research

Transforming floundering into success

Abstract

We show how logic programs with "delays" can be transformed to programs without delays in a way which preserves information concerning floundering (also known as deadlock). This allows a declarative (model-theoretic), bottom-up or goal independent approach to be used for analysis and debugging of properties related to floundering. We rely on some previously introduced restrictions on delay primitives and a key observation which allows properties such as groundness to be analysed by approximating the (ground) success set. This paper is to appear in Theory and Practice of Logic Programming (TPLP). Keywords: Floundering, delays, coroutining, program analysis, abstract interpretation, program transformation, declarative debuggingComment: Number of pages: 24 Number of figures: 9 Number of tables: non

    Similar works

    Full text

    thumbnail-image

    Available Versions