
INFORMATION AND COMPUTATION 106, 109-157 (1993)

Reasoning about Termination of
Pure Prolog Programs*

KRZYSZTOF R. APT

Centre for Mathematics and Computer Science,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, and

Faculty of Mathematics and Computer Science,
University of Amsterdam, Plantage Muidergracht 24,

1018 TV Amsterdam, The Netherlands

AND

DINO PEDRESCHI

Dipartimento di Informatica, Universita di Pisa,
Corso Italia 40, 56125 Pisa, Italy

We provide a theoretical basis for studying termination of (general) logic
programs with the Prolog selection rule. To this end we study the class of left
terminating programs. These are logic programs that terminate with the Prolog
selection rule for all ground goals. We offer a characterization of left terminating
positive programs by means of the notion of an acceptable program that provides
us with a practical method of proving termination. The method is illustrated by
giving a simple proof of termination of the quicksort program for the desired class
of goals. Then we extend this approach to the class of general logic programs by
modifying the concept of acceptability. We prove that acceptable general programs
are left terminating. The converse implication does not hold but we show that
under the assumption of non-floundering from ground goals every left terminating
general program is acceptable. Finally, we prove that various ways of defining
semantics coincide for acceptable general programs. We illustrate the use of this
extension by giving simple proofs of termination of a "game" program and the
transitive closure program for the desired class of goals. © 1993 Academic Press, Inc.

*This research was partly done during the authors' stay at the Department of Computer
Sciences, University of Texas at Austin, Austin, Texas. The first author's work was partly sup
ported by ESPRIT Basic Research Action 3020 (Integration). The second author's work was
partly supported by ESPRIT Basic Research Action 3012 (Compulog) and by the Italian
National Research Council-C.N.R. This paper is based on our previous papers (Apt and
Pedreschi, 1990, 1991).

109
0890-5401/93 S5.00

Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

110 APT AND PEDRESCHI

1. INTRODUCTION

Background

Prolog is a programming language base~ on !ogic programming.
However the use of a fixed selection rule combmed with depth first search
in the ~ulting search trees makes Prolog and logic programming different.
As a consequence various completeness results linking the procedural and
declarative interpretation of logic programs cannot be directly applied to
Prolog programs. This mismatch makes it difficult to study Prolog
programs using only logic programming theory. Clearly the main problem
is the issue of termination: a Prolog interpreter will miss a solution if all
success nodes lie to the right of an infinite path in the search tree.

The aim of this paper is to study termination of pure Prolog programs.
By "'pure" we mean here programs with no built-ins and no cut. We do
handle negation but allow only its "safe" use which means that only
ground negative literals are resolved by the negation as failure rule. Thus
the syntax of "pure" Prolog programs coincides with that of general logic
programs.

By termination we mean here finiteness of all possible Prolog derivations
starting in the initial goal. This stronger notion of termination abstracts
from the ordering of the program clauses and seems to follow a good
programming practice. We consider here pure Prolog programs that ter
minate for all ground goals. We call such programs left terminating. The
restriction to such programs leads to a simple to use method of proving
termination that is applicable to an overwhelming class of pure Prolog
programs considered in the book of Sterling and Shapiro (1986). To show
that a program exhibits a proper termination behaviour we show first that
it is left terminating and then that it terminates for certain types of non
ground inputs. Our method of showing the former will also allow us to
establish the latter.

When studying Prolog programs from the point of view of termination
it is useful to notice that some programs terminate for all ground goals for
all selection rules. Such programs are extensively studied in Bezem (1989)
where they are called terminating programs. These are usually programs
whose termination depends on a simple reduction in one or more
arguments. E~amples of terminating programs are append, member, N
queens, vanous tree insertion and deletion programs, and several others.

However, some Prolog programs satisfy such a strong termination
property but fail to terminate for certain desired forms of inputs for some
selection rules.

An example is the following append3 program in which the append
program is used:

TERMINATION OF PROGRAMS

append3 (Xs, Ys, Zs, Us) ~
append (Xs, Ys, Vs),
append (Vs, Zs, Us).

111

Then append3 is a terminating program which terminates for the
goal~ append3 (xs, ys, zs, Us), where xs, ys, z s are lists and Us
a variable, when the Prolog selection rule is used but fails to terminate
when the rightmost selection rule is used.

Worse yet, some programs fail to be terminating even though they
terminate for the Prolog selection rule for the desired class of inputs. An
example is the flatten program which collects all the nodes of a tree in
a list:

flatten(nil, []) ~.
flatten(t(L, X, R), Xs) ~

flatten(L, Xls),
flatten(R, X2s),
append(Xls, [X I X2s], Xs).

flatten is not a terminating program but it terminates for the goal
~ flat ten (x, Xs), where x is a ground term and Xs a variable, when
the Prolog selection rule is used.

In general, the problem arises due to the use of local variables, i.e.,
variables which appear in the body of a clause but not in its head. Several
left terminating Prolog programs use local variables in an essential way
and consequently fail to be terminating. Examples of such programs are
various sorting and permutation programs and graph searching programs.
Programs which fall into this category are usually of the form "generate
and test" or "divide and conquer."

In this paper we provide a framework to study left terminating
programs. To this end we refine the ideas of Bezem (1989) and Cavedon
(1989) and use their concept of a level mapping. This is a function
assigning natural numbers to ground atoms. Our main tool is the concept
of an acceptable program. Intuitively, a program P is acceptable if for some
level mapping and a model I of P, for all ground instances of the clauses
of the program, the level of the head is smaller than the level of atoms in
a certain prefix of the body. Which prefix is considered is determined by
the model /, which embodies the limited declarative knowledge about the
program that is used in the termination proof.

We prove that the notions of left termination and acceptability coincide.
The proof of this fact uses an iterated multiset ordering. This equivalence
result provides us with a method of proving left termination. Moreover,
it allows us to prove termination of a left terminating Prolog program

643/106/1-8

!l~ APT AND PEDRESCHI

for a class of non-ground goals. The method is illustrated by proving

termination of the quicksort program.
Then we extend this approach to termination to general Prolog

programs, i.e., programs allowing negative lite~als. More precisely, _we
consider here general logic programs executed with the leftmost selection
rule used in Prolog. The approach is based on a modification of the
concept of acceptability. In the case of general Prolog programs we require
that the interpretation I be a model of the considered program P and a
model of Clark's completion of the "negative" fragment of P. We prove
that acceptable general programs are left terminating. However, the
converse implication does not hold due to the possibility of floundering.
On !he other hand, we show that for general programs that do not
flounder from ground general goals the concepts of left termination and
acceptability do coincide. Also, we prove that various ways of defining
semantics coincide for acceptable general programs.

As before, once the left termination of a general Prolog program is
established, non-ground terminating goals can be identified. We illustrate
the use of this extension by providing simple proofs of termination of a
.. game" program and the transitive closure program for the desired class of
goals.

Plan the Paper

This paper is organized as follows. In the next section we introduce the
concept of a left terminating program. This is a program that terminates
for ail ground goals w.r.t. Prolog selection rule. Then we provide a useful
characterization of left terminating programs by introducing the notion of

an acceptable program and proving that the notions of acceptability and
left termination coincide. The crucial concept here is that of a bounded
goal. It allows us to characterize terminating goals.

T~e~, in S~ction 3 we prove left termination of the quicksort program by
prov1dmg a simple proof of its acceptability. Using the concept of bounded
ness we show that the quicksort program terminates w.r.t. a desired class
of non-ground goals.

In Section 4 we extend the notions of left termination and acceptability
to ~ene:al programs. We show that acceptable programs are left
termmatmg and th t I ft · ·
, '" , , . a e termmatmg, non-floundering programs are
acceptabk. This allows us to extend our method to reason about
termmat1?n of general Prolog programs.

Then, m Section 5 we apply this method to a "game" and a transitive
closure prooram b t bi" h. h ·

"' • Y es a is mg t eir acceptability. Again by using the
co~_cept of boundedness we prove that these programs ter~inate w.r.t. a
de::med class of goals.

TERMINATION OF PROGRAMS 113

In Section 6 we prove that various ways of defining semantics of general
programs coincide. In particular, we show that the completion of an
acceptable program has a unique Herbrand model, which coincides with its
unique 3-valued Herbrand model. For non-floundering acceptable
programs, this model coincides with the set of facts which can be inferred
using the SLONF-resolution with the leftmost selection rule.

Finally, in Section 7 we assess the proposed proof method and discuss
related work.

Preliminaries

We use standard notation and terminology of Lloyd (1987) or
Apt (1990) with the exception that general logic programs are called in
Lloyd (1987) normal logic programs. In particular, we use the following
abbreviations for a (general) logic program P (or simply a (general)
program):

B p for the Her brand base of P,

T P for the immediate consequence operator of P,

M P for the least Her brand model of P,

ground(P) for the set of all ground instances of clauses from P,

comp(P) for Clark's completion of P.

Also, we use Prolog's convention identifying in the context of a program
each string starting with a capital letter with a variable, reserving other
strings for the names of constants, terms or relations. So, for example, Xs
stands for a variable whereas xs stands for a term.

In the programs we use the usual list notation. The constant [] denotes
the empty list and [· I ·] is a binary function which given a term x and a
list xs produces a new list [x I xs] with head x and tail xs. By convention,
identifiers ending with "s," such as xs, range over lists. The standard notation
[x 1, •• ., xn], for n ~ 0, is used as an abbreviation of [x 1 I [· · · [x,,I []] · · ·]].
In general, the Herbrand universe also contains "impure" elements that
contain[] or [·I·] but are not lists-for example, s([]) or [s(O)IO],
where 0 is a constant and s a unary function symbol. They will not cause
any complications.

Throughout the paper we consider SLO-resolution with one selection
rule only-namely that of Prolog, usually called the leftmost selection rule.
As S in SLO stands for "selection rule," we denote this form of resolution
by LO (Linear resolution for Definite clauses). The concepts of LO
derivation, LO-refutation, LO-tree, etc. are then defined in the usual way.
By "pure Prolog" we mean in this paper the LO-resolution combined with
the depth first search in the LO-trees.

114 APT AND PEDRESCHI

By choosing variables of the input clauses and the used mgu's in a fixed
way we can assume that for every program P and goal G there exists
exactly one LO-tree for Pu { G }.

2. LEFT TERMINATION OF POSITIVE PROGRAMS

Our interest here is in terminating Prolog programs. This motivates the
following concept.

DEFINITION 2.1. A program P is called left terminating if all LD
derivations of P starting in a ground goal are finite.

In other words, a program is left terminating if all LO-trees for P with
a ground root are finite. When studying Prolog programs, one is actually
interested in proving termination of a given program not only for all
ground goals but also for a class of non-ground goals constituting the
intended queries. Our method of proving left termination will allow us to
identify for each program such a class of non-ground goals.

Let us consider now how to prove that a program is left terminating.
Starting from Floyd (1967) the classical proofs of program termination
have been based on the use of well-founded orderings. This approach has
been successfully used in the area of logic programming (see, e.g., Bezem
(1989), Cavedon (1989)), but with no attention paid to Prolog programs.
The notable exception is Deville (1990).

We obtain the desired method by a modification of the ideas of Bezem
(1989) and Cavedon (1989).

Recurrent Programs

It is useful to recall first some concepts from Bezem (1989) and Ca vedon
(1989).

DEFINITION 2.2. (i) A level mapping for a program P is a function
I l:Br-+N of ground atoms to natural numbers. For AEBp, IAI is the
level of A.

(ii) An atom A is bounded with respect to a level mapping I I if I I is
bounded on the set [A] of ground instances of A.

(iii) A goal is bounded if all its atoms are.

(iv) A program P is called recurrent with respect to a level mapping
11 if for every clause A+- B 1, ••• , Bn in ground(P)

IAl>IB;I for iE[l,n].

TERMINATION OF PROGRAMS 115

A program P is called recurrent iff it is recurrent with respect to some level
mapping.

Thus a level mapping is defined only on ground atoms, but the concept
of boundedness allows us to "lift" the level mapping to non-ground atoms.
Boundedness is crucial when considering termination.

DEFINITION 2.3. A program is called terminating, if all its SLD
derivations starting in a ground goal are finite.

