
1991

K.R. Apt, D. Pedreschi

Proving termination of general Prolog programs

Computer Science/Department of Software Technology Report CS-R9111 February

CWI. nationaal instituut voor onoerzoeK op net ~enieo van wisKunae en informatica

The Cer,tre for Mathernatics and Computer Sc;ence is a research institute of

tr1e St1cht1ng Matherna11sch Centrum, which was founded on February 11,

1946, as a nonprot:t 1nst1tut1on aiming at the promotion of mathematics, com

puter science, and their applications. It is sponsored by the Dutch Govern

ment through the Netherlands Organization for the Advancement of Research
(NW.O).

Copynght 'D Sticht1ng Mathematisch Centrurn, Amsterdam

Proving Termination of General Prolog Programs

Krzysztof R. Apt
Centre for Mathematics and Computer Science

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Dino Pedreschi
Dipartimento di Informatica, Universita. di Pisa

Corso Italia 40, 56125 Pisa., Italy

Abstract

We study here termination of general logic programs with the Prolog selection rule. To
this end we extend the approach of Apt and Pedreschi [AP90] and consider the class of left
terminating general programs. These are general logic programs that terminate with the
Prolog selection rule for all ground goals. We introduce the notion of an acceptable program
and prove that acceptable programs are left terminating. This provides us with a practical
method of proving termination.

The converse implication does not hold but we show that under the assumption of non
:0.oundering from ground goals every left terminating program is acceptable. Finally, we
prove that various ways of defining semantics coincide for acceptable programs. The method
is illustrated by giving simple proofs of termination of a "game" program and the transitive
closure program for the desired class of goals.

Keywords and Phrases: Prolog general programs, termination, declarative semantics, left
terminating general programs, acceptable programs.
1985 Mathematics Subject Classification: 68Q40, 68T15.
CR Categories: F.3.2, F.4.1, H.3.3, I.2.3.

Note. First author's work was partly supported by ESPRIT Basic Research Action 3020
(Integration). Second author's work was partly supported by ESPRIT Basic Research Action
3012 (Compulog). This paper will appear in Proceedings of the International Conference
on Theoretical Aspects of Computer Software, Sendai, Japan, Lecture Notes in Computer
Science, Springer-Verlag, 1991.

1 Introduction

Motivation

Prolog is a programming language based on logic programming. However, the use of a fixed
selection rule combined with the depth first search in the resulting search trees makes Prolog
and logic programming different. As a consequence various completeness results linking the
procedural and declarative interpretation of logic programs cannot be directly applied to Prolog
programs. This mismatch makes it difficult to study Prolog programs using ·only the logic
programming theory. Clearly the main problem is the issue of termination: a Prolog interpreter
will miss a solution if all success nodes lie to the right of an infinite path in the search tree.

Report CS-R9111
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 1

In our previous paper we proposed to study pure Prolog programs that terminate for all
ground goals. We called such programs left terminating and claimed that most pure Prolog
programs are left terminating. Then we offered a characterization of left terminating programs
which allowed us to provide simple termination proofs of various "troublesome" pure Prolog
programs.

The aim of this paper is to extend this approach to termination to general Prolog programs,
i.e. programs allowing negative literals. More precisely, we consider here general logic programs
executed with the leftmost selection rule used in Prolog. Our approach uses the concept of a
level mapping (a function assigning natural numbers to ground atoms) in combination with a
limited declarative knowledge about the program embodied in some interpretation I. I should
be a model of the considered program P and a model of Clark's completion of the "negative"
fragment of P.

These two concepts are combined in the notion of an acceptable program. Intuitively, a
general program P is acceptable w .r. t. a level mapping and a model I if for all ground instances
of the clauses of P the level of the head is greater than the level of the atoms in a certain prefix
of the body. Which prefix is considered is determined by the model I. We prove that acceptable
general programs are left terminating. Consequently, to prove left termination it suffices to
prove acceptability.

The converse implication does not hold due to the possibility of ftoundering. On the other
hand, we show that for programs that do not flounder from ground goals the concepts of left
termination and acceptability do coincide. Also, we prove that various ways of defining semantics
coincide for acceptable programs.

Once the left termination of a general Prolog program is established, non-ground terminating
goals can be identified by using the concept of a bounded goal. We illustrate the use of this
method by providing simple proofs of termination of a "game" program and the transitive closure
program for the desired class of goals.

The problem of termination of Prolog programs attracted a lot of attention in the literature.
A short overview can be found in Apt and Pedreschi [AP90]. In particular, it is interesting to
contrast our approach with that of Ullman and Van Gelder [UvG88], later improved by Pliimer
[Plii90b, Plii90a], aimed at the automatic verification of termination of a pure Prolog program
and a goal. In their approach, some sufficient conditions for termination are identified, which can
be statically checked. Obviously, such an approach cannot be complete due to the undecidability
of the halting problem.

We propose instead a complete method, which characterizes precisely the left terminating,
non :floundering programs. Additionally, in the present paper and in [AP90] we provide simple
proofs of termination for programs and goals which cannot be handled using the cited approach.
On the other hand, we do not determine here any conditions under which our method could be
automated. This should form part of a future research.

We are aware of only one paper in which a method of proving termination of general Prolog
programs is proposed - Baudinet [Bau88]. In her proposal negation is treated indirectly by
dealing with termination in presence of the cut operator using which negation can be simulated.
The present paper seems to be the first one in which negation is treated in a direct way. By
virtue of our approach the termination proofs can be built in a modular way and the limited
declarative knowledge ensuring termination of the program can be identified. This results in our
opinion in simple argwnents which formalize the reasoning used informally.

2

Preliminaries

Tlll'oughout this paper we use the standard notation and terminology of Lloyd [Llo87] or Apt
[Apt90]. Recall that a general clause is a construct of the form

(n ~ 0) where A is an atom and L11 ... , Ln are literals. In turn, a general goal is a construct of
the form

(n ~ 0) where L1, ... , Ln are literals. A general program is a finite set of general clauses.
From now on we simply say clause, goal and program instead of general clause, general goal

and general program. When each Li is positive, we call a clause a positive clause and a goal a
positive goal. A program whose all clauses are positive is called a positive program.

We use the following abbreviations for a program P:
Bp for the Herbrand Base of P,
Tp for the immediate consequence operator of P,
ground(P) for the set of all ground instances of clauses from P,
comp(P) for Clark's completion of P.

Also, we use Prolog's convention identifying in the context of a program each string starting
with a capital letter with a variable, reserving other strings for the names of constants, terms
or relations.

In the programs we use the usual list notation. The constant [] denotes the empty list and
[. \ .] is a binary function which given a term z and a list :cs produces a new list [z \ :cs] with
head :c and tail :cs. The standard notation [:c1, ... , :Cn], for n ~ 0, is used as an abbreviation
of [:z:1 \ [... [:cnl[]] ...]]. Given a list (:c1, ... , Zn], each Zi is called an element of [z1, ... , Zn].

In general, the Herbrand Universe will also contain "impure" elements that contain [] or [. I .]
but are not lists - for example s([]) or [s(O) I OJ where 0 is a constant and s a unary function
symbol. They will not cause any complications.

