use a 2-valued characterization of the 3-valued completion semantics which may be of separate interest. The presented methods are compared with an approach based on operational semantics. We also employ the ideas of this work to generalize a known method of proving termination of normal programs.Comment: To appear in Theory and Practice of Logic Programming (TPLP). 44 page

    Transforming floundering into success

    Full text link
    We show how logic programs with "delays" can be transformed to programs without delays in a way which preserves information concerning floundering (also known as deadlock). This allows a declarative (model-theoretic), bottom-up or goal independent approach to be used for analysis and debugging of properties related to floundering. We rely on some previously introduced restrictions on delay primitives and a key observation which allows properties such as groundness to be analysed by approximating the (ground) success set. This paper is to appear in Theory and Practice of Logic Programming (TPLP). Keywords: Floundering, delays, coroutining, program analysis, abstract interpretation, program transformation, declarative debuggingComment: Number of pages: 24 Number of figures: 9 Number of tables: non

    Reasoning about termination of pure Prolog programs

    Get PDF

    Correctness and completeness of logic programs

    Full text link
    We discuss proving correctness and completeness of definite clause logic programs. We propose a method for proving completeness, while for proving correctness we employ a method which should be well known but is often neglected. Also, we show how to prove completeness and correctness in the presence of SLD-tree pruning, and point out that approximate specifications simplify specifications and proofs. We compare the proof methods to declarative diagnosis (algorithmic debugging), showing that approximate specifications eliminate a major drawback of the latter. We argue that our proof methods reflect natural declarative thinking about programs, and that they can be used, formally or informally, in every-day programming.Comment: 29 pages, 2 figures; with editorial modifications, small corrections and extensions. arXiv admin note: text overlap with arXiv:1411.3015. Overlaps explained in "Related Work" (p. 21

    Logic programming and negation: a survey

    Get PDF
    • …
    corecore