Hence, terminating programs have the property that the SLD-trees of
ground goals are finite, and any search procedure in such trees will always
terminate, independently from the adopted selection rule.

The following results of Bezem (1989) show the connection between
these concepts.

THEOREM 2.4. (i) Let P be a recurrent program and G a bounded goal.
Then all SLD-derivations of Pu { G} are finite.

(ii) A program is recurrent if and only if it is terminating.

Because of this result, recurrent programs and bounded goals are too
restrictive concepts to deal with Prolog programs, as a larger class of
programs and goals is terminating when adopting a specific selection rule,
e.g., Prolog selection rule.

EXAMPLE 2.5. (i) Consider the following program even which defines
even numbers and the "less than or equal" relation:

even(O) +-.
even(s(s(X))) +- even(X).

lte(O,Y)+-.
lte(s(X), s(Y)) +-lte(X, Y).

even is recurrent with [even(s"(O))[=n and [lte(s"(O), sm(O))[=min{n, m}.
Now consider the goal

G = +- lte(x, s 100(0)), even(x)

which is supposed to compute the even numbers not exceeding 100. The
LD-tree for G is finite, whereas there exists an infinite SLD-derivation
when the rightmost selection rule is used. As a consequence of
Theorem 2.4(i) the goal G is not bounded, although it can be evaluated by
a finite Prolog computation.

116 APT AND PEDRESCHl

Actually, most "generate and test" Prolog programs are not recurrent,
as they heavily depend on the left-to-right order of evaluation, like the
example above.

(ii) Consider the following naive reverse program:

reverse ([] , []) +-- •

reverse ([X I Xs] , Ys) +
reverse (Xs, Zs),
append(Zs, [X],Ys).

append([], Ys, Ys) +--.

append([X I Xs], Ys, [X I Zs]) +-append(Xs, Ys, Zs).

The ground goal+- reverse(xs, ys), for a list xs with at least two elements
and an arbitrary list ys, has an infinite SLD-derivation, obtained by using
the selection rule which selects the leftmost atom at the first two steps, and
the second leftmost atom afterwards. By Theorem 2.4(ii) reverse is not
recurrent.

(iii) Consider the following program DC, representing a (binary)
"divide and conquer" schema; it is parametric with respect to the base,
conquer, divide, and merge predicates.

dc(X,Y)+
base(X),
conquer(X, Y).

dc(X,Y)+-
divide(X, Xl, X2),
dc(Xl,Yl),
dc(X2,Y2),
merge (Yl, Y2, Y) .

Many programs naturally fit into this schema, or its generalization to
non-fixed arity of the divide/merge predicates. Unfortunately, DC is
not recurrent: it suffices to take a ground instance of the recursive
clause with X =a, Xl =a, Y = b, Y1 = b, and observe that the atom
dc(a, b) occurs both in the head and in the body of such a clause. In
this example, the leftmost selection rule is needed to guarantee that the
input data is divided into subcomponents before recurring on such sub
components.

Acceptable Programs

To cope with these difficulties we modify the definition of a recurrent
program as follows.

TERMINATION OF PROGRAMS 117

DEFINITION 2.6. Let P be a program, I I a level mapping for P and I a
(not necessarily Herbrand) model of P. P is called acceptable with respect
to 11 and I if for every clause A+- B 1 , ... , Bn in ground(P) the following
implication holds for i E [1, n]:

i-1

if n= (\ Bj then IAI > IB;J.
j= I

In other words, we have for every clause A+- B1' ... , Bn in ground(P)

for i E [1, n],

where

n = min({ n} v { i E [1, n] I I j:F B1}).

P is called acceptable if it is acceptable with respect to some level
mapping and a model of P.

The use of the premise If= /\~-:. 11 B1 forms the only difference between the
concepts of recurrence and acceptability. Intuitively, this premise expresses
the fact that when in the evaluation of the goal B 1 , ... , B n using the leftmost
selection rule the atom B; is reached, the atoms B 1 , ... , B 1_ 1 are already
refuted. Consequently, by the soundness of the LD-resolution, these atoms
are all true in I.

Alternatively, we may define n by

if IF B, /\

if IF B, /\
/\ Bn,
/\ B1_ 1 and I j:F B1 /\ .. • /\ B1•

Thus, given a level mapping 11 for Panda model I of P, in the definition
of acceptability w.r.t. I I and I for every clause A+- B 1 , ... , Bn in ground(P)
we only require that the level of A be higher than the level of B/s in a
certain prefix of B 1 , ... , Bn. Which B/s are taken into account is determined
by the model /. If If= B 1 /\ • • • /\ Bn then all of them are considered and
otherwise only those whose index is ~ii, where ii is the least index i for
which I j:F B1•

The following observation is immediate.

LEMMA 2.7. Every recurrent program is acceptable.

Our aim is to prove that the notions of acceptability and left termination
coincide.

118 APT AND PEDRESCHI

Multiset Ordering

To prove one half of this statement we use the multis~t ordering.
A multiset, sometimes called bag, is an unordered sequence. Given a (non
reflexive) ordering < on a set W, the multiset ordering over (W, <) is an
ordering on finite multisets of the set W. It is defined as the transitive
closure of the relation in which X is smaller than Y if X can be obtained
from Y by replacing an element a of Y by a finite (possibly zero) number
of elements each of which is smaller than a in the ordering <.

In symbols, first we define the relation -< by

X-< y iff X = Y - {a} u Z for some Z such that b < a for b E Z,

where X, Y, Z are finite multisets of elements of W, and then define the
multiset ordering over (W, <) as the transitive closure of the relation -<.

It is well known (see, e.g., Dershowitz (1987)) that multiset ordering
over a well-founded ordering is again well-founded. Thus it can be iterated
while maintaining well-foundedness.

What we need in our case is two-fold iteration. We start with the set of
natural numbers N ordered by < and apply the multiset ordering twice.
We call the first iteration multiset ordering and the second double multiset
ordering. Both are well-founded. The double multiset ordering is defined on
the finite multisets of finite multisets of natural numbers, but we shall
use it only on the finite sets of finite multisets of natural numbers. The
following lemma will be of help when using the double multiset ordering.

LEMMA 2.8. Let X and Y be two finite sets of finite multisets of natural
numbers. Suppose that

VxEX3yE Y (y majorizes x),

where y majorizes x means that x is smaller than y in the multiset ordering.
Then X is smaller than Yin the double multiset ordering.

Proof We call an element y E Y majorizing if it majorizes some x EX. X
can be obtained from Y by first replacing each majorizing y E Y by the
elements of X it majorizes and then removing from Y the non-majorizing
elements. This proves the claim. I

Below we use the notation bag(ai. ... , an) to denote the multiset whose
elements are a 1, ... , an.

TERMINATION OF PROGRAMS 119

Boundedness

Another important concept is boundedness. It allows us to identify goals
from which no divergence can arise. Recall that an atom A is called
boundedw.r.t. a level mapping 11if11 is bounded on the set [A] of ground
instances of A. If A is bounded, then I [A] I denotes the maximum that I I
takes on [A]. Note that every ground atom is bounded.

Our concept of a bounded goal differs from that of Bezem (1989) (see
Definition 2.2(ii)) in that it takes into account the model I. This results in
a more complicated definition.

DEFINITION 2.9. Let P be a program, I I a level mapping for P, I a
model of P, and k ~ 0.

(i) With each ground goal G = +-A 1 , ..• ,An we associate a finite
multiset I GI 1 of natural numbers defined by

where

n = min({ n} u { i e [1, n] I ff A;}).

(ii) With each goal G we associate a set ofmultisets l[GJl 1 defined
by

l[G]l1= {IG'l 1 IG' is a ground instance of G}.

(iii) A goal G is called bounded by k w.r.t. I I and I if k ~ l for
le U I [G]l 1 . A goal is called bounded w.r.t. 11 and I if it is bounded by
some k ~ 0 w.r.t. 11 and I.

It is useful to note the following.

LEMMA 2.10. Let P be a program, 11 a level mapping for P, and I a
model of P. A goal G is bounded w.r.t. I I and I iff the set I [G] I 1 is finite.

Proof Consider a goal G that is bounded by some k. Suppose that G
has n atoms. Then each element of l[G][1 is a multiset of at most n
numbers selected from [O, k]. The number of such multisets is finite.

The other implication is obvious. I
For goals with one atom it is often easy to establish boundedness by

proving a stronger property.

DEFINITION 2.11. Let I I be a level mapping. A goal +- A is called rigid
w.r.t. I I if I I is constant on the set [A] of ground instances of A.

120 APT AND PEDRESCHI

This definition is inspired by the considerations of Bossi et al. (1991),
where level mappings applied to non-ground atoms are studied. Obviously,
rigid goals are bounded.

The following lemma is an analogue of Lemma 2.5 of Bezem (1989).

LEMMA 2.12. Let P be a program that is acceptable w.r.t. a level mapping
I I and a model I. Let G be a goal that is bounded (w.r.t. I I and I) and let
H be an LD-resolvent of G from P. Then

(i) H is bounded,

(ii) j[H]j 1 is smaller than j[G]j 1 in the double multiset ordering.

Proof Let G = +-A 1 , .. ., A" (n?: 1). For some input clause C =A+
Bi. .. ., Bk (k;;,O) and mgu 8 of A and At> H= +- (B 1 , ... , Bb A 2 , •. ., An) 0.

First we show that for every ground instance H 0 of H there exists a
ground instance G' ofG such that jH0 j1 is smaller that jG'j 1 in the multiset
ordering.

So let H0 be a ground instance of H. For some substitution (;

H 0 = +- B~, ... , B~, A;, ... , A~

and A; is ground, where for brevity for any atom, clause, or goal B, B'
denotes B86. Note that

and

G'= +-A'1 , .. .,A;,,

since A'= A; as A8 = A 1 8.

Case 1. For iE[l,k]/f= B;. Then

IHol1=bag(IB;I, .. ., IB~I, IA;J, ... , JA;,I)

where

n = min({ n} v { i E [2, n] I I ft= A;}).

Additionally, since I is a model of P, If= A;. Thus

This means that IH0 11 is obtained from jG'l 1 by replacing IA'11 by
jB~I, ... , IB~I. But by the definition of acceptability

for iE [l, k], so IH0 j 1 is smaller than IG'j 1 in the multiset ordering.

TERMINATION OF PROGRAMS 121

Case 2. For some i E [1, k] I 11o B;. Then

where

k = min({ i E [1, k] I I l1o B;}).

Also by the definition of acceptability

for iE [1, k], so IH0 !1 is smaller than !G'l 1 in the multiset ordering.
This implies claim (i) since G is bounded. By Lemma 2.10 I [HJ 11 is finite

and claim (ii) now follows by Lemma 2.8. I

COROLLARY 2.13. Let P be an acceptable program and G a bounded
goal. Then all LD-derivations of Pu { G} are finite.

Proof The double multiset ordering is well-founded. I

COROLLARY 2.14. Every acceptable program is left terminating.

Proof Every ground goal is bounded. I

LD-Trees

To prove the converse of Corollary 2.14 we analyze the size of finite
LO-trees. To this end we need the following lemma, where nodesp(G) for
a program P and a goal G denotes the number of nodes in the LO-tree for
Pu {G}.

LEMMA 2.15. Let P be a program and Ga goal such that the LD-tree for
Pu { G} is finite. Then

(i) for all substitutions 8, nodesp(GfJ) ~ nodesp(G),

(ii) for all prefixes H of G, nodes p(H) ~nodes p(G),

(iii) for all non-root nodes H in the LD-tree for Pu { G },
nodes p(H) <nodes p(G).

Proof (i) By an application of a variant of the Lifting Lemma
(see e.g. Lloyd (1987)) to LO-derivations we conclude that to every LO
derivation of Pu {G8} with input clauses C1 , C2 , ... ,there corresponds an
LO-derivation of Pu { G} with input clauses C 1 , C2 , ..• , of the same or
larger length. This implies the claim.