Left Termination

In this paper we consider SLDN F-resolution with one selection rule only - namely that of
Prolog, usually called the leftmost selection rule. As S in S LD N F stands for "selection rule",
we denote this form of resolution by L D N F (Linear resolution for Definite clauses with Negation
as Failure).

When studying termination of general Prolog programs, i.e. programs executed using the
LDN F-resolution it is necessary to revise the standard definitions of Lloyd [Llo87]. Indeed,
according to his definitions there is no LDN F-derivation for {p +- •P} U { +- p} whereas the
corresponding Prolog execution diverges.

The appropriate revision is achieved by viewing the LDN F-resolution as a top down inter
preter which given a program P and a goal G attempts to build a search tree for P U { G} by
constructing its branches in parallel. The branches in this tree are called LDN F-derivations for
P U { G} and the tree itself is called the L D N F-tree for P U { G}.

Negative literals are resolved using the negation as failure rule which calls for the construction
of a subsidiary search tree. H during this subsidiary construction the interpreter diverges, the
main LDN F-derivation is considered to be infinite. Adopting this view the LDN F-derivation

3

for {p +- •P} U { +- p} diverges because the goal +- p is resolved to +- •P and the subsequent

construction of the subsidiary LDN F-tree for {p +- -ip} U { +- p} diverges.

Summarizing, by termination of a general Prolog program we actually mean termination

of the underlying interpreter. By choosing variables of the input clauses and the used mgu's

in a fixed way we can assume that for every program P and goal G there exists exactly one

LDN F-tree for PU {G}. The subsidiary LDN F-trees formed during the construction of this

tree are called subsidiary LDN F-trees for PU {G}.
The following notion plays an important role in our considerations.

Definition 1.1 A program P is called left terminating if all LDN F-derivations of P starting

in a ground goal are finite. O

In other words, a program is left terminating if all LDN F-trees for P with a ground root are

finite. When studying Prolog programs, one is actually interested in proving termination of a

given program not only for all ground goals but also for a class of non-ground goals constituting

the intended queries. Our method of proving left termination will allow us to identify for each

program such a class of non-ground goals.
The following lemma will be of use later.

Lemma 1. 2 Suppose that all L D N F -derivations of P starting in a ground positive goal are

finite. Then P is left terminating.

Proof. It suffices to show that for all ground literals L all LD N F-derivations of PU { +- L} are

finite. When L is positive it is a part of the assumptions and when L is negative, say L = •A,
it follows from the fact that by assumption the subsidiary LDN F-tree for PU {+-A} is finite.

0

2 Acceptable Programs

Definitions

The subject of termination of Prolog programs has been studied in several articles (see Apt and

Pedreschi [AP90] for a short overview). Our approach to termination of general Prolog programs

is based on a generalization of the approach of Apt and Pedreschi [AP90]. We begin by recalling
the relevant notions.

A level mapping for a positive program P (see Bezem [Bez89] and Cavedon [Cav89]) is a

function I I : Bp -r N from ground atoms to natural numbers. For A E Bp, \A\ is the level of
A.

Definition 2.1 Let P be a positive program, 11 a level mapping for P and I a (not necessarily

Herbrand) model of P. P is called acceptable with respect to 11 and I if for every clause A +

B1, ... , Bn in ground(P)
IAI > IBil for i E [1, n],

where

n = min({n} u {i E [1,n] I I lf: Bi}).

Alternatively, we may define n by

4

P is called acceptable if it is acceptable with respect to some level mapping and a model of
P. o

Our aim is to generalize the above concept of acceptability to general Prolog programs.
First , we extend in a natural way a level mapping to a mapping from ground literals to natural
numbers by putting l•AI = IAI. Next, given a program P, we define its subset p-. In p- we
collect the definitions of the negated relations and relations on which these relations depend.
More precisely, we define p- as follows.

Definition 2.2 Let P be a program and p, q relations.

(i) We say that p refers to q iff there is a clause in P that uses p in its head and q in its body.

(ii) We say that p depends on q iff (p, q) is in the reflexive, transitive closure of the relation
refers to.

0

Of course, not every relation needs to refer to itself, but by reflexivity every relation depends
on itself.

Definition 2.3 Let P be a program. Denote by N egp the set of relations in P which occur in
a negative literal in a body of a clause from P and by N egp the set of relations in P on which
the relations in Neg p depend on. We define p- to be the set of clauses in P in whose head a

relation from N egj, occurs. D

We can now introduce the desired generalization of the notion of acceptability.

Definition 2.4 Let P be a program, I I a level mapping for P and I a model of P whose
restriction to the relations from N egp is a model of comp(p-). P is called acceptable with
respect to 11 and I if for every clause A - Li, ... , Ln in ground(P)

IAI > I Li I for i E [l, n],

where

n = min({n} u {i E [l,n] I I li= Li}).

P is called acceptable if it is acceptable with respect to some level mapping and a model of P
whose restriction to the relations from N eg'j, is a model of comp(P-). D

Note that for a positive program P we have N egj, = 0, so p- is empty and the above
definition coincides with the definition of acceptability for positive programs.

The concept of an acceptable program also generalizes that of an acyclic program studied in
Cavedon [Cav89] and Apt and Bezem [AB90].

5

Definition 2.5 Let P be a program, 11 a level mapping for P. P is called acyclic with respect
to I I if for every clause A t-- L1, ... , Ln in ground(P)

[A[> [Li[for i E [l, n].

P is called acyclic if it is acyclic with respect to some level mapping. 0

Lemma 2.6 Every acyclic program is acceptable.

Proof. Let P be acyclic w.r.t. some level mapping [[. By Theorem 4.1 of Apt and Bezem
[AB90] comp(P) has a unique Herbrand model, Mp. Then P is acceptable w.r.t. 11 and Mp. D

Apt and Bezem [AB90] proved among others that all S LDN F-derivations of an acyclic
program starting in a ground goal are finite. This implies that all acyclic programs are left
terminating, so the concept of acyclicity is of obvious importance when studying termination
of Prolog programs. Indeed, in Apt and Bezem [AB90] the usefulness of this concept was
demonstrated by proving termination of a program which formalizes the Yale Shooting problem
of Hanks and McDermott [HM87]. However, as we shall see in the final section of this paper, there
exist natural left terminating programs which are not acyclic. Thus the concept of acyclicity is
of limited applicability when considering Prolog programs.

M ultiset ordering

In our considerations below we use the multiset ordering. A multiset, sometimes called bag, is an
unordered sequence. Given a (non-reflexive) ordering< on a set W, the multiset ordering over
(W, <)is an ordering on finite multisets of the set W. It is defined as the transitive closure of
the relation in which X is smaller than Y if X can be obtained from Y by replacing an element
a of Y by a finite (possibly empty) multiset each of whose elements is smaller than a in the
ordering <.

In symbols, first we define the relation -< by

X -< Y iff X = Y - {a} U Z for some Z such that b < a for b E Z,

where X, Y, Z are finite multisets of elements of W, and then define the multiset ordering over
(W, <) as the transitive closure of the relation -<.

