10,270 research outputs found

    Patterns in Inversion Sequences I

    Full text link
    Permutations that avoid given patterns have been studied in great depth for their connections to other fields of mathematics, computer science, and biology. From a combinatorial perspective, permutation patterns have served as a unifying interpretation that relates a vast array of combinatorial structures. In this paper, we introduce the notion of patterns in inversion sequences. A sequence (e1,e2,…,en)(e_1,e_2,\ldots,e_n) is an inversion sequence if 0≤ei<i0 \leq e_i<i for all i∈[n]i \in [n]. Inversion sequences of length nn are in bijection with permutations of length nn; an inversion sequence can be obtained from any permutation π=π1π2…πn\pi=\pi_1\pi_2\ldots \pi_n by setting ei=∣{j ∣ jπi}∣e_i = |\{j \ | \ j \pi_i \}|. This correspondence makes it a natural extension to study patterns in inversion sequences much in the same way that patterns have been studied in permutations. This paper, the first of two on patterns in inversion sequences, focuses on the enumeration of inversion sequences that avoid words of length three. Our results connect patterns in inversion sequences to a number of well-known numerical sequences including Fibonacci numbers, Bell numbers, Schr\"oder numbers, and Euler up/down numbers

    On Sharing, Memoization, and Polynomial Time (Long Version)

    Get PDF
    We study how the adoption of an evaluation mechanism with sharing and memoization impacts the class of functions which can be computed in polynomial time. We first show how a natural cost model in which lookup for an already computed value has no cost is indeed invariant. As a corollary, we then prove that the most general notion of ramified recurrence is sound for polynomial time, this way settling an open problem in implicit computational complexity

    On Enumeration of Conjugacy Classes of Coxeter Elements

    Get PDF
    In this paper we study the equivalence relation on the set of acyclic orientations of a graph Y that arises through source-to-sink conversions. This source-to-sink conversion encodes, e.g. conjugation of Coxeter elements of a Coxeter group. We give a direct proof of a recursion for the number of equivalence classes of this relation for an arbitrary graph Y using edge deletion and edge contraction of non-bridge edges. We conclude by showing how this result may also be obtained through an evaluation of the Tutte polynomial as T(Y,1,0), and we provide bijections to two other classes of acyclic orientations that are known to be counted in the same way. A transversal of the set of equivalence classes is given.Comment: Added a few results about connections to the Tutte polynomia
    • …
    corecore