122 APT AND PEDRESCHI

(ii) Consider a prefix H= +-A,,. . .,Ak of G= +-A1, ... ,An (n~k).
By an appropriate renaming of variables (formally justified by the
Variant Lemma 2.8 in Apt (1990)) we can assume that all input clauses
used in the LD-tree for Pu { H} have no variables in common with G.
We can now transform the LD-tree for Pu { H} into an initial subtree
of the LD-tree for Pu { G} by replacing in it a node +--- B 1 , •.. , B 1 by
+- B 1, ••• , Bi. Ak + 1 B, ... , A,, B, where B is the composition of the mgu's used
on the path from the root H to the node +- B 1 , ... , B 1• This implies the
claim.

(iii) Immediate by the definition. I
As stated at the beginning of Section 2, we are interested in proving not

only left termination of a program, but also its termination for a class
of non-ground goals. We now show that the concepts of acceptability
and boundedness provide us with a complete method for proving both
properties.

THEOREM 2.16. Let P be a left terminating program. Then for some level
mapping I I and a model I of P

(i) P is acceptable w.r.t. I I and I,

(ii) for every goal G, G is bounded w.r.t. I I and I iff all LD-derivations
of Pu { G} are finite.

Proof Define the level mapping by putting for A E BP

IAI = nodesp(+-A).

Since P is left terminating, this level mapping is well defined. Next,
choose

I= {A E BP I there is an LD-refutation of Pu {+-A}}.

By the strong completeness of SLD-resolution, I= M p, so I is a model
of P.

First we prove one implication of (ii).

. (iil) Consider a goal G such that all LD-derivations of Pu { G} are
fimte. We prove that G is bounded by nodes(G) w.r.t. I I and/.

To this end take l EU I [G] I,. For some ground instance+--- A 1 , •• ., A,, of
G and i E [1, n], where

n = min({ n} u {i E [1, n] I If! A;}),

we have l = IAJ We now calculate

TERMINATION OF PROGRAMS

nodes p(G)?;; nodes p(+--- A 1 , ... , An)

?;; nodes p(+--- A 1 , ... , An)

?;; nodes p(+--- A;, .. ., A,,)

{Lemma 2.15 (i)}

{Lemma 2.15 (ii)}

{Lemma 2.15 (iii), noting that for j E [1, ii - 1]

there is an LD-refutation of Pu { +--- A 1 , ... , Ai}}

{Lemma 2.15 (ii)}

= IA;I {definition of I I}

=l.

123

(i) We now prove that P is acceptable w.r.t. I I and I. Take a clause
A +---B 1 , ... , B11 in P and its ground instance Ae+---B 18, .. ., Bne. We need to
show that

for iE [1, n],

where

n=min({n}u{iE[l,n] Ifft B;e}).

We have Aee = Ae, so Ae and A unify. Letµ= mgu(A8, A). Then e = µfJ
for some b. By the definition of LD-resolution, +--- B 1 µ, .. ., B 11 µ is an
LD-resolvent of+--- AB.

Then for iE [I, n]

IABI = nodesp(+--- AB) {definition of I I }

>nodesp(+--- B 1µ, .. ., B,,µ)

{Lemma 2.15 (iii), +--- B 1 µ, .. ., B11 µ is a resolvent of+--- Ae}

(ii2) Consider a goal G which is bounded w.r.t. I I and I. Then by
(i) and Corollary 2.13 all LD-derivations of Pu { G} are finite. I

COROLLARY 2.17. A program is left terminating if! it is acceptable.

Proof By Corollary 2.14 and Theorem 2.16. I

124 APT AND PEDRESCHI

3. EXAMPLE-QUICKSORT

The equivalence between the left terminating and acceptable programs
provides us with a method of proving termination of Prolog programs. The
level mapping and the model used in the proof of Theorem 2.16 were quite
involved and relied on elaborate information about the program at hand
which is usually not readily available. However, in practical situations
much simpler constructions suffice. The level mapping can be usually
defined as a simple function of the terms of the ground atom and the model
takes into account only some straightforward information about the
program. We illustrate it by means of an example.

First, we define by structural induction a function I I on ground terms by
putting

l[xjxs]I = lxsl + 1,

lf(x 1,. . ., xnll = 0 if f # [· I ·].

It is useful to note that for a list xs, jxsj equals its length. The function
I I is called listsize in Ullman and Van Gelder (1988).

Consider now the following program QS (for quicksort):

(qs 1) q s ([], []) .-- .
(%) qs([X I Xs], Ys) .

f(X, Xs, Xls, X2s),
qs(Xls,Yls),
qs(X2s, Y2s),
a(Yls, [XIY2s],Ys).

U1 l r C x , [J, [J, [J) .-- .
(}~) f(X, [YI Xs], [YI Yls], Y2s) +---

X>Y,
f(X, Xs, Yls, Y2s).

(}~) f(X, [YI Xs], Yls, [YI Y2s]) +---
X;;;,.Y,
f(X, Xs, Yls, Y2s).

(a1) a([],Ys,Ys).-.
(a2) a([X I Xs], Ys, [X I Zs]) .-

a (Xs, Y s, Z s) .

V{e assum~ that QS operates on the domain of natural numbers over
which the built-in relations > and ~' written in infix notation are defined.
We thus assume that this domain is part of the Herbrand un/verse of QS.

TERMINATION OF PROGRAMS 125

Denote now the program consisting of the clauses (Ji), (/2), (f3) by
filter, and the program consisting of the clauses (a 1), (a2) by append.

LEMMA 3.1. filter is recurrent with lf(x, xs, xls, x2s)I = lxsl.

We adopted here the simplifying assumption that built-ins > and ~ are
recurrent w.r.t. the level mapping Is> ti = 0 and Is~ ti = 0.

LEMMA 3.2. append is recurrent with la(xs, ys, zs)I = lxsl.

LEMMA 3.3. QS is not recurrent.

Proof Consider clause (qs2) instantiated with the ground substitution

{X/a, Xs/b, Ys/c, Xls/[a I b], Yls/c }.

Then the ground atom qs([a I b], c) appears in both the head and the body
of the resulting clause. I

To prove that QS is left terminating we show that it is acceptable. We
define an appropriate level mapping I I by extending the ones given in
Lemmata 3.1 and 3.2 with

lqs(xs, ys)I = lxsl.

Next, we define a Herbrand interpretation of QS by putting

l= {qs(xs, ys)l lxsl = lysl}

u {f(x, xs, yls, y2s) I lxsl = lylsl + ly2sl}

u { a(xs, ys, zs) I lxsl + lysl = izsl}

u [X> Y]

u [X~ Y].

Recall that [A] for an atom A stands for the set of all ground instances
of A.

LEMMA 3.4. ! is a model of QS.

Proof First, note that l[Jl+lysl=lysl and that lxsl+lysl=lzsl
implies l[xlxs]I + lysl = l[xlzs]I. This implies that I is a model of
append.

Next, note that l[Jl+l[Jl=l[JI and that lxsl=lylsl+ly2sl implies
l[ylxs]I = l[ylyls]I + ly2sl and i[ylxs]I = lylsl + i[yly2s]I. This
implies that I is a model of filter.

126 APT AND PEDRESCHI

Finally, note that l[JI = l[JI and that lxsl = lxlsl + lx2sl, lxlsl = jylsl,
/.x·2sl=ly2sl and lylsl+l[xly2s]l=lysl imply l[xjxs]l=lysj. This
implies that I is a model of QS. I

We now prove the desired result.

THEOREM 3.5. QS is acceptable w.r.t. I I and I.

Proof As filter and append are recurrent w.r.t. I I, we only need to
consider clauses (qs 1) and (qs2). (qs 1) satisfies the appropriate requirement
voidly.

Consider now a ground instance C of (qs2). C is of the form A +-- B 1 ,

B2 , B3 , B4 • We now prove three facts which imply that C satisfies the
appropriate requirement.

FACT !. IAI > IB1I·

Proof Note that

jqs([xlxs], ys)! = l[xlxs]I > lxsl = lf(x, xs, xls, x2s)I. I

FACT 2. Suppose l!=B 1• Then IAI > IB2 1 and IAI > IB3 j.

Proof By assumption lxsl = lxlsl + lx2sl, so

lqs([xjxs], ys)I > lxsl ~ lxlsl = lqs(xls, yls)I

and analogously

/qs([x/xs], ys)I > lqs(x2s, y2s)I. I

FACT 3. Suppose I!=B 1 and I!=B2 • Then IAI > IB4 1.

Proof By Fact 2 lqs([xlxs], ys)I > lqs(xls, yls)I
assumption lxlsl = /ylsl, so

lxlsl and by

/qs([x/xs], ys)I > lylsl = la(yls, [xly2s], ys)I. I

So far we have only proved that QS is left terminating. We now prove
that it terminates for a large class of goals.

LEMMA 3.6. For all terms t, t 1 , ••• , t k> k ~ 0, a goal of the form

is rigid w.r.t. I I.

TERMINATION OF PROGRAMS 127

Proof Let A be a ground instance of qs([t 1 , ••• , t k], t). Then IA I =

I [t 1, ... , t k JI = k. I

It is worth noting that every "ill typed" goal+- qs(s, t), where s is a non
variable, non-list term is also rigid w.r.t. I I, as ls'I = 0 for every ground
instance s' of s.

COROLLARY 3.7. For all terms t, t 1 , ... , tk> k~O, all LD-derivations of
QS u{ +- qs([t1' ... , tk], t)} are.finite.

Proof By Corollary 2.13. I

4. LEFT TERMINATION OF GENERAL PROGRAMS

We now address the problem of extending the notions of left termination
and acceptability to general programs, i.e., programs that admit negative
literals in clause bodies.

General Programs and LDNF-Resolution

Recall that a general clause is a construct of the form

A+-L 1 , ••• ,Ln

(n ~ 0), where A is an atom and L 1 , ••• , Ln are literals. In turn, a general
goal is a construct of the form

(n ~ 0), where L 1 , ••• , L 11 are literals. A general program is a finite set of
general clauses.

In this paper we consider SLDNF-resolution with one selection rule
only-namely that of Prolog; that, is the leftmost selection rule. As S in
SLDNF stands for "selection rule," we denote this form of resolution by
LDNF (Linear resolution for Definite clauses with Negation as Failure).

When studying termination of general Prolog programs, i.e., programs
executed using the LDNF-resolution, it is necessary to revise the standard
definitions of Lloyd (1987). Indeed, according to his definitions there is no
LDNF-derivation for {p +- 1 p} u { +- p}, whereas the corresponding
Prolog execution diverges.

The appropriate revision is achieved by viewing the LDNF-resolution as
a top down interpreter which given a general program Panda general goal
G attempts to build a search tree for Pu { G} by constructing its branches

64Ji\Q6 1-9

128 APT AND PEDRESCHI

in parallel. The branches in this tree are called LDNF-derivations for
Pu{G} and the tree itself is called the LDNF-t~ee for P_u {G}.

Negative literals are resolved using the negation as failure rule, which
calls for the construction of a subsidiary search tree. If during this sub
sidiarv construction the interpreter diverges, the main LDNF-derivation is
considered to be infinite. Adopting this view the LDNF-derivation for
{p+-1p}u{+-p} diverges because the goal+-p is resolved to +--ip
and the subsequent construction of the subsidiary LDNF-tree for
{p +- 1 p} u { +- p} diverges.

Recently Martelli and Tricomi (1992), and later Apt and Doets (1992),
proposed two formalizations of the above revision of the (S)LDNF
resolution.

Summarizing, by termination of a general Prolog program we actually
mean termination of the underlying interpreter. By choosing variables of
the input clauses and the used mgu's in a fixed way we can assume that for
every general program P and general goal G there exists exactly one
LDNF-tree for Pu {G}. The subsidiary LDNF-trees formed during the
construction of this tree are called subsidiary LDNF-trees for Pu { G}.

The following definition extends the notion of left termination to general
programs.

DEFINITION 4.1. A general program P is called left terminating if all
LDNF-derivations of P starting in a ground general goal are finite.

In other words, a general program is left terminating if all LDNF-trees
for P with a ground root are finite. Again, our method of proving left
termination will allow us to identify a class of terminating non-ground
general goals which constitute the intended queries for the program.

The following lemma will be of use later.

LEMMA 4.2. Suppose that all LDNF-derivations of P starting in a ground
goal are finite. Then P is left terminating.