It is well-known (see e.g. Dershowitz [Der87]) that multiset ordering over a well-founded
ordering is again well-founded. Thus it can be iterated while maintaining well-foundedness.
What we need here is, as in Apt and Pedreschi [AP90], two fold iteration. We start with the
set of natural numbers N ordered by < and apply the multiset ordering twice. We call the first
iteration multiset ordering and the second double multiset ordering. Both are well-fonnded. The
double multiset ordering is defined on the finite multisets of finite multisets of natural numbers,
but we shall use it only on the finite sets of finite multisets of natural numbers. The following
simple lemma (see Apt and Pedreschi [AP90]) will be of help when using the double multiset
ordering.

Lemma 2. 7 Let X and Y be two finite sets of finite multisets of natural numbers. Suppose that

Vx EX 3y E Y (y majorizes x),

where y majorizes x means that x is smaller than y in the multiset ordering.
Then X is smaller than Y in the double multiset ordering.

6

Proof. We call an element y E Y majorizing if it majorizes some z E X. X can be obtained
from Y by first replacing each majorizing y E Y by the multiset My of elements of X it majorizes
and then removing from Y the non-majorizing elements. This proves the claim. D

Below we use the notation bag (ai, ... , an) to denote the multiset consisting of the unordered
sequence ai, ... , G.n·

Boundedness

Another important concept is that of boundedness, originally introduced in Bezem [Bez89]. It
allows us to identify goals from which no divergence can arise. Recall that an atom A is called
bounded w.r.t. a level mapping 11 if 11 is bounded on the set [A] of ground instances of A. If A
is bounded, then l[A]I denotes the maximum that 11 takes on [A). Note that every ground atom
is bounded.

Our concept of a bounded general goal directly generalizes that of a bounded goal given in
Apt and Pedreschi [AP90).

Definition 2.8 Let P be a program, 11 a level mapping for P, I model of P whose restriction
to the relations from N egj, is a model of comp(P-) and k ~ 0.

(i) With each gr01md general goal G = +- L1, .. . , Ln we associate a finite multiset IGlr of
natural numbers defined by

where
n = min({n} u {i E [l,n] I I li: Li}).

(ii) With each general goal G we associate a set of multisets I [G] 11 defined by

l[G]l1 = {IG'lr I G' is a ground instance of G}.

(iii) A general goal G is called bounded by k w.r.t. 11 and I if k ~ l for l E Uj[GJl1 , where
Ul[G]l1 stands for the set-theoretic union of the elements of l[G]l1 .

(iv) A general goal is called bounded w .r. t. I I and I if it is bounded by some k ~ 0 w .r. t. I I
and J.

0

It is useful to note the following.

Lemma 2.9 Let P be a program, 11 a level mapping for P and I a model of P whose restriction
to the relations from Negp is a model of comp(P-). A general goal G is bounded w.r.t. 11 and
I iff the set I [G] 11 is finite.

Proof. Consider a general goal G that is bounded by some k. Suppose that G has n atoms.
Then each element of l[G]l1 is a multiset of at most n numbers selected from [O, k]. The number
of such multisets is finite.

The other implication is obvious. 0

The following lemma is an analogue of Lemma 3.7 of Apt and Pedreschi [AP90]. Recall that
a goal is called positive if it contains only positive literals.

7

Lemma 2.10 Let P be a program that is acceptable w.r.t. a level mapping 11 and an interpre
tation I. Let G be a goal which is a descendant of a positive goal and which is bounded (w.r.t.

I I and I) and let H be an LD N F-resolvent of G from P. Then

(i) H is bounded,

(ii) l[H]l1 is smaller than l[G]l1 in the double multiset ordering.

Proof. The proof is analogous to the proof of Lemma 3.7 of Apt and Pedreschi [AP90]. Due to
the presence of negative literals we only have to consider one additional case.

Let G =+-Li, ... , Ln (n 2: 1). For some literals Mi, .. ., Mk (k 2: 0) and a substitution() we

have H = +- (Mi, .. ., Mk, L2, .. ., Ln)O.
First we show that for every ground instance Ho of H there exists a ground instance G' of

G such that IHol1 is smaller that IG'l1 in the multiset ordering.

Case 1 H is obtained from G by the negation as failure rule.
Then Li is a grmmd negative literal, say Li =-,A, and H = +- L2, .. . , Ln, i.e. k = 0 and()= E

(E stands for the empty substitution).
Denote by T the finitely failed LDN F-tree for P U {+-A}. By the definition of N egp

and the fact that G is a descendant of a positive goal, the relation occurring in A is in N egp.

Thus all relations which occur in the goals of the tree T are elements of N egj,. So T is in fact
a :finitely failed LDN F-tree for p- U {+-A}. By the soundness of the SLDN F-resolution,
comp(P-) I= -,A, so I I= Li.

Let Ho be a ground instance of H. For some substitution 8

Ho = +- L~, .. . , L~,

where L~ denotes Li8· Thus

is a ground instance of G. Then

IHo\1 = bag (IL~j, .. ., IL~I)

where
n = min({n} u {i E [2,n] II li= Li}).

and, since I I= Li,

IG'l1 = bag (\Li\, IL~I, .. ., \L~j).

This shows that \Holl is smaller than \G'l1 in the multiset ordering. D

Case 2 H is obtained from G by the proper resolution step.
Then Li is a positive literal, so for some atom A, C = A +- Mi, .. ., Mk is an input clause of P
and () is an mgu of A and Li. Let Ho be a ground instance of H. For some substitution 8

Ho=+- M~, .. ., M~, L~, .. . , L~,

8

where for brevity for any atom, clause or goal M, M' denotes M66. Note that

and

since A' = L~ as A9 == L19.

Subcase 1 For i E [l, kJ IF Mf.
Then

where

C' = L~ +-- M:, ... , Mk

G' = ..- L~, .. .,L~,

n = min({n}u {i E [2,n] II~ LH).

Additionally I F= Li because I is a model of Panda fortiori a model of the clause C'. Thus

IG'l1 = bag(IL~I. IL~j, ... ,jL~I).

This means that IHol1 is obtained from [G'i1 by replacing IL~I by [M{i, ... , IMkl· But by the
definition of acceptability

IMfl < JL~I

for i E [l, k], so /Hol1 is smaller than JG'l1 in the multiset ordering.

Subcase 2 For some i E [1, kJ I~ Mf.
Then

IH0!1 = bag(IM{I, ... , IMW

where
k== min({iE[l,k]II~Mf}).

Also, by the definition of acceptability

\Mfl < \L~\

for i E [l, k], so JH0!1 is smaller than IG'l1 in the multiset ordering.

0

0

0

The statement we just proved implies claim (i) since G is bounded. By Lemma 2.9 l[H]l1 is
finite and claim (ii) now follows by Lenuna 2.7. D

Corollary 2.11 Let P be an acceptable program and G a bounded positive goal. Then all
LDN F-derivations of PU {G} are finite.

Proof. The double multiset ordering is well-fowided. 0

Corollary 2.12 Every acceptable program is left terminating.