Proof It suffices to show that for all ground literals L all LDNF
derivations of Pu { +- L} are finite. When L is positive it is a part of the
assumptions and when L is negative, say L = 1 A, it follows from the fact
that by assumption the subsidiary LDNF-tree for Pu {+-A} is finite. I

Acceptable General Programs

Our aim is to generalize the concept of acceptability of Section 2 to
general Prolog programs. First, we extend in a natural way a level mapping
to a mapping from ground literals to natural numbers by putting
f 1Af =!Al. Next, given a general program P, we define its subset p-. In

TERMINATION OF PROGRAMS 129

p- we collect the definitions of the negated relations and relations on
which these relations depend. More precisely, we define p- as follows.

DEFINITION 4.3. Let P be a general program and p, q relations.

(i) We say that p refers to q iff there is a general clause in P that
uses p in its head and q in its body.

(ii) We say that p depends on q iff (p, q) is in the reflexive, transitive
closure of the relation refers to.

Of course, not every relation needs to refer to itself, but by reflexivity
every relation depends on itself.

DEFINITION 4.4. Let P be a general program. Denote by Negp the set of
relations in P which occur in a negative literal in a body of a general clause
from P and by Neg% the set of relations in P on which the relations in
Negp depend. We define p- to be the set of general clauses in Pin whose
head a relation from Neg% occurs.

We can now introduce the desired generalization of the notion of
acceptability.

DEFINITION 4.5. Let P be a general program, I I a level mapping for P,
and I a model of P whose restriction to the relations from Neg% is a model
of comp(P-). P is called acceptable with respect to I I and I if for every
general clause A +- L 1 , ... , Ln in ground(P) the following implication holds
for ie [l, n]:

i-1

if JI=/\ L1 then IAI > ILJ
J= I

In other words, we have for every general clause A+- L 1 , ••• , Ln in
ground(P)

for i e [1, n],

where

n=min({n} u {ie [l, n] II FF L;}).

P is called acceptable if it is acceptable with respect to some level mapping
and a model of P whose restriction to the relations from Negi is a model
of comp(P-).

Note that for a program P we have Negt = 0, so p- is empty and the
above definition coincides with the definition of acceptability for programs.

130 APT AND PEDRESCHI

The idea underlying the definition of acceptability for general programs
is similar to that of programs and can be illustrated as follows. Consider
a general program P, a level mapping I I for P, and a model I of P whose
restriction to the relations from Neg; is a model of comp(P-), such that
P is acceptable with respect to I I and I. Let C be a ground instance of a
general clause from P, and 1 A a negative literal in the body of C, such
that I ff -, A. By the fact that the restriction of I to the relations from
Neg; is a model of comp(P-), we have that comp(P-) ff 1 A. This condi
tion (by the soundness of SLDNF-resolution) excludes the existence of a
refutation for 1A, and consequently there is no point in checking that the
level mapping decreases from the head of the general clause C to any
literals occurring to the right of 1 A in the body of C.

The concept of an acceptable general program also generalizes that of an
acyclic program studied in Ca vedon (1989) and Apt and Bezem (1990).

Finally, note that this concept calls for the use of a model of comp(P--)
and thus assumes consistency of comp(P-). This seems to indicate that its
applicability is limited. However, we show below (Theorem 4.17) that in
many cases left termination implies consistency of comp(P).

DEFINITION 4.6. Let P be a general program, I I a level mapping for P.
P is called acyclic with respect to I I if for every general clause
A+- L 1 , ..• , L,, in ground(P)

for iE [1, n].

P is called acyclic if it is acyclic with respect to some level mapping.

LEMMA 4.7. Every acyclic program is acceptable.

Proof Let P be acyclic w.r.t. some level mapping I I. By Theorem 4.1 of
Apt and Bezem (1990) comp(P) has a unique Herbrand model, M P· Then
P is acceptable w.r.t. I I and M P· I

As in the case of recurrent and acceptable programs, the use of the
premise II=/\~-:\ L1 forms the only difference between the concepts of
acyclicity and acceptability. Apt and Bezem (1990) proved among other
results that all SLDNF-derivations of an acyclic program starting in a
ground general goal are finite. This implies that all acyclic programs are left
terminating, so the concept of acyclicity is of obvious importance when
studying termination of general Prolog programs. Indeed, in Apt and
Bezem (1990) the usefulness of this concept was demonstrated by proving
termination of a general program which formalizes the Yale Shooting
problem of Hanks and McDermott (1987). However, as we shall see in
Section 5 of this paper, there exist natural left terminating general

TERMINATION OF PROGRAMS 131

programs which are not acyclic. Thus the concept of acyclicity is of limited
applicability when considering general Prolog programs.

Boundedness

The concept of boundedness also extends directly to literals and general
programs. A literal L is called bounded w.r.t. a level mapping I I if I I is
bounded on the set [L] of ground instances of L. If L is bounded, then
l[L]I denotes the maximum that 11 takes on [L]. Note that every ground
literal is bounded.

Our concept of a bounded general goal directly generalizes that of a
bounded goal given in Definition 2.9.

DEFINITION 4.8. Let P be a general program, I I a level mapping for P,
I a model of P whose restriction to the relations from Neg 't is a model of
comp(P-), and k ~ 0.

(i) With each ground general goal G = +-- L 1 , ..• , Ln we associate a
finite multiset IGI 1 of natural numbers defined by

where

n = min({ n} u { i E [1, n] 11 ff L;}).

(ii) With each general goal G we associate a set of multisets I [G] I /
defined by

l[G]l 1 = {IG'l 1 IG' is a ground instance of G}.

(iii) A general goal G is called bounded by k w.r.t. I I and I if k ~I for
I EU I [G] 11, where U I [G] I 1 stands for the set-theoretic union of the
elements of I [G] 1 1.

(iv) A general goal is called bounded w.r.t. I I and I if it is bounded
by some k ~ 0 w.r.t. I I and I.

Lemma 2.10 immediately extends to general programs.

LEMMA 4.9. Let P be a general program, I I a level mapping for P, and
I a model of P whose restriction to the relations from Neg 't is a model of
comp(P-). A general goal G is bounded w.r.t. I I and I if! the set I [G JI 1 is
finite.

The following lemma is an analogue of Lemma 2.12 for general
programs.

643/106/1·10

132 APT AND PEDRESCHI

LEMMA 4.10. Let P be a general program that is acceptable w.r.t. a level
mapping I I and an interpretation I. Let G be a general goal which is a
descendant of a goal and which is bounded (w.r.t. I I and I) and let H be an
LDNF-resofrent of G from P. Then

(i) H is bounded,

(ii) I [HJ I / is smaller than I [G JI / in the double multiset ordering.

Proof The proof is analogous to the proof of Lemma 2.12. Due to the
presence of negative literals we only have to consider one additional case.

First we show that for every ground instance H 0 of H there exists a
ground instance G' of G such that IH0 11 is smaller that IG'I / in the multiset
ordering.

In the case where H is obtained from G by the proper resolution step,
the proof is the same as in the proof of Lemma 2.12. Otherwise, H is
obtained from G by the negation as failure rule. Let G = ~ L 1 , .•• , Ln
(n;;::: 1). Then L 1 is a ground negative literal, say L 1 = -, A, and
H = ..-- L2 , ... , Ln.

Denote by Tthe finitely failed LDNF-tree for Pu {~A}. By the defini
tion of Negp and the fact that G is a descendant of a goal, the relation
occurring in A is in Negp. Thus all relations which occur in the general
goals of the tree T are elements of Neg "t. So T is in fact a finitely failed
LDNF-tree for p-- v {<-A}. By the soundness of the SLDNF-resolution,
comp(P-) I= -,A, so Il=L 1•

Let H0 be a ground instance of H. For some substitution c5

H 0 = ..-- L~, ... , L~,

where L; denotes L;6. Thus

is a ground instance of G . Then

where

ii= min({ n} u { i E [2, n] I I ~ L;})

and, since I I= L 1 ,

IG'l1= bag(IL1I. IL~I, ... , IL~I).

This shows that IHol1 is smaller than IG'l 1 in the multiset ordering.

TERMINATION OF PROGRAMS 133

The statement we just proved implies claim (i) since G is bounded. By
Lemma 4.9 I [HJ\ 1 is finite and claim (ii) now follows by Lemma 2.8. I

COROLLARY 4.11. Let P be an acceptable general program and G a
bounded general goal. Then all LDNF-derivations of Pu { G} are finite.

Proof The double multiset ordering is well-founded. I

COROLLARY 4.12. Every acceptable general program is left terminating.

Proof By the fact that every ground general goal is bounded,
Corollary 4.11 and Lemma 4.2. I

Thus to prove that a general program is left terminating it suffices to
show that it is acceptable.

To apply Corollaries 4.11 and 4.12 we need a method for verifying that
an interpretation is a model of comp(P-). In the case of Herbrand inter
pretations this task becomes much simpler thanks to the following theorem
due to Apt et al. (1988). Here an interpretation is supported if for all
ground atoms A, I/= A implies that for some general clause A+- Li, ... , Ln
in ground(P) we have I/= Li /\ · · · /\ Ln.

THEOREM 4.13. A Herbrand interpretation I is a model of comp(P) if! it
is a supported model of P.

Non-floundering General Programs

The converse of Corollary 4.12 does not hold. This is in contrast to the
case of programs. Below we say that an LDNF-derivationjlounders if there
occurs in it or in any of its subsidiary LDNF-trees a general goal with the
first literal being non-ground and negative. An LDNF-tree is called non
.floundering if none of its branches flounders.

EXAMPLE 4.14. Consider the general program P which consists of only
one general clause: p(O) +- -ip(X). Then the only LDNF-derivation of
Pu { <-- p(O)} flounders, so it is finite. By the definition of SLDNF-resolu
tion the only LDNF-derivation of Pu { +- -ip(O)} flounders, as well. Thus
P is left terminating, since the only ground general goals are of the form
G= +-L 1 , ••• ,Ln (n~1), where each L; is either p(O) or -ip(O). On the
other hand, P is not acceptable, since p(O) <-- 1 p(O) is in ground(P) and
by definition for any level mapping \p(O)I = \-ip(O)\.

The above example exploits the fact that SLDNF-derivations may
terminate by floundering. We now show that in the absence of floundering
Corollary 4.12 can be reversed. We proceed analogously to the case of
programs and first study the size of finite LDNF-trees. We need the

134 APT AND PEDRESCHI

following analogue of Lemma 2.15, where nodesp(G) for a general
progra~ p and a general goal G denotes the total number of nodes in the
LDNF-tree for Pv {G} and in all the subsidiary LDNF-trees for Pu {G}.

LEMMA 4.15. Let P be a general program and Ga general goal such that
the LDNF-tree for P v { G} is finite and non-floundering. Then

(i) for all substitutions 8, the LDNF-tree for Pu { G8} is finite and
non~floundering and nodes p(GB)~ nodesp(G),

(ii) for all pre.fixes H of G, the LDNF-tree for Pu { H} is finite and
non-floundering and nodes p(H):::::; nodes p(G),

(iii) for all non-root nodes H in the LDNF-tree for Pu {G},
nodesp(H) < nodesp(G).

Proof Because of the additional requirement of non-floundering the
proof is more complicated than that of Lemma 2.15.

(i) The proof proceeds by structural induction on the LDNF-tree T
for Pu {G}.

The Base Case. T is formed by the only node G. The following three
s u bcases arise.

Subcase 1. G = 0. Then G =Ge, and the claim trivially holds.

Subcase 2. G= +-A, L2 , ••• , Lk. Then A does not unify with the head
of any general clause in P and neither does Ae. As a consequence, the
general goal Ge also immediately fails, and the LDNF-tree T for Pu {GO}
is formed by the only node Ge.

Suhcase 3. G == +- --, A, L2 , .•. , Lk. By the fact that T has no floun
dering derivation, A is ground. The general goal G immediately fails, so by
the definition of the LDNF-resolution there is an LDNF-refutation of
Pu {+-A}. Then Ge also immediately fails as A= Ae. Hence the LDNF
tree T for P v {Ge} is formed by the only node Ge. By definition

nodesp(GB)= 1 +nodes p(+-Ae) == 1 + nodesp(+-A)= nodes p(G).

The Induction Case. Two subcases arise here.

Suhcase 1. G = +-A, L 2 , ••• , Lk. Assume that H 1 , ••• , H m are the
resolvents of G from P. Consider GO= +- (A, L 2 , .•• , Lk) fJ, and let
H'i· ... , H; be the resolvents of G() from P. Clearly, for all i in [1, /] there
exist Jin_[I, m] and ~substitution fJ such that H; = Hib. By the induction
hypothesis, nodesp(Hi) ~ nodesp(HJ Hence:

TERMINATION OF PROGRAMS 135

nodesp(GB)= 1 +nodesp(H'1)+ ··· +nodesp(H;)

~ 1 + nodesp(H 1) + · · · + nodesp(Hm) = nodesp(G).

Moreover, the LDNF-tree for Pu {GB} is finite and non-floundering
since by the induction hypothesis the LDNF-trees for the resolvents of GFJ
are finite and non-floundering.

Subcase 2. G = <- 1 A, L 2 , .•• , Lk. By the fact that T has no floun
dering derivation, A is ground. The fact that G is not a terminal node in
T implies that there exists an LDNF-refutation of Pu { <- 1 A}; i.e., the
LDNF-tree for Pu {<-A} is finitely failed. Then G has only one resolvent,
namely<- L 1 , ... , Lk. Moreover, GFJ = <- 1A, (L 2 , ..• , Lk) FJ, since A is
ground, so+-- (L 2 , ... , Lk) e is the only resolvent of Ge. By the induction
hypothesis, nodesp(<- (L 1 , .•• , Lk) e) ~ nodesp(<- L 2 , ... , Lk). Hence:

nodesp(Ge) = l + nodesp(<-A)+ nodesp(+-(L2 , .• ., Lk) 8)

~ 1 + nodesp(<-A)+ nodesp(<- L 2 , •.. , Lk) = nodesp(G).

Moreover, the LDNF-tree for Pu {Ge} is finite and non-floundering,
since by the induction hypothesis the LDNF-tree for the resolvent of Ge is
finite and non-floundering.

(ii) Consider a prefix H= <-L 1 ,. •• ,Lk of G= +-L 1 ,. •• ,Ln (n?:-k).
By an appropriate renaming of variables (formally justified by a
straightforward extension to the LDNF-resolution of the Variant
Lemma 2.8 in Apt (1990)) we can assume that all input general clauses
used in the LDNF-tree for Pu {H} have no variables in common with G.
We can now transform the LDNF-tree for Pu {H} into an initial subtree
of the LDNF-tree for Pu { G} by replacing in it a node <- M 1 , •.. , M 1 by
<-MI• ... , M1, Lk +I e, ... , Lne, where e is the composition of the mgu's used
on the path from the root H to the node +-M1 , ••• , M,. This implies the
claim, since every subsidiary LDNF-tree for Pu { H} is also a subsidiary
LDNF-tree for Pu {G}.

(iii) Immediate by the definition. I
This definition will now be useful.

DEFINITION 4.16. We call a general program P non-floundering if no
LDNF-derivation starting in a ground general goal flounders.

The following result is of independent interest.

THEOREM 4.17. Let P be a left terminating, non-floundering general
program. Then comp(P) is consistent.

136 APT AND PEDRESCHI

Proi!l Let

/={A EBplthere is an LDNF-refutation of Pu {+-A}}.

We show that / is a Herbrand model of comp(P). To this end, we use
Theorem 4.13 and show that I is a supported model of P.

To establish that I is a model of P, assume by contradiction that some
ground instance A+- LI, ... , L;, of a general clause C from P is false in /.
Then / f= L; A ••• A L;, and I ~ A. Since P is left terminating and non
floundering, /ft A implies that the LDNF-tree for Pu {+-A} is finitely
failed and non-floundering.

For some ground substitution y, A= By, where B is the head of the
general clause C. Thus Ay = Byy =By, so A and B unify.

Let +- L 1, ••• , L,, be the resolvent of+- A from the general clause C. The
LDNF-tree for Pv { +- L 1, ••• , L,,} is also finitely failed and non-floun
dering. As L'1 • ... , L~ =(LI• ... , L,,) e for some substitution e, we have by
Lemma4.15(i) that the LDNF-tree for Pu{+-Lj, ... ,L;,} is non-floun
dering. Moreover, it is finitely failed, since a direct consequence of the
proof of Lemma4.15(i) is that the general goals present in the LDNF-tree
for P v { +- L'1, •• ., L;,} are all instances of the general goals present in the
LDNF-tree for Pv { +-L 1 , ••• , L 11 }. But the fact that the LDNF-tree for
P v { +- L'1, ••• , L;,} is finitely failed and non-floundering contradicts the
hypothesis that If= L'1 A · · · A L;,.

To establish that I is a supported interpretation of P, consider A E BP
such that I f= A, and let C be the first input general clause used in an
LDNF-refutation of P v {+-A}. Let+- L 1 , ••• , L 11 be the resolvent of
+-A from the general clause C. Clearly, an LDNF-refutation for
Pv{+-L 1, ••• ,Ln}, with a computed answer substitution (), can be
extracted from the LDNF-refutation of Pu {+-A}. Let Lj, ... , L~ be a
ground instance of (L 1, .. ., L,,) e. By a straightforward generalization of
Lemma 3.20 in Apt (1990) to the LDNF-resolution there exists an LDNF
refutation for Pu{+-Lj, ... ,L;,}. We conclude that /f= Lj /\···AL~.
This establishes that I is a supported interpretation of P. I

We can now show that Corollary 4.12 can be reversed under the
additional assumption of non-floundering, thus obtaining an analogue of
Theorem 2.16 for general programs.

THEOREM 4.18. Let P be a left terminating, non-floundering general
program. Then for some level mapping I I and a model I of comp(P)

(i) P is acceptable w.r.t. I I and I;

(ii) for every general goal G, G is bounded w.r.t. 11 and I iffall LDNF
derivations of Pu { G} are finite.

TERMINATION OF PROGRAMS 137

Proof The proof is similar to that of Theorem 2.16. Define the level
mapping by putting for A E BP

IAI =nodesp(+-A).

Since P is left terminating, this level mapping is well defined. Note that
by definition, for A E B p,

nodes p(+- 1 A) > nodes p(+- A) = I A I = I 1 A I,

so

(1)

Next, let I be the model of comp(P) considered m the proof of
Theorem 4.1 7; i.e.,

I= {A E BP I there is an LDFN-refutation of Pu {+-A}}.

First we prove one implication of (ii).

(iil) Consider a general goal G such that all LDNF-derivations
of Pu {G} are finite. We prove that G is bounded by nodesp(G) w.r.t. 11

and I.
To this end take l EU I [G] I 1. For some ground instance+- L 1 , .•. , Ln of

G and iE[l,ii], where

ii=min({n}u{ie[l,n]II[F L;}),

we have l = ILJ We now calculate

nodesp(G);:::nodesp(+-L 1 , .•• , Ln)

;:::nodesp(+-L 1 , ... , L")

;:::nodesp(+-L;, ... , L")

{Lemma 4.15(i)}

{Lemma 4.15(ii)}

{Lemma 4.15(iii), noting that for j E [1, ii - 1]
there is an LDNF-refutation of Pu { +- L 1 , ... , L1}}

{Lemma 4.15(ii)}

;:::IL;I {definitionofll,(1)}

=l.

(i) We now prove that P is acceptable w.r.t. I I and I. I is a model
of comp(P), so the restriction of I to the relations in Negp is trivially a
model of comp(P-). To complete the proof, take a general clause

138 APT AND PEDRESCHI

A~ L 1 , .•. , L,, in P and its ground instance AG~ Li 8, ... , L,,8. We need to
show that

for iE [1, ii],

where

ii=min({n}u{iE[l,nJIIfPL;B}).

We have A88 =AG, so AB and A unify. Let µ = mgu(AB, A). Then e = µ6
for some b. By the definition of LDNF-resolution, ~Liµ, .. ., Lnµ is an
LDNF-resolvent of~ AB.

Then for iE [1, ii]

IABI =nodesp(~Ae) {definition of I I }

> nodesp(~ L 1µ, ... , L,,µ)

{Lemma 4.15(iii), ~Liµ, .. ., L,,µ is a resolvent of~ AB}

;:?!: !L;Bi {part (iil), noting that L;B EU I [~ L 1 µ, .. ., L,,µ] I / }.

(ii2) Consider a general goal G which is bounded w.r.t. I I and I.
Then by (i) and Corollary 4.10 all LDNF-derivations of Pu {G} are
finite. I

COROLLARY 4.19. A non-floundering general program is left terminating
ifl it is acceptable.

Proof By Corollary 4.12 and Theorem 4.18. I

5. EXAMPLES-THE GAME AND TRANSITIVE CLOSURE PROGRAMS

Theorem 4.18 shows that our method of proving termination based
on the concepts of acceptability and boundedness is complete for left
terminating, non-floundering general Prolog programs. In this section
we illustrate its use by proving termination of two simple, well-known
programs. None of them can be handled within the framework of Apt and
Bezem (1990).

A GAME Program

Suppose that 0 is an acyclic finite graph. Consider the following general
program GAME :

win(X) ~move(X, Y), 1 win(Y).

move(a,b)~ for (a, b) E <§.

TERMINATION OF PROGRAMS 139

LEMMA 5.1. GAME is not acyclic.

Proof For any ground instance win(a)+-- move(a, a), --, win(a) of
the first general clause and a level mapping I I we have lwin(a)I =
I 1 win(a)I. I

We now proceed to show that GAME is acceptable. Since<§ is acyclic and
finite, there exists a function j from the elements of its domain to natural
numbers such that for aEdom(<§)

(a)= . f {0 iffornob,(a,b)E<§
· 1 + max {.f (h) I (a, b) E <§} otherwise.

We define appropriate level mapping by putting for all (a, h) E dom(<§)

lmove(a, b)I =f(a)

and for a E dom(<§)

lwin(a)I =f(a)+ 1.

Next, since <§ is acyclic and finite, there exists a function g from the
elements of its domain to {O, 1} such that for aEdom(<§)

() {0 iffornob,(a,b)E<§
g a=

1 - ruin { g(b) I (a, b) E <§} otherwise.

Let

I= {move(a, b) I (a, b) E <§} u {win(a) I g(a) = 1 } .

LEMMA 5.2. 1 is a model of comp(GAME).

Proof The following two statements hold.

(a) I is a model of GAME.
Indeed, consider a ground instance

win(a)+-move(a, b), -iwin(b)

of the first general clause of GAME and suppose that

If= move(a, b) /\ 1win(b).

Then (a, b) E <§ and g(b) = 0, so g(a) = 1 and consequently

If= win(a).

Additionally, I is a model for all move clauses.

140 APT AND PEDRESCHI

(b) I is a supported interpretation of GAME.
Indeed, consider an atom win(a) e I. Then g(a) = 1, so for some be f§ we

have (a, b) Er;§ and g(b) = 0. We conclude that

If= move(a, b) A 1win(b).

By Theorem 4.13 we conclude that I is a model of comp(GAME). I

We can now prove the desired result.

THEOREM 5.3. GAME is acceptable w.r.t. I I and I.

Proof For a general program P every model of comp(P) is also a
model of P; thus I is a model of GAME. Moreover, GAME - =GAME.

Consider a ground instance

win(a)+-- move(a, b), -, win(b)

of the first general clause of GAME. Then by definition

lwin(a)I = f(a) + 1 > f(a) =I move(a, b)I.

Suppose now that If= move(a, b). Then move(a, b) e J, so (a, b) e f§ and
consequently f(a) > f(b). Thus

lwin(a)I = f(a) + 1>f(b)+1=I1 win(b)I. I

COROLLARY 5.4. GAME is left terminating.

Proof By Corollary 4.12. I

COROLLARY 5.5. For all terms t, the goal+-- win(t) is bounded w.r.t. 11

and I.

Proof The goal+--win(t) is bounded by max{f(a)+llaedom(f§)}.
Note that because of the syntax of GAME, t is either a variable or a
constant. In the latter case we can improve the bound to f(t) + 1. I

COROLLARY 5.6. For all terms t, all LDNF-derivations of GAME u
{ +- win(t)} are finite.