9

Proof. By the fact that every ground goal is bounded, Corollary 2.11 and Lerruna 1.2. D

Thus to prove that a program is left terminating it suffices to show that it is acceptable.
To apply Corollaries 2.11 and 2.12 we need a method for verifying that an interpretation is

a model of comp(P-). In the case of Herbrand interpretations this task becomes much simpler
thanks to the following theorem due to Apt, Blair and Walker [ABW88]. Here an interpretation
is supported if for all ground atoms A, I I== A implies that for some clause A<---- Li, ... , Ln in

ground(P) we have I I== Li /\ ... /\ Ln.

Theorem 2.13 A Herbrand interpretation I is a model of comp(P) ifj it is a supported model
of P. o

3 Acceptability versus Left Termination

The converse of Corollary 2.12 does not hold. This is in contrast to the case of positive programs.
Below we say that an LDN F-derivation flounders if there occurs in it or in any of its subsidiary
LDN F-trees a goal with the first literal being non-ground and negative. An LDN F-tree is
called non-floundering if none of its branches flounders.

Example 3.1 Consider the program P which consists of only one clause: p(O) ...- --ip(X). Then
the only LDN F-derivation of PU { ...- p(O)} flounders, so it is finite. By the definition of
SLDN F-resolution the only LDN F-derivation of PU { ...- -ip(O)} flounders, as well. Thus P is
left terminating, since the only ground goals are of the form G == <---- Li, ... , Ln (n 2 1) where
each Li is either p(0) or -ip(0). On the other hand P is not acceptable since p(0) <---- --ip(0) is in
ground(P) and by definition for any level mapping lp(O)I == l-ip(O)I. D

The above example exploits the fact that S LD N F-derivations may terminate by floundering.
We now show that in the absence of floundering Corollary 2.12 can be reversed. We proceed
analogously to the case of positive programs and study the size of finite LD N F-trees. We need
the following lemma, where nodesp(G) for a program P and a goal G denotes the total number
of nodes in the LD N F-tree for P U { G} and in all the subsidiary LD N F-trees for P U { G}.

Lemma 3.2 Let P be a program and G a goal such that the LDN F-tree for PU {G} is finite
and non-floundering. Then

(i) for all substitutions 0, the LDN F-tree for PU {GO} is finite and non-floundering and
nodesp(GO) ::; nodesp(G),

(ii) for all prefixes H of G, the LDN F-tree for PU {H} is finite and non-floundering and
nodesp(H) :S nodesp(G),

(iii) for all non-root nodes H in the LDN F-tree for PU {G}, nodesp(H) < nodesp(G).

Proof.
(i) The proof proceeds by structural induction on the LDN F-tree T for PU {G}.

The Base Case. Then T is formed by the only node G. The following three subcases arise.

Subcase 1 G ==D. Then G ==GO, and the claim trivially holds.

10

Subcase 2 G = +-A, L2, ... , Lk. Then A does not unify with the head of any clause in P and
neither AO does. As a consequence, the goal GO also immediately fails, and the LDN F-tree T
for PU {GB} is formed by the only node GO.
Subcase 3 G = +--,A, L2, ... , Lk. By the fact that T has no :floundering derivation, A is
ground. The goal G immediately fails, so by the definition of the LD N F-resolution there is
an LDN F-refutation of PU {+--A}. Then GO also immediately fails as A = AO. Hence the
LDN F-tree T for PU {GB} is formed by the only node GO. By definition

nodesp(G()) = 1 + nodesp(+--AO)= 1 + nodesp(+--A)= nodesp(G).

The Induction Case. Two subcases arise here.

Subcase 1 G = +--A, L2, .. ., Lk. Assume that Hi, ... , Hm are the resolvents of G from P.
Consider GO= +--(A, L2, .. . , Lk)O, and let H{, .. . , H{ be the resolvents of GO from P. Clearly,
for all i in [1, l] there exist j in [1, m] and a substitution 8 such that HJ= Hj8. By the induction
hypothesis, nodesp(Hi) S nodesp(Hj)· Hence:

nodesp(GO) = 1 + nodesp(Hn + ... + nodesp(Hf) s
1 + nodesp(H1) + ... + nodesp(Hm) = nodesp(G).

Moreover, the LDN F-tree for PU {GO} is finite and non-floundering and by the induction
hypothesis the LDN F-trees for the resolvents of GO are finite and non-floundering.
Subcase 2 G = +--,A, L2 , ..• , Lk. By the fact that T has no floundering derivation, A is
ground. The fact that G is not a terminal node in T implies that there exists an LDN F
refutation of P U { +---,A}, i.e. the LDN F-tree for P U {+-A} is finitely failed. Then G
has only one resolvent, namely +-- L2, .. . , Lk. Moreover, GO = +---,A, (L 2 , •• • , Lk)O, since
A is ground, so +- (L 2, .. . , Lk)B is the only resolvent of GO. By the induction hypothesis,
nodesp(+-- (L2, ... , Lk)O) S nodesp(+-- L2, .. . , Lk)· Hence:

nodesp(GO) = 1 + nodesp(+--A)+ nodesp(+-- (L2, .. ., Lk)O) S
1 + nodesp(+--A)+ nodesp(+-- L2, .. ., Lk) = nodesp(G).

Moreover, the LDN F-tree for PU {GO} is finite and non-floundering, since by the induction
hypothesis the LDN F-tree for the resolvent of GO is finite and non-floundering.

(ii) Consider a prefix H = +--Li, ... , Lk of G = +- L1, .. . , Ln (n 2:: k). By an appropriate re
naming of variables (formally justified by a straightforward extension to the LDN F-resolution
of the Variant Lemma 2.8 in Apt [Apt90]) we can assume that all input clauses used in the
LDN F-tree for PU {H} have no variables in common with G. We can now transform the
LDN F-tree for PU {H} into an initial subtree of the LDN F-tree for PU {G} by replacing
in it a node +-Mi, ... , Mz by +-Mi, ... , Mz, Lk+18, .. . , LnB, where 0 is the composition of the
mgu's used on the path from the root H to the node +--Mi, ... , Mz. This implies the claim,
since every subsidiary LDN F-tree for PU {H} is also a subsidiary LDN F-tree for PU {G}.

(iii) Immediate by the definition. 0

The following definition will now be useful.

Definition 3.3 We call a program P non-floundering if all its LDN F-derivations starting in a
ground goal are non-flonndering.

11

Theorem 3.4 Let P be a left terminating, non-floundering program. Then for some level map

ping 11 and a model I of comp(P)

(i) P is acceptable w.r.t. 11 and I,

(ii) for every goal G, G is bounded w.r.t. 11 and I iff all LDN F-derivations of PU {G} are

finite.

Proof. Define the level mapping by putting for A E Bp

!Al = nodesp (-A).

Since P is left terminating, this level mapping is well defined. Note that by definition, for
A E Bp

nodesp(- •A)> nodesp(- A)= IA!= !•A!,
so

nodesp(- •A) ~ !•Al.
Next, choose

I= {A E Bp I there is an LDN F-refutation of PU {-A}}.

Let us show that I is a model of comp(P). To this end, we use Theorem 2.13 and show that I
is a supported model of P.

To establish that I is a model of P, assume by contradiction that some ground instance
A - Li, ... , L~ of a clause C from P is false in J. Then I!= Li /\ ... /\ L~ and I [;i: A. Since P
is left terminating and non-floundering, I [;i: A implies that the LDN F-tree for PU {-A} is
finitely failed and non-floundering.