Proof By Corollary 4.11. I

TERMINATION OF PROGRAMS 141

Transitive Closure

Consider the following general program computing the transitive closure
of a graph.

(r 1) r(X,Y,E,V)~

member([X, Y], E).
(r 2) r(X, Z, E, V) ~

member([X, Y], E),

1 member (Y, V),

r(Y, Z, E, [YI VJ).

(m 1) member(X, [X IT])~.
(m 2) member (X, [YI T]) ~

member(X, T).

In a typical use of this program one evaluates a goal~ r(x, y, e, [x]),
where x, y are nodes and e is a graph specified by a list of its edges. The
nodes of e belong to a finite set d. This goal is supposed to succeed when
[x, y] is in the transitive closure of e. The last argument of r(x, y, e, v) acts
as an accumulator in which one maintains the list of nodes which should
not be reused when looking for a path connecting x with y in e (to keep
the path acyclic).

To ensure that the elements of d are in the Herbrand Universe of the
program we add to the program the clauses

(e) element (a)~ for a E .91,

and call the resulting general program TRANS.

LEMMA 5.7. TRANS is not acyclic.

Proof By Lemma 4.1 of Apt and Bezem (1990) all SLDNF-derivations
of an acyclic program P starting with a ground goal are finite. Thus it
suffices to exhibit an infinite SLDNF-derivation of TRANS starting in a
ground goal. Such a derivation is obtained by using the rightmost selection
rule and starting with the ground goal~ r(x, z, e, v) repeatedly using
general clause (r2). I

We now prove that TRANS is acceptable. Below we call a list consisting
of two elements a pair.

First, we define by structural induction a function set by putting

set([xf xs]) = {x} u set(xs),

set(.f(x 1, ••• ,x,,))=0iff#[·l·J.

Then for a list xs, set(xs) is the set of its elements.

142 APT AND PEDRESCHI

Define now a Herbrand interpretation I by

l= [r(X, Y, E, V)] u/1 u {element(x)lxE.#},

where

/ 1 = {member(x, xs)lxeset(xs)}.

Recall that for an atom A, [A] stands for the set of all ground instances
of A.

We now prove two lemmata about I and 11 .

LEMMA 5.8. I is a model of TRANS.

Proof I is clearly a model of (ri), (r2) and of the clauses (e).I is also
a model of the clauses (m 1) and (m 2) because by definition x E set([x I t])
holds and x E set(t) implies x E set([y I t]). I

LEMMA 5.9. 11 is a model of comp(TRANS -).

Proof Note that TRANS - = { (m 1), (m 2) }. We prove that 11 is
a supported interpretation of { (m 1), (m 2) }. Consider an atom
member(x, xs) E [1 • We prove that there exists a ground instance
member(x, xs) ._... L 1 , •.. , L,, of (mi) or (m 2) such that 1 f= L 1 /\ · · • /\ L,,.

By definition xeset(xs), so for some y and t we have xs= [yl t] and
xe{y}uset(t). If x=y, then xs=[xlt], and the desired clause is
an instance of (m 1). Otherwise x E set(t), so member(x, t) E 1, i.e. 1 F=
member(x, t). In this case the desired clause is an instance of (m 2).

By Lemma 5.811 is a model of {(m 1), (m 2)}, so by Theorem 4.13 we now
conclude that 11 is a model of comp({mi), (m 2)}). I

We now define an appropriate level mapping. We use here the listsize
function I I which maps ground terms to natural numbers and is defined in
Section 3. It is clear that by putting

lmember(x, y)I = IYI

we obtain the desired decrease for clause (m 2 }. Having made this choice in
order to obtain the desired decrease for clause (ri) we need to have

lr(x, z, e, v)I >lei. (2)

Additionally, to obtain the desired decrease for general clause (r 2) we need
to have (assuming that 1 f= member([x, y], e))

lr(x, z, e, v)I > lvl (3)

TERMINATION OF PROGRAMS 143

and, assuming

If= member([x, y], e) /\ 1member(y, v), (4)

we need to prove

!r(x, z, e, v)! > !r(y, z, e, [y! v])I. (5)

To define I r(x, z, e, v)! we first define two auxiliary functions. Let

nodes(e) = { x I for some pair b, x E set(b) and b E set(e)}.

If e is a list of pairs that specifies the edges of a graph<§, then nodes(e)
is the set of nodes of <fl.

Let

out(e, v)= {x!xEnodes(e) and xef:set(v)}.

If e is a list of pairs that specify the edges of a graph <§ and v is a list,
then out(e, v) is the set of nodes of <§ that are not elements of v.

We now put

!r(x, z, e, v)! =le!+ Iv!+ 2 ·card out(e, v) + 1,

where card X stands for the cardinality of the set X.
Then (2) and (3) hold. Assume now (4). Then [x, y] Eset(e) and

y ef: set(v). Thus y E nodes(e) and consequently y E out(e, v).
On the other hand set([y Iv])= {y} u set(v). Thus y ef: out(e, [y Iv]) and

out(e, v) = {y} u out(e, [y Iv]) so card out(e, v) =card out(e, [y Iv])+ 1.
We now have

!r(x, z, e, v)! =lei+ Iv!+ 2 -card out(e, v) + 1

which proves (5).

=lei+ Iv! +2-cardout(e, [yiv])+3

>lei+ ![y!v]I +2 ·card out(e, [y! v])+ 1

= lr(y, z, e, [y Iv])!

Summarizing, we proved the following result.

THEOREM 5.10. TRANS is acceptable w.r.t. I I and I.

COROLLARY 5.11. TRANS is left terminating.

Proof By Corollary 4.12. I

144 APT AND PEDRESCHI

COROLLARY 5.12. For all terms x, y and lists e, v, the goal+-- r(x, y, e, v)

is rigid w.r.t. I I.

Proof For any ground instance A of r(x, y, e, v) we have IAI == lel +
iv[+2".cardout(e,v)+l. I

COROLLARY 5.13. For all terms x, y and lists e, v, all LDFN-derivations
of TRANS u { +-- r(x, y, e, v)} are finite.

Proof By Corollary 4.11. I

6. SEMANTIC CONSIDERATIONS

In this section we study the semantics of acceptable general programs.
We show here that various ways of defining their semantics coincide.

We recall first the relevant definitions and results. Given a monotonic
operator Ton a complete partial ordering L with the least element J_, we
define the upward ordinal powers of T starting at J_ in the standard way
and denote them by Tj r:t. where r:t. is an ordinal. If L has the greatest
element, say T (this is the case when, for example, Lis a complete lattice),
we define the downward ordinal powers of T starting at T in the standard
way and denote them by T t r:t..

We use below Fitting's approach to the semantics of general programs.
Fitting (1985) uses a 3-valued logic based on a logic due to Kleene (1952).
In Kleene's logic there are three truth values: t for true, f for false, and u
for undefined.

A Herbrand interpretation for this logic (called a 3-valued Herbrand
interpretation) is defined as a pair (T, F) of disjoint sets of ground atoms.
Given such an interpretation l = (T, F) a ground atom A is true in l if
A E T, false in I if A E F, and undefined otherwise; 1 A is true in l if A is
false in I and 1 A is false in l if A is true in I.

Every binary connective takes the value t or f if it takes that value in
2-valued logic for all possible substitutions of u's by t or f; otherwise it
takes the value u.

Given a formula ~ and a 3-valued Herbrand interpretation l, we write rjJ
is true3 in l (respectively ~ is false 3 in I) to denote the fact that ~ is true
in I (respectively that ~ is false in I) in the above defined sense.

Given l = (T, F) we denote T by l+ and F by 1-. Thus l = (I+, 1-). If
1+ u 1- = Bp, we call l a total 3-valued Herbrand interpretation for the
general program P.

TERMINATION OF PROGRAMS 145

Every (2-valued) Herbrand interpretation I for a general program P
determines a total 3-valued Herbrand interpretation (I, BP - I) for P. This
allows us to identify every 2-valued Herbrand interpretation I for a
general program P with its 3-valued counterpart (I, BP - I). For unifor
mity, given a (2-valued) Herbrand interpretation I we write rjJ is true 2 in
I instead of 1 I= rjJ and <ft is false2 in I instead of I ff= if;. The following
proposition relates truth in 3- and 2-valued interpretations and will be
useful later.

PROPOSITION 6.1. Let I be a 3-valued interpretation and La literal. Then

(i) L is true 3 in I implies L is true 2 in J+,

(ii) L is true 2 in 1+ implies L is not false 3 in I, i.e., L is either true3

or undefined in I.

Proof (i) If L =A, Lis true3 in I implies A E 1+, hence A is true2 in
1+. If L=-iA, -iA is true 3 in I implies AEI-, which implies A~J+.
Hence 1 A is true 2 in 1+.

(ii) If L=A, Lis true2 in[+ implies AE/+, hence A is true3 in/.
If L = I A, I A is true2 in r implies A~ r. Hence I A is either true3 or
undefined in I. I

Given a general program P, the 3-valued Herbrand interpretations for P
form a complete partial ordering with the ordering <;;; defined by

and with the least element (0, 0). Note that in this ordering every total
3-valued Her brand interpretation is <;;;-maximal. Intuitively, I<;;;;, J if J
decides both truth and falsity for more atoms than I does.

Following Fitting (1985), given a general program P we define an
operator <!> P on the complete partial ordering of 3-valued Herbrand inter
pretations for P,

where

<fJ p(J) = (T, F),

T= {A I for some A~ L 1 , .. ., Lk in ground(P),

L 1 /\ • • • /\ Lk is true 3 in!},

F= {A I for all A~ L 1 , ... , Lk in ground(P),

L 1 /\ · • · /\ Lk is false 3 in I}.

146 APT AND PEDRESCHI

It is easy to see that T and Fare disjoint, so <fJ p(I) is indeed a 3-valued

Herbrand interpretation. <PP is a natural generalization of the usual

immediate consequence operator T P to the case of 3-valued logic. rJ> P is

easily seen to be monotonic.
The upward ordinal powers of <Pp, denoted by <PP i r:x, are defined

starting the iteration at the s-least 3-valued Herbrand interpretation,

(0, 0). In particular

n<w

Before studying semantics of acceptable general programs we prove a

number of auxiliary results about the operators T P and rJ> P· The following

lemma relates these two operators.

LEMMA 6.2. Let I be a 3-valued interpretation and P a general program.

Then

Moreover, if I is total then <fJ p(I) + = T p(l+) = BP - <P p(J) - .

Proof By definition of T P and <PP we obtain

iff for some A+- L 1 , ••• , Lk in ground(?)

iff for some A+- L 1 , •.• , Lk in ground(?)

iff for some A+- L 1 , ••• , Lk in ground(?)

L 1 I\··· /\Lkisnotfalse 3 inl.

Hence, the implication A E <P p(I) + =A ET p(J+) (respectively A ET p(J+)

= A E BP - <P p(It) directly follows from Proposition 6.1 (i) (respectively
Proposition 6.1 (ii)).

If I is total, then L 1 I\ · · · I\ Lk is true 3 in I iff L 1 A · · · I\ Lk is true 2 in

J+ iff L 1 I\ · · · I\ Lk is not false 3 in I. I

The following corollaries relate the fixpoints of the operators T P and <PP·

COROLLARY 6.3. Let I= u+, B p - J+) be a total 3-valued interpretation

and P a general program. Then J+ is a fixpoint of T P if and only if I is a

fixpoint of <PP·

TERMINATION OF PROGRAMS 147

Proof (=>) Assume I+=Tp(J+). By Lemma6.2 we have c/Jp(J)+=

Tp(J+)=Bp-<Pp(I)-. Hence I+ =c/Jp(J)+ and 1-· =Bp-/+ =tPp(I)-;

i.e., I= tP p(l).

(=) Assume I= <P p(l). Then by Lemma 6.2 we have

I+ = tP p(l) + £ T p(l+) £BP - tP p(l) =BP - J- =I+.

Hence J+ is a fixpoint of T P· I

COROLLARY 6.4. If <Pp has exactly one fixpoint I and I is total, then r
is the unique fixpoint of T P·

Proof By Corollary 6.3. I

The fixpoints of the operator T P are of interest for us because of the

following result of Apt et al. (1988).

THEOREM 6.5. A Herbrand interpretation I is a model of comp(P) if! it
is a fix point of T P·

COROLLARY 6.6. If I is a Herbrand model of comp(P) then cfJ Pi w <;;

(I, Bp-l).

Proof Suppose I is a Herbrand model of comp(P). Then by

Theorem 6.5 I is a fixpoint of T p, so by Corollary 6.3 (I, BP - I) is a

fix point of cfJ P· By the monotonicity of cfJ P the least fix point of i:[) P•

lfp(cfJ P), exists and tP Pi w .s lfp(cfJ P). But lfp(cfJ P) c;; (I, BP - I), so cfJ Pi w s
{/, Bp-I). I

We are now ready to analyze the semantics of acceptable general

programs.

THEOREM 6.7. Let P be an acceptable general program w.r.t. I I and I.

Then i:[) Pi w is total.

Proof To establish that i:[) Pi co is total we prove that, for n E w and

A E B p, IA I = n implies that A is not undefined in cfJ Pi (n + 1), i.e., A is

either true 3 or false 3 in <PP i (n + 1). The proof proceeds by induction on n.

Fix A E Bp.
In the base case we have IA I = 0 and since P is acceptable, two

possibilities arise: (i) there is a unit clause A.-- in ground(P) and (ii) there

is no general clause in ground(P) with A as conclusion. In case (i) A is

true 3 in i:[) Pi 1, and in case (ii) A is false 3 in cfJ Pi 1.

In the induction case we have IA I = n > 0. Consider the set CA of the

general clauses in ground(P) with A as conclusion. If CA is empty then A

643/106/1·1 l

148 APT AND PEDRESCHI

is false 3 in <PP 11 and, by the monotonicity of <Pp, it is false 3 in
<PP j (n + 1). If CA is non-empty, take a general clause A+- L 1 , ••• , Lk from
CA, and let k=min({k}u{iE[l,k]IL; isfalse 2 in I}. We now prove
that L 1 /\ • • • /\ Lk is not undefined in <PP j n. To this end we consider two
subcases.

Subcase 1. k = k and Lk is true 2 in I. Then, by the acceptability of P,
n =IA I> IL;I for i E [1, k]. By the induction hypothesis L; is either true 3 or
false 3 in <PP j n, for i E [1, k].

Subcase 2. k ~ k and Lk is false 2 in I. Then n =IA I > IL;I for i E [1, k].
By the induction hypothesis, L; is either true 3 or false 3 in <PP j n, for
i E [1, k]. Moreover, we claim that LF< is false 3 in <PP j n. To establish this
point, the following two possibilities have to be taken into account.

Suppose the relation occurring in Lf< is in Neg}:. A simple proof by
induction on n shows that <PP j n and <Pp- j n coincide on the relations in
Negt. Thus Lli is true 3 in <PP in implies Lrc is true 3 in <Pr j n. Hence, by
Corollary 6.6 and Proposition 6.1 (i), LI< is true 2 in the restriction of I to the
relations in Negt which is a model of comp(P-). This contradicts the fact
that LF< is false 2 in I.

If the relation occurring in Lk is not in Neg}:, then Lk is a positive literal.
We show that in this case LI< is true 3 in <Pp j n implies LI< is true 2 in I by
induction on the stage i at which Lli becomes true 3 in <PP j i. For i = 0 there
is nothing to prove. If Lli becomes true 3 in <PP j i, then there is a general
clause Lli +- M 1 , ••• , M,,,, in ground(P) with M 1 /\ • • • /\ M 111 being true 3 in
<PP i (i - 1). For j E [1, m], if the relation occurring in Mi is in Neg}:, then
MJ is true 3 in <JJ P j (i - 1) implies MJ is true2 in I by Corollary 6.6 and
Proposition 6.l(i). If the relation occurring in MJ is not in Neg}:, then MJ
is true 3 in <PP i (i- 1) implies MJ is true 2 in I by the induction hypothesis.
Hence M 1 /\ • • • /\ M 111 is true2 in I, which implies LI< is true 2 in I, since
I is a model of Lli +- M 1 , ••• , M 111 • This contradicts the fact that Lli is false 2

in I.
In both Subcase 1 and 2, we have that L 1 /\ • •• /\ Lk is not undefined

in <PP in, as it is either true3 or false 3 in Subcase 1, and false 3 in Subcase 2.
As a consequence, A is either true 3 or false 3 in <PP j (n + 1), which
establishes the claim. I

COROLLARY 6.8. Let P be an acceptable general program. Then <PP j w
is the unique fixpoint of <PP·

Proof We have <!Jpjws;<Ppi(w+l); i.e., <!JpjwS<Pp(<!Jpjw). By
Theorem 6. 7 <PP i w is total, so in fact <PP i w =<Pp(<PP i w); i.e., <PP j w is
a fixpoint of <PP· Moreover, by the monotonicity of <Pp, every fix point of

TERMINATION OF PROGRAMS 149

<PP of the form <PP i rx is contained in any other fixpoint, so in fact </>Pi OJ

is the unique fixpoint of <!> P· I

The following corollary summarizes the relevant properties of
NP = <I> P i OJ.

COROLLARY 6.9. Let P be an acceptable general program. Then

(i) Npistotal,

(ii) NP is the unique fix point of <Pp,

(iii) Np is the unique 3-valued Herbrand model of comp(P),

(iv) Nt is the uniquefixpoint of Tp,

(v) Nt is the unique Herbrand model of comp(P),

(vi) for all ground atoms A such that no LDNF-derivation of
Pu {+-A } flounders,

A EN t i/J there exists an LDNF-refutation of Pu {+-A}.

In particular, this equivalence holds for all ground atoms A when P is non
jloundering.

Proof (i) By Theorem 6.7.

(ii) By Corollary 6.8.

(iii) By (ii) and the result of Fitting (1985) stating that a 3-valued
Herbrand interpretation is a model of comp(P) iff it is a fixpoint of <fJ P·

(iv) By Theorem 6.7 and Corollaries 6.8 and 6.4.

(v) By Theorem 6.5.

(vi) Consider a ground atom A such that no LDNF-derivation of
Pu {+-A} flounders. By the soundness of the SLDNF-resolution and (v)
if there exists an LDNF-refutation of Pu {+-A} then A E Nt. To prove
the converse implication assume A EN;. By Corollary4.ll all LDNF
derivations of Pu {+-A} are finite. Suppose by contradiction that none of
them is successful. Then the LDNF-tree for Pu {+-A} is non-floundering
and finitely failed. By the soundness of the SLDNF-resolution and (v),
Nt I= 1 A; i.e., A~ Nt, which is a contradiction. I

Clause (v) of the above Corollary shows that when p- = P, comp(P -)

has exactly one Herbrand model. This implies that for such general
programs essentially full semantic information has to be used to reason
about their termination. An example of such a program is the GAME
program discussed in Section 5.

Clause (vi) can be seen as a completeness result for acceptable general
programs that relates the LDNF-resolution to the model Nt.

150 APT AND PEDRESCHI

By restricting our attention to programs we get the following additional
conclusions.

COROLLARY 6.10. Let P be an acceptable program. Then

(i) Tp j w is the unique fixpoint of Tp,

(ii) T P j w = T P l w.

Proof By the result of Fitting (1985)

<PP i ex= (T Pi IX, BP - T P l ex),

so

TP jw= (<Pp jw)+ =N;.

Now (i) follows by Corollary 6.9 (iv) and (ii) follows by Corollary 6.9 (i). I

7. CONCLUSIONS

Assessment of the Method

Our approach to termination is limited to the study of left terminating
(general) programs, so it is useful to reflect on the relevance of this
restriction.

First, observe that the notion of left termination is insensitive to
the ordering of clauses in the programs. This seems to follow a good
programming practice.

The main result of Bezem (1989) states that every total recursive func
tion can be computed by a recurrent program. As recurrent programs are
left terminating, the same property is shared by left terminating programs.

It is useful to note a simple consequence of our approach to termination.
By proving that a program P is acceptable and a goal G is bounded, we
can conclude by Corollary 2.13 that the LD-tree for Pu { G} is finite. Thus,
for the leftmost selection rule, the set of computed answer substitutions for
Pu { G} is finite and consequently, by virtue of the strong completeness of
SLD-resolution, we can use LO-resolution to compute the set of all correct
answer substitutions for Pu { G }. In other words, query evaluation of
bounded goals can be implemented using pure Prolog. The same remark
applies to general non-floundering programs.

For a further analysis of left terminating programs we first introduce the
following notions, essentially due to Mellish (1981). Given an n-ary rela
tion symbol p, by a mode for p we mean a function dP from { 1, .. ., n} to the
set { +, - }. We write dP in a more suggestive form p(dp(l), .. ., dp(n)).

TERMINATION OF PROGRAMS 151

Modes indicate how the arguments of a relation should be used. If
dp(i) = '+ ,' we call i the input position of p and if dp(i) = '-,' we call i the
output position of p (both w.r.t. dp). The input positions should be replaced
by ground terms and the output positions by variables. This motivates the
following notion.

Given a mode dP for a relation p, we say that an atom A= p(t1, •• ., tn)
respects dP if for iE [1, n], t; is ground if i is an input position of p w.r.t.
dP and t; is a variable if i is an output position of p w.r.t. dr

A mode for a program P is a function which assigns to each relation
symbol of P a non-empty set of modes. Given a mode for a program P, we
say that an atom A respects moding if A respects some mode in the set of
modes associated with the relation p used in A.

As an example, consider the mode for the program append represented
by the following set:

{append (+, +, -) , append (-, - , +) }.

It indicates that append should be called either with its first
two arguments ground and the third a variable, or with its first two
arguments variables and the third argument ground. Then any atom
append(xs, ys, zs), where either xs, ys are ground and zs is a variable, or
xs, ys are variables and zs is ground, respects moding.

The following simple theorem shows that the property of left termination
is quite natural.

THEOREM 7.1. Let P be a program with a mode such that for all atoms
A which respect moding, all LD-derivations of Pu {+-A} are finite. Then P
is left terminating.

Proof Consider a ground atom A. A is a ground instance of some atom
B which respects moding. By a variant of the Lifting Lemma applied to
LO-resolution we conclude that all LO-derivations of Pu {+-A} are finite.
This implies that P is left terminating. I

The assumptions of the above theorem are satisfied by an overwhelming
class of pure Prolog programs listed in the book of Sterling and Shapiro
(1986).

As Theorem 2.16 shows, the method presented in this paper is a
complete method for proving termination of left terminating Prolog
programs. We believe that it is also a useful method, since it allows us to
factor termination proofs into simpler, separate proofs, which consist of
checking the guesses for the level mapping I I and the model !. Moreover,
the method is modular, because termination proofs provided for sub
programs can be reused in later proofs.

152 APT AND PEDRESCHI

In this paper, the method is used as an "a posteriori" technique for
verifying termination of existing Prolog programs. However, it could also
provide a guideline for the program development, if the program is
constructed together with its termination proof. A specific level mapping
and a model could suggest, in particular, a specific ordering of atoms in
clause bodies.

It is worth noting that some fragments of the proof of acceptability can
be automated, at least in the case of the examples presented in Section 3,
and in Apt and Pedreschi (1990). In our examples, where the function
listsize is used, the task of checking the guesses for both the model I and
the level mapping I I can be reduced to checking the validity of universal
formulas in an extension of Presburger arithmetic by the min and max
operators. The validity problem for such formulas is decidable. In fact,
Shostak (1977) presented for this class a decision algorithm which is
exponential. This is substantially lower than the complexity of the decision
procedure for Presburger arithmetic. To illustrate this point, consider the
program PERM (for permutation),

(P1) p([],[])+-.

(P2) p(Xs, [X!Ys])+-

a (Xl s , [X I X2 s] , Xs) ,

a(Xls, X2s, Zs),

p(Zs,Ys).

augmented by the clauses (ai) and (a2) of Section 3 which define the
relation a (for append).

The intention is to invoke p with its first argument instantiated. Clause
(p1) states that the empty list is a permutation of itself. Clause (p 2) takes
care of a non-empty list xs-one should first split it into two sublists xls
and [xlx2s] and then concatenate xls and x2s to get zs. If now ys is a
permutation of zs, [x I ys] is a permutation of xs.