For some ground substitution 'Y, A = B1 where B is the head of the clause C. Thus
A1 = B11 = B1, so A and B unify.

Let - Li, ... , Ln be the resolvent of - A from the clause C. The LDN F-tree for PU
{ - Li, ... , Ln} is also finitely failed and non-floundering. As Li, ... , L~ = (L1, ... , Ln)O for
some substitution 0, we have by Lemma 3.2(i) that the LDN F-tree for PU { - Li, ... , L~} is
non-floundering. Moreover, it is finitely failed, since a direct consequence of the proof of Lemma
3.2(i) is that the goals present in the LDN F-tree for PU { - Li, ... , L~} are all instances of
the goals present in the LDN F-tree for PU { ;- L1, ... , Ln}· But the fact that the LDN F-tree
for P U { ;- Li, ... , L~} is finitely failed and non-floundering contradicts the hypothesis that
I!= Li /\ ... /\ L~.

To establish that I is a supported interpretation of P, consider A E Bp such that I I=
A, and let C be the first input clause used in the leftmost LDN F-refutation of PU { - A}.
Let ;- L1, ... , Ln be the resolvent of ;- A from the clause C. Clearly, an LDN F-refutation
for PU { ;- £ 1, ... , Ln}, with a computed answer substitution 0, can be extracted from the
LDNF-refutation of PU {-A}. Let Li,·· .,L~ be a ground instance of (Li, ... ,Ln)O. By a
straightforward generalization of Lemma 3.20 in [Apt90] to the LDN F-resolution there exists
an LDN F-refutation for PU {;-Li, ... , L~}. We conclude that I != Li /\ ... /\ L~. This
establishes that I is a supported interpretation of P.

We are now in the position to prove (i) and (ii). First we prove one implication of (ii).

(iil) Consider a goal G such that all LD N F-derivations of PU { G} are finite. We prove that G
is bounded by nodesp(G) w.r.t. 11 and I.

12

To thls end take f E Ul[GJl1. For some ground instance +- L1, ... , Ln of G and i E [1, n],
where

n = min({n} U {i E [1,n] I I~ Li}),

we have f = \Li\. We now calculate

nodesp(G)

> {Lemma 3.2 (i)}

nodesp(+- Li, . .. , Ln)

> {Lemma 3.2 (ii)}

nodesp(+-Li, ... , Ln)

> {Lemma 3.2 (iii), noting that for j E [l,n -1]

there is an LDN F-refutation of PU { +- L 1 , ... , Lj}}

nodesp(+-Li, ... , Ln)

> {Lemma 3.2 (ii)}

nodesp (+- Li)

> {definition of I \, Li is ground}

\Li\
f.

(i) We now prove that P is acceptable w.r.t. 11 and J. We showed that I is a model of comp(P),
so the restriction of I to the relations in N egj, is trivially a model of comp(P-). To complete
the proof, take a clause A +- Li, ... , Ln in P and its ground instance AB +- LiB, .. . , LnB. We
need to show that

where
ii= min({n} U {i E [l,n] I I~ LiO}).

We have ABO := AB, so AO and A unify. Let µ = mgu(AB, A). Then B = µ6 for some 6. By
the definition of LDN F-resolution, +- L1µ, .. . , Lnµ is an LDN F-resolvent of+- AO.

Then for i E [1, n]

IA&I
{definition of 11}

nodesp (+- AO)

> {Lemma 3.2(iii), +- Liµ, . .. , Lnµ is a resolvent of +- AO}

nodesp (+- Liµ, ... , Lnµ)

> {part (iil),notingthat Li& E UI[+- L1µ, ... ,Lnµ]l1}

ILiO\.

13

(ii2) Consider a goal G which is bounded w.r.t. I I and J. Then by (i) and Corollary 2.10 all
LDN F-derivations of PU {G} are finite. D

Corollary 3.5 A non-floundering program is left terminating ijJ it is acceptable.

Proof. By Corollary 2.12 and Theorem 3.4. 0

4 Semantic Considerations

In this section we study semantics of acceptable programs. We show here that various ways of
defining their semantics coincide.

We recall first the relevant definitions and results. We use below Fitting's approach to the
semantics of general programs. Fitting [Fit85] uses a 3-valued logic based on a logic due to
Kleene [Kle52]. In Kleene's logic there are three truth values: t for true, f for false and u for
undefined.

A Her brand interpretation for this logic (called a 3-valued Herbrand interpretation) is defined
as a pair (T, F) of disjoint sets of ground atoms. Given such an interpretation I = (T, F) a
ground atom A is true in I if A E T, false in I if A E F and undefined otherwise; •A is true in
I if A is false in I and •A is false in I if A is true in I.

Every binary connective takes the value t or f if it takes that value in 2-valued logic for all
possible substitutions of u's by t or f; otherwise it takes value u.

Given a formula </> and a 3-valued Herbrand interpretation I, we write </> is true3 in I
(respectively </>is f alse3 in I) to denote the fact that </> is true in I (respectively that </> is false
in I) in the above defined sense.

Given I= (T, F) we denote T by J+ and F by 1-. Thus I= (l+, J-). If l+ U l- = Bp, we
call I a total 3-valued Herbrand interpretation for the program P.

Every (2-valued) Herbrand interpretation I for a program P determines a total 3-valued
Herbrand interpretation (l, Bp - l) for P. This allows us to identify every 2-valued Herbrand
interpretation I for a program P with its 3-valued counterpart (I, Bp -I). For uniformity, given
a {2-valued) Herbrand interpretation l we write </> is true2 in I instead of I I= </> and </> is jalse2
in l instead of I ~ </>. The following proposition relates truth in 3- and 2-valued intepretations
and will be useful later.

Proposition 4.1 Let I be a 3-valued interpretation and L a literal. Then

(i) L is true3 in I implies L is true2 in]+,

(ii} L is true2 in J+ implies L is not falsea in I, i.e. L is either true3 or undefined in I.

Proof.
(i) If L = A, L is truea in I implies A E J+, hence A is true2 in J+. If L = •A, •A is truea in
I implies A E l-, which implies A rt]+. Hence -iA is true2 in J+.
(ii) If L = A, Lis true2 in J+ implies A E J+, hence A is true3 in I. If L = -,A, •A is true2 in
]+ implies A rt]+. Hence •A is either true3 or undefined in J. D

Given a program P, the 3-valued Herbrand interpretations for P form a complete partial
ordering with the ordering ~ defined by

14

and with the least element (0, 0). Note that in this ordering every total 3-valued Herbrand
interpretation is ~-maximal. Intuitively, I~ J if J decides both truth and falsity for more
atoms than I does.

Following Fitting [Fit85], given a program P we define an operator <t> p on the complete
partial ordering of 3-valued Herbrand interpretations for P as follows:

tp(J) = (T, F),

where

T = {A I for some A+- L1, ... , Lk in ground(P), L1 /\ ... /\ Lk is truea in J},
F = {A I for all A+- L1, ... , L1e in ground(P), L1 /\ ... /\ L1e is falsea in J}.

It is easy to see that T and F are disjoint, so tp(J) is indeed a 3-valued Herbrand interpre
tation. <t> p is a natural generalization of the usual inunediate consequence operator Tp to the
case of 3-valued logic. <t> p is easily seen to be monotonic.

The upward ordinal powers of tp, denoted by tp j a, are defined in the usual way starting
the iteration at the ~ -least 3-valued Herbrand interpretation, (0, 0). In particular

tp i w = LJ tp in.
n<w

Before studying semantics of acceptable programs we prove a number of auxiliary results
about the operators Tp . and t p. The following lemma relates these two operators.

Lemma 4.2 Let I be a 3-valued interpretation and P a program. Then

tp(J)+ ~ Tp(J+) ~ Bp - tp(J)-.

Moreover, if I is total then tp(J)+ = Tp(J+) = Bp - tp(J)-.

Proof. By definition of Tp and <Pp we obtain:

A E Tp(J)+ iff for some A+- L 1 , ... , L1e in ground(P) Li /\ ... /\ L1e is truea in I,
A E Tp(J+) ifffor some A+- L1, ... , L1e in ground(P) Li/\ ... /\ L1e is true2 in J+,
A E Bp - <Pp(!)- iff for some A+- Li, ... , L1e in ground(P) L1 /\ ... /\ L1e is not falsea in I.

Hence, the implication A E Tp(I)+ '* A E Tp(J+) (respectively A E Tp(J+) => A E

Bp - i!>p(l)-) directly follows from Proposition 4.l(i) (respectively Proposition 4.l(ii)).
If I is total, then L 1 /\ ... /\ L1e is true3 in I iff Li /\ ... /\ L1e is true2 in J+ iff L1 /\ ... /\ L1e

is not false3 in I. D

The following corollaries relate the fi.x:points of the operators Tp and <t> p.

Corollary 4.3 Let I= (J+, Bp -J+) be a total 3-valued interpretation and P a progrom. Then
J+ is a fixpoint of Tp if and only if I is a fixpoint of cp p.

Proof.
(=>) Assume J+ = Tp(J+). By Lemma 4.2 we have tp(J)+ = Tp(J+) = Bp - <t>p(It. Hence
J+ = i!>p(J)+ and I-= Bp - J+ = ilip(J)-, i.e. I= i!>p(J).
(<:=) Assume I = q; p (I). Then by Lemma 4. 2 we have

1+ = <Pp(J)+ £;; Tp(J+) £;; Bp - tp(I)- = Bp - r- = r+.

Hence 1+ is a :fi.xpoint of Tp. 0

15

Corollary 4.4 If <I> p has exactly one fixpoint I and I is total, then J+ is the unique fixpoint of
Tp.

Proof. By Corollary 4.3. D

The fix.points of the operator Tp are of interest for us because of the following result of Apt,
Blair and Walker [ABW88].

Theorem 4.5 A Herbrand interpretation I is a model of comp(P) iff it is a fixpoint of Tp. D

Corollary 4.6 If I is a Herbrand model of comp(P) then <l>p T w i;;;; (I, Bp - I).

Proof. Suppose I is a Her brand model of comp(P). Then by Theorem 4.5 I is a fixpoint of Tp,
so by Corollary 4.3 (I, Bp - I) is fix.point of <I> p. By the monotonicity of <I> p the least fix.point of
<l>p, lfp(<l>p), exists and <Pp T w i;;;; lfp(if!p). But lfp(<l>p) i;;;; (I, Bp-1), so <l>p T w i;;;; (I, Bp-I).

D

We are now ready to analyze the semantics of acceptable programs.

Theorem 4. 7 Let P be an acceptable program w. r. t. 11 and I. Then if! p T w is total.

Proof. To establish that <l?p T w is total we prove that, for n E wand A E Bp, IAI = n implies
that A is not undefined in <l>p T (n + 1), i.e. A is either true3 or false3 in <l?p T (n + 1). The
proof proceeds by induction on n. Fix A E Bp.

In the base case we have IA! :::: 0 and since P is acceptable, two possibilities arise: (i) there is
a unit clause A+-- in ground(P) and (ii) there is no clause in ground(P) with A as conclusion.
In case (i) A is true3 in if!p T 1, and in case (ii) A is false3 in if!p T 1.

In the induction case we have IA! :::: n > 0. Consider the set CA of the clauses in ground(P)
with A as conclusion. If CA is empty then A is f alse3 in if! p T 1 and, by the monotonicity of
<l>p, it is false 3 in iI>p T (n + 1). If CA is non-empty, take a clause A+-- L1, .. ., Lk from CA,
and let k = min({k} U {i E [1, k] I Li is false2 in J}. We now prove that L1 /\ ... /\ Lk is not
undefined in <l>p T n. To this end we consider two subcases.

Suhcase 1. k = k and L1. is true2 in I. Then, by the acceptability of P, n = IAI > IL1.I for
i E [l, k]. By the induction hypothesis Li is either true3 or false3 in <l>p T n, for i E [1, k].

Suhcase 2. k ::S k and L;;, is false2 in I. Then n = !Al > ILk! for i E [1, k]. By the induction
hypothesis, Li is either true3 or false3 in if!p T n, for i E [1, k]. Moreover, we claim that Lk is
f alse3 in <Pp T n. To establish this point, the following two possibilities have to be taken into
account.

Suppose the relation occurring in L;:,, is in N egj,. A simple proof by induction on n shows
that if! p T n and iI> p- T n coincide on the relations in N egj,. Thus L;;, is true3 in <I? p j n implies
Lk is true3 in <l>p- T n. Hence, by Corollary 4.6 and Proposition 4.l(i), Lk is true2 in the
restriction of I to the relations in N egj, which is a model of comp(p-). This contradicts the
fact that L;;, is f alse2 in J.

If the relation occurring in L;;, is not in Neg[,, then L;;, is a positive literal. We show that
in this case L;;, is true3 in <Pp T n implies L;; is true2 in I by induction on the stage i at which

16

Lk becomes true3 in <I> p i i. For i = 0 there is nothing to prove. If Lk becomes true3 in
<l>p j i, then there is a clause Lk +---Mi, ... , Mm in ground(P) with Mi/\ ... /\ Mm being true3
in <I> p j (i - 1). For j E [1, m], if the relation occurring in Mj is in N egj,, then Mj is true3 in
<l>p j (i - 1) implies Mj is true2 in I by Corollary 4.6 and Proposition 4.l(i). If the relation
occurring in Mj is not in N egj,, then Mj is true3 in <I> p j (i - 1) implies Mj is true2 in I by the
induction hypothesis. Hence Mi /\ ... /\ Mm is true2 in J, which implies Lk is true2 in I, since
I is a model of Lk +---Mi, ... , Mm. This contradicts the fact that L-k is false2 in J.

In both Subcase 1 and 2, we have that L1 /\ ... /\ L1e is not undefined in <l>p i n, as it is
either true3 or false3 in Subcase 1, and false3 in Subcase 2. As a consequence, A is either
true3 or false3 in <l>p i (n + 1), which establishes the claim. D

Corollary 4.8 Let P be an acceptable program. Then <I> p j w is the unique fixpoint of <I> p.