Consider now the following guess I for a model for the program
PERM:

I= {p(zs, ys) I lzsl = lysl}

u {a(xls, x2s, zs) I lxlsl + lx2sl = lzsl }.

To show that I is a model of, say, clause (P2), we have to prove the
following implication:

{ a(x1s, [x I x2s], xs), a(xls, x2s, zs), p(zs, ys)} £;I=> p(xs, [x I ys]) e J.

TERMINATION OF PROGRAMS 153

By homomorphically mapping lists onto their lengths, i.e., by mapping []
to 0 and [I] to the successor function s(·), we get the formula of
Presburger arithmetic

X t + X2 + 1 = X /\ X 1 + X2 = Z /\ Z = y => X = y + 1,

where x i = lxlsl, x 2 = lx2sl, x = lxsl, z = lzsl, y =I ysl.
The level mapping for PERM can be given by

lp(zs, ys)I = lzsl + 1,

la(xls, x2s, zs)I =min(lxlsl, lzsj).

Then, for example, to establish that

lp(xs, [xl ys])I > lp(zs, ys)I

under the assumption that If=a(xls,[xlx2s],xs)Aa(xls,x2s,zs) it
suffices to verify the following formula of Presburger arithmetic:

This approach to partial automation of the termination proofs is
described in detail in Pedreschi and Pieramico (1992). In particular, they
implemented the above sketched procedure for checking left termination
and verified mechanically that the quicksort program QS is left terminating.

Finally, let us mention that it is not immediately obvious how to extend
the approach of this paper to "impure" Prolog programs. Some points such
as the use of cut to prune infinite branches or the use of negation as failure
rule to resolve non-ground negative literals (so ignoring floundering) are in
our opinion bad programming practices and should be avoided instead of
being formally analyzed.

Other issues, such as the use of built-ins, considerably complicate
matters and call for new insights. Termination of programs that use first
order built-ins (so var, nonvar, ground etc.) is studied in Apt et al.
(1992), where for this purpose a new declarative semantics based on non
ground atoms is introduced.

Related Work

Of course the subject of termination of Prolog programs has been
studied by others. Without aiming at completeness we mention here the
following related work.

Vasak and Potter (1986) identified two forms of termination for logic
programs-existential and universal-and characterized the class of univer
sal terminating goals for a given program with selected selection rules.

154 APT AND PEDRESCHI

However, this characterization cannot be easily used to prove termination.
Using our tertninology, given a program P, a goal G is existentially
terminating w.r.t. the leftmost selection rule if in the LD-tree for Pu { G}
no infinite LD-derivation to the left of the leftmost successful derivation
exists, and is universally terminating w.r.t. the leftmost selection rule if the
LD-tree for Pu { G} is finite.

Baudinet (1988) presented a method for proving existential termination
of (general) Prolog program in which with each program a system of equa
tions is associated whose least fixpoint is the meaning of the program. By
analyzing this least fixpoint various termination properties can be proved.
The main method of reasoning is fixpoint or structural induction. In her
proposal negation is treated indirectly by dealing with termination m
presence of the cut operator using which negation can be simulated.

Recently, Bal Wang and Shyamasundar (1991) provided a method of
proving universal termination based on a concept of so-called U-graph in
which the relevant connections through unification between the atoms of
the goal and of the program are recorded. The method can also be used to
establish termination of general Prolog programs. This method calls for the
use of pre- and post-conditions that are associated with the nodes of the
U-graph.

Bossi et al. (1991) refined this method by exploiting level mappings
applied to non-ground atoms. These level mappings are constructed from
level mappings defined on non-ground terms. The key concept, that of
rigidity, allows us to identify the terms whose level mapping is invariant
under instantiation.

Ullman and Van Gelder (1988) considered the problem of automatic
verification of termination of a Prolog program and a goal. In their
approach first some sufficient set of inequalities between the sizes of the
arguments of the relation symbols are generated, and then it is verified
whether they indeed hold. Termination of the programs studied in
Sections 3 and 5 is beyond the scope of their method. This approach was
improved in P!iimer (1990a, b), who allowed a more general form of the
inequalities and the way sizes of the arguments are measured. This resulted
in a more powerful method. The quicksort program studied in Section 3
can be handled using Pli.imer's method. However, the examples in
Section 5, as well as the mergesort example considered in Apt and
Pedreschi (1991), remain beyond its scope. It is worth noting the
complementary aim of our approach to that of Ullman and Van Gelder
(1988) and P!Umer (1990a, b). Their goal is the automatic verification of
termination of a pure Prolog program and a goal. In their approach, some
sufficient conditions for termination are identified, which can be statically
checked. Obviously, such an approach cannot be complete due to the
undecidability of the halting problem.

TERMINATION OF PROGRAMS 155

We propose instead a complete proof method, which characterizes
precisely the left terminating (non-floundering, general) programs.
Additionally, in the present paper and in Apt and Pedreschi (1990), we
provide simple proofs of termination for programs and goals which cannot
be handled using the cited approach. On the other hand, we do not deter
mine here any conditions under which our method could be automated.
This should form part of future research.

Deville (1990) also considers termination in his proposal of systematic
program development. In his framework, termination proofs exploit well
founded orderings together with mode and multiplicity information, the
latter representing an upper bound to the number of answer substitutions
for goals which respect a given mode. For instance, a termination proof of
the program DC of example 2.5(iii) for the goal+- dc(x, Y) would involve
verification of the following statements (assuming that x is a ground term):

1. the goal+- divide(x, XI, X2) respects moding, and both Xl and
X2 are bound to ground terms, xl and x2 respectively, by any computed
answer substitution for such a goal;

2. both x 1 and x2 are smaller than x w.r.t. some well-founded
ordering;

3. the mode divide(+, - , -) has a finite multiplicity.

Our approach seems to be simpler as it relies on fewer concepts. Also, it
suggests a more uniform methodology. On the other hand, in Deville's
approach more information about the program is obtained.

AcKNOWLEDGMENTS

Marc Bezem made us aware of the importance of including subsidiary LDNF-trees in the
definition of nodesp(G). One of the referees of a previous version of the paper made a number
of helpful suggestions.

RECEIVED April 1, 1992; FINAL MANUSCRIPT RECEIVED November 23, 1992

REFERENCES

APT, K. R. (1990), Logic programming, in "Handbook of Theoretical Computer Science"
(J. van Leeuwen, Ed.), Vol. B, pp. 493-574, Elsevier, Amsterdam.

APT, K. R., AND BEZEM, M. (1990), Acyclic programs, in "Proceedings of the Seventh
International Conference on Logic Programming" (D. H. D. Warren and P. Szeredi,
Eds.), pp. 617--633, MIT Press, Cambridge, MA.

APT, K. R., BLAIR, H. A., AND WALKER, A. (1988), Towards a theory of declarative
knowledge, in "Foundations of Deductive Databases and Logic Programming"
(J. Minker, Ed.), pp. 89-148, Morgan Kaufmann.

APT, K. R. AND DOETS, K. (1992), A New Definition of SLDNF-Resolution," ILLC

156 APT AND PEDRESCHI

Prepublication Series CT-92-03, Department of Mathematics and Computer Science,
University of Amsterdam.

APT, K. R., PALAMIDESSI, C., AND MARCHIORI, E. (1992), A theory offirst-order built-in's of
Prolog, in "Proceeding of the Third International Conference on Algebraic and Logic
Programming (ALP 92)" (H. Kirchner and G. Levi, Ed.), pp. 69-83, Lecture Notes in
Computer Science, Vol. 632, Springer-Verlag, Berlin.

APT, K. R., AND PEDRESCHI, D. (1990), Studies in pure Prolog: Termination, in "Symposium
on Computional Logic" (J. W. Lloyd, Ed.), pp. 150-176, Springer-Verlag, Berlin.

APT, K. R., AND PEDRESCHI, D. (1991), Proving termination of general Prolog programs, in
"Proceeding of the International Conference on Theoretical Aspects of Computer
Software" (T. Ito and A. Meyer, Eds.), pp. 265-289, Lecture Notes in Computer Science,
Vol. 526, Springer-Verlag, Berlin.

BAL WANG, AND SHYAMASUNDAR, R. K. (1991), Methodology for proving termination of logic
programs, in "Proceedings STACS '91" (M. Jantzen, Ed.), pp. 214-227, Lecture Notes in
Computer Science, Vol. 480, Springer-Verlag, Berlin.

BAUDINET, M. (1988), Proving termination properties of PROLOG programs, in
"Proceedings of the 3rd Annual Symposium on Logic in Computer Science (LICS),"
Edinburgh, Scotland, pp. 336--347.

BEZEM, M. (1989), Characterizing termination of logic programs with level mappings, in
"Proceedings of the North American Conference on Logic Programming" (E. L. Lusk and
R. A. Overbeek, Eds.), pp. 69-80, MIT Press, Cambridge, MA.

Bossi, A., Cocco, N., AND FABRIS, M. (1991), Termination of logic programs by exploiting
term properties, in "Proceedings CCPSD-TAPSOFT '91" (S. Abramsky and T. S. E.
Maibaum, Eds.), pp. 153-180, Lecture Notes in Computer Science, Vol. 494, Springer
Verlag, Berlin.

CAVEDON, L. (1989), Continuity, consistency, and completeness properties for logic programs,
in "Proceedings of the Sixth International Conference on Logic Programming" (G. Levi
and M. Martelli, Eds.), pp. 571-584, MIT Press, Cambridge, MA.

DERSHOWITZ, N. (1987), Termination of rewriting, J. Symbolic Comput. 8, 69-116.
DEVILLE, Y. (1990), "Logic Programming. Systematic Program Development," International

Series in Logic Programming, Addison-Wesley.
FITTING, M. (1985), A Kripke--Kleene semantics for general logic programs, J. Logic

Programming 2, 295-312.
FLOYD, R. W. (1967), Assigning meanings to programs, in "Proceedings Symposium on

Applied Mathematics, 19, Mathematical Aspects in Computer Science," pp. 19-32. Amer.
Math. Soc., Providence, RI.

HANKS, S., AND McDERMOTT, D. (1987), Nonmonotonic logic and temporal projection, Artif.
lntell. 33, 379-412.

KLEENE, S. C. (1952). "Introduction to Metamathematics," Van Nostrand, New York.
LLOYD, J. W. (1987), "Foundations of Logic Programming," 2nd ed., Springer-Verlag, Berlin.
MELLISH, C. S. (1981), "The Automatic Generation of Mode Declarations for Prolog

Programs," DAI Research Paper 163, Department of Artificial Intelligence, Univ. of
Edinburgh.

PEDRESCHI, D., AND PIERAMICO, C. (1992), "Partial automation of termination proofs for
Prolog Programs," Technical Report, Department of Computer Science, Univ. of Pisa, to
appear.

PLUMER, (1990a), "Termination Proofs for Logic Programs," Lecture Notes in Artificial
Intelligence, Vol. 446, Springer-Verlag, Berlin.

PLUMER, L. (1990b), Termination proofs for logic programs based on predicate inequalities,
in "Proceedings of the Seventh International Conference on Logic Programming"
(D. H. D. Warren and P. Szeredi, Eds.), pp. 634-648, MIT Press, Cambridge, MA.

TERMINATION OF PROGRAMS 157

SHOSTAK, R. E. (1977), On the SUP-INF method for proving Presburger formulas, J. Assoc.
Comput. Mach. 24, No. 4, 529--543.

STERLING, L., AND SHAPIRO (1986), "The Art of Prolog," MIT Press, Cambridge, MA.
ULLMAN, J. D., AND VAN GELDER (1988), Efficient tests for top-down termination of logical

rules, J. Assoc. Comput. Mach. 35, No. 2, 345-373.
VASAK, T., AND POTTER, J. (1986), Characterization of terminating logic programs, in

"Proceedings of the 1986 IEEE Symposium on Logic Programming."

Printt:d in Belgium
UitgeDer: Acadt.'mic Press, lnc

Veranrwoordelijke uitgever voor Be/git.·
· Huberi Van M aele

Alrem.1.straat 20, B-R3 JO Sint-Kruis