Proof. We have <l>p j w ~ <l>p j (w + 1), i.e. <l>p j w ~ <J?p(<J?p j w). By Theorem 4.7 <l>p i w
is total, so in fact <I> p j w = .Pp(<I> p j w), i.e. ii> p j w is a fi.xpoint of <I> p. Moreover, by the
monotonicity of <I> p, every fi.xpoint of <I> p of the form <I> p j Q is contained in any other fi.xpoint,
so in fact <I> p i w is the unique fi.xpoint of <I> p. D

The following corollary summarizes the relevant properties of Mp = <I> p i w.

Corollary 4.9 Let P be an acceptable program. Then

(i) Mp is total,

(ii) M p is the unique fixpoint of <I> p,

(iii) Mp is the unique 3-valued Herbrand model of comp(P),

(iv) Mt is the unique fixpoint of Tp,

(v) Mt is the unique Herbrand model of comp(P),

(vi) for all ground atoms A such that no LDN F-derivation of PU {+---A} flounders,

A E Mt iff there exists an LD N F-refutation of P U { +--- A}.

In particular, this equivalence holds for all ground atoms A when P is non-floundering.

Proof.
(i) By Theorem 4.7.
(ii) By Corollary 4.8.
(iii) By (ii) and the result of Fitting [Fit85] stating that a 3-valued Herbrand interpretation is
a model of comp(P) iff it is a fi.xpoint of <I> p.

(iv) By Theorem 4. 7 and Corollaries 4.8 and 4.4.
(v) By Theorem 4.5.
(vi) Consider a ground atom A such that no LDN F-derivation of PU {+---A} flounders. By the
soundness of the SLDN F-resolution and (v) if there exists an LDN F-refutation of PU {+---A}
then A E Mt. To prove the converse implication assume A E Mt. By Corollary 2.11 all
LDN F-derivations of P U { +---A} are finite. Suppose by contradiction that none of them is

17

successful. Then the LDN F-tree for PU {+-A} is non-floundering and finitely failed. By the
soundness of the SLDN F-resolution and (v), Mt f= -,A, i.e. A ft MJ which is a contradiction.

D

Clause (vi) of the above Corollary can be seen as a completeness result for acceptable pro
grams relating the LDN F-resolution to the model Mt.

5 Applications

Theorem 3.4 shows that our method of proving termination based on the concepts of acceptabil
ity and bormdedness is complete for left terminating, non-floundering general Prolog programs.
In this section we illustrate its use by proving termination of two simple, well-known programs.
None of them can be handled within the framework of Apt and Bezem [AB90].

A GAME Program

Suppose that Q is an acyclic finite graph. Consider the following program GAME:

win(X) +- move(X,Y),...., win(Y).
move(a, b) +- for (a,b) E Q.

Lemma 5.1 GAME is not acyclic.

Proof. For any ground instance win(a) +- move(a, a), -,win(a) of the first clause and a level
mapping I! we have lwin(a)I = 1-,win(a)I. D

We now proceed to show that GAME is acceptable. Since Q is acyclic and finite, there exists
a function f from the elements of its domain to natural numbers such that for a E dom(Q)

a={ 0 iffornob,(a,b)EQ
!() 1 + ma:z: {!(b) I (a, b) E Q} otherwise.

We define appropriate level mapping by putting for all (a, b) E dom(Q)

!move(a, b)J = f(a)

and for a E dom(Q)

lwin(a)I = f(a) + l.

Next, since Q is acyclic and finite, there exists a function g from the elements of its domain
to {O, l} such that for a E dom(Q)

_ { 0 if for no b, (a, b) E Q
g(a) - 1 - min {g(b) I (a,b) E Q} otherwise.

Let

I {move(a, b) I (a, b) E Q}
U {win(a) I g(a) = 1}.

18

Lemma 5.2 I is a model of comp(GAME).

Proof. The following two statements hold.
(a) I is a model of GAME.

Indeed, consider a ground instance

win(a)+---- move(a, b), --iwin(b)

of the first clause of GAME and suppose that

I\= move(a, b) /\ --iwin(b).

Then (a, b) E Q and g(b) = 0, so g(a) = 1 and consequently

I\= win(a).

Additionally, I is a model for all move clauses.

(b) I is a supported interpretation of GAME.

Indeed, consider an atom win(a) EI. Then g(a)::::: 1, so for some b E 9 we have (a, b) E 9
and g(b) = 0. We conclude that

I\= move(a,b) /\ -iwin(b).

By Theorem 2.13 we conclude that I is a model of comp(GAME). 0

We can now prove the desired result.

Theorem 5.3 GAME is acceptable w.r.t. 11 and I.

Proof. For a program P every model of comp(P) is also a model of P, thus I is a model of
GAME. Moreover, GAME- ::::: GAME.

Consider a ground instance

win(a)+---- move(a, b), -iwin(b)

of the first clause of GAME. Then by definition

lwin(a)I = f(a) + 1 > f(a) = lmove(a,b)I.

Suppose now that I\= move(a, b). Then move(a, b) E I, so (a, b) E 9 and consequently f(a) >
f(b). Thus

lwin(a)I = f(a) + 1>f(b)+1 = l-iwin(b)I.

Corollary 5.4 GAME is left terminating.

Proof. By Corollary 2.12.

Corollary 5 .5 For all terms t, the goal +---- win(t) is bounded w. r. t. 11 and I.

0

0

Proof. The goal +---- win(t) is bounded by ma2! {f(a) + l I a E dom(Q)}. Note that because of
the syntax of GAME, t is either a variable or a constant. In the latter case we can improve the

bound to f(t) + 1. D

Corollary 5.6 For all terms t, all LDN F-derivations of GAME U { +---- win(t)} are finite.

Proof. By Corollary 2.11. 0

19

Transitive Closure

Consider the following program computing the transitive closure of a graph.

(r1) r(X,Y,E,V) +

member([X,Y] ,E).
(r2) r(X,Z,E, V) +

member([X,Y] ,E),
--, member(Y, V),
r(Y ,Z,E, [YIV]).

(m1) member (I , [I I T]) +- .

(m2) member(!, [YIT]) +

member (I, T) .

In a typical use of this program one evaluates a goal +- r(x, y, e, []) where x, y are nodes
and e is a graph specified by a list of its edges. The nodes of e belong to a finite set A. This
goal is supposed to succeed when [x, y] is in the transitive closure of e. The last argument of
r(x, y, e, v) acts as an accumulator in which one maintains the list of nodes which should not be
reused when looking for a path connecting x with yin e (to keep the path acyclic).

To ensure that the elements of A are in the Herbrand Universe of the program we add to
the program the clauses

(e) element(a) +- for a EA,

and call the resulting program TRANS.

Lemma 5. 7 TRANS is not acyclic.

Proof. By Lemma 4.1 of Apt and Bezem [AB90] all S LDN F-derivations of an acyclic program
P starting with a ground goal are finite. Thus it suffices to exhibit an infullte S LD N F-derivation
of TRANS starting in a ground goal. Such a derivation is obtained by using the rightmost selection
rule and starting with the ground goal +- r(x, z, e, v) repeatedly using clause (r2). D

We now prove that TRANS is acceptable. Below we call a list consisting of two elements a
pair.

First, we define by structural induction two functions on ground terms. We denote the first
function by I I:

J[xlxs]I =-~ Jxsl + 1,
lf(x1, .. .,xn)I = Oif f /; [. J .].

Then for a list xs, Jxsl equals its length. We denote the second function by set:

set([xJxs]) = {x} U set(xs),
set(f(x1, .. .,xn))= 0if/:j: [.!.].

Then for a list xs, set(xs) is the set of its elements.

20

Define now a Herbrand interpretation l by

l = [r(X, Y, E, V)] U Ii U {element(z) I 2l EA}

where

11 = {member(z, zs) I z E set(zs)}.

Recall that for an atom A, [A] stands for the set of all ground instances of A.
We now prove two lenunata about l and Ii.

Lemma 5.8 I is a model of TRANS.

Proof. I is clearly a model of (r1), (r2) and of the clauses (e). I is also a model of the clauses
(m1) and (m2) because by definition a: E set([zlt]) holds and z E set(t) implies a: E set([ylt]). D

Lemma 5.9 Ii is a model of comp(TRANs-).

Proof. Note that TRANS- = {(m1), (m2)}. We prove that Ii is a supported interpretation of
{(m1),(m2)}. Consider an atom member(2l,zs) E 11 • We prove that there exists a gronnd
instance member(a:, zs) +- L1, ... , Ln of (mi) or (m2) such that I I= L1 A ... A Ln.

By definition z E set(2ls), so for some y and t we have a:s = [yit] and a: E {y} U set(t). If
z = y, then :cs = [zlt], and the desired clause is an instance of (m1). Otherwise z E set(t), so
member(:c, t) El, i.e. l I= member(2l, t). In this case the desired clause is an instance of (m2).

By Lemma 5.8 11 is a model of {(m1), (m2)}, so by Theorem 2.13 we now conclude that 11
is a model of comp({(m1), (m2)}). D

We now define an appropriate level mapping. It is clear that by putting

lmember(:i:,y)I = IYI

we obtain the desired decrease for clause (m 2). Having made this choice in order to obtain the
desired decrease for clause (r 1) we need to have

lr(:c, z, e, v)I > lei- (1)

Additionally, to obtain the desired decrease for clause (r2) we need to have (assuming that
l I= member([:c, y], e))

lr(z, z, e, v)I > lvl (2)

and, assuming

If= member([z, y], e) A --,member(y, v), (3)

we need to prove

lr(2l,z,e,v)I > lr(y,z,e,[ylv])J. (4)

To define Jr(z, z, e, v)J we first define two auxiliary functions. Let

nodes(e) = {z I for some pair b, z E set(b) and b E set(e)}.

21

If e is a list of pairs that specifies the edges of a graph g, then nodes(e) is the set of nodes
of Q.

Let
out(e, v) = {z I z E nodes(e) and z (j set(v)}.

If e is a list of pairs that specify the edges of a graph 9 and v is a list, then out(e, v) is the
set of nodes of g that are not elements of v.

We now put

lr(z, z, e, v)I =lei+ lvl + 2 ·card out(e, v) + 1,

where card X stands for the cardinality of the set X.
Then (1) and (2) hold. Assume now (3). Then [x,y] E set(e) and y ~ set(v). Thus

y E nodes(e) and consequently y E out(e,v).

On the other hand set([ylv]) = {y} U set(v). Thus y rJ. out(e,[ylv]) and out(e,v) = {y} U

out(e, [ylv]) so card out(e, u) =card out(e, [ylv]) + l.
We now have

lr(x, z, e, v)I = lei+ lvl + 2 ·card out(e, v) + 1

which proves (4).

= lei+ lvl + 2 ·card out(e, [ylv]) + 3
> iel + i[ylv]I + 2 ·card out(e, [ylv]) + 1
= lr(y, z, e, [ylv])I

Sununarizing, we proved the following result.

Theorem 5.10 TRANS is acceptable w.r.t. 11 and I.

Corollary 5.11 TRANS is left terminating.

Proof. By Corollary 2.12.

0

0

Corollary 5.12 For all terms x,y and lists e,v, the goal +-r(x,y,e,v) is bounded w.r.t. 11

and I.

Proof. The goal +- r(x,y,e,v) is bounded by le!+ lvl + 2 ·card out(e,v) + l.

Corollary 5.13 For all terms x, y and lists e, v, all LDN F-derivations of

TRANS U { +- r(x, y, e, u)} are finite.

Proof. By Corollary 2.11.

Acknowledgement

0

0

Marc Bezem made us aware of the importance of including subsidiary LDN F-trees in the
definition of nodesp(G).

22

References

[AB90] K. R. Apt and M. Bezem. Acyclic programs. In D. H. D. Warren and P. Szeredi,
editors, Proceedings of the Seventh International Conference on Logic Programming,
pages 617-633. The MIT Press, 1990.

[ABW88] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming, pages
89-148. Morgan Kaufmann, 1988.

[AP90] K. R. Apt and D. Pedreschi. Studies in pure Prolog: termination. In J.W. Lloyd, edi
tor, Symposium on Computional Logic, pages 150-176, Berlin, 1990. Springer-Verlag.

[Apt90] K. R. Apt. Logic progranuning. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, pages 493-574. Elsevier, 1990. Vol. B.

[Bau88] M. Baudinet. Proving termination properties of PROLOG programs. In Proceedings
of the 3rd Annual Symposium on Logic in Computer Science {LICS}, pages 336-347,
Edinburgh, Scotland, 1988.

[Bez89] M. Bezem. Characterizing termination oflogic programs with level mappings. In E. L.
Lusk and R. A. Overbeek, editors, Proceedings of the North American Conference on
Logic Programming, pages 69-80. The MIT Press, 1989.

[Cav89] L. Cavedon. Continuity, consistency, and completeness properties for logic programs.
In G. Levi and M. Martelli, editors, Proceedings of the Sixth International Conference
on Logic Programming, pages 571-584. The MIT Press, 1989.

[Der87] N. Dershowitz. Terminationofrewriting. Journal of Symbolic Computation, 8:69-116,
1987.

[Fit85] M. Fitting. A Kripke-Kleene semantics for general logic programs. Journal of Logic
Programming, 2:295-312, 1985.

[HM87] S. Hanks and D. McDermott. Norunonotonic logic and temporal projection. Artificial
Intelligence, 33:379-412, 1987.

[Kle52] S. C. Kleene. Introduction to Metamathematics. van Nostrand, New York, 1952.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, second
edition, 1987.

[Pli.i90a] L. Pliimer. Termination Proofs for Logic Programs. Lecture Notes in Artificial Intel
ligence 446, Springer-Verlag, Berlin, 1990.

[Plii90b] L. Plfuner. Termination proofs for logic programs based on predicate inequalities.
In D. H. D. Warren and P. Szeredi, editors, Proceedings of the Seventh International
Conference on Logic Programming, pages 634-648. The MIT Press, 1990.

[UvG88] J. D. Ullman and A. van Gelder. Efficient tests for top-down termination of logical
rules. J. ACM, 35(2):345-373, 1988.

23

