8 research outputs found

    A Characterization of Approximation Resistance for Even kk-Partite CSPs

    Full text link
    A constraint satisfaction problem (CSP) is said to be \emph{approximation resistant} if it is hard to approximate better than the trivial algorithm which picks a uniformly random assignment. Assuming the Unique Games Conjecture, we give a characterization of approximation resistance for kk-partite CSPs defined by an even predicate

    Towards a Characterization of Approximation Resistance for Symmetric CSPs

    Get PDF
    A Boolean constraint satisfaction problem (CSP) is called approximation resistant if independently setting variables to 1 with some probability achieves the best possible approximation ratio for the fraction of constraints satisfied. We study approximation resistance of a natural subclass of CSPs that we call Symmetric Constraint Satisfaction Problems (SCSPs), where satisfaction of each constraint only depends on the number of true literals in its scope. Thus a SCSP of arity k can be described by a subset of allowed number of true literals. For SCSPs without negation, we conjecture that a simple sufficient condition to be approximation resistant by Austrin and Hastad is indeed necessary. We show that this condition has a compact analytic representation in the case of symmetric CSPs (depending only on the gap between the largest and smallest numbers in S), and provide the rationale behind our conjecture. We prove two interesting special cases of the conjecture, (i) when S is an interval and (ii) when S is even. For SCSPs with negation, we prove that the analogous sufficient condition by Austrin and Mossel is necessary for the same two cases, though we do not pose an analogous conjecture in general

    Complexity and Approximability of Parameterized MAX-CSPs

    Get PDF
    International audienceWe study the optimization version of constraint satisfaction problems (Max-CSPs) in the framework of parameterized complexity; the goal is to compute the maximum fraction of constraints that can be satisfied simultaneously. In standard CSPs, we want to decide whether this fraction equals one. The parameters we investigate are structural measures, such as the treewidth or the clique-width of the variable-constraint incidence graph of the CSP instance.We consider Max-CSPs with the constraint types AND, OR, PARITY, and MAJORITY, and with various parameters k, and we attempt to fully classify them into the following three cases: 1. The exact optimum can be computed in FPT time. 2. It is W[1]-hard to compute the exact optimum, but there is a randomized FPT approximation scheme (FPTAS), which computes a (1−ϵ)-approximation in time f(k,ϵ)⋅poly(n). 3. There is no FPTAS unless FPT=W[1].For the corresponding standard CSPs, we establish FPT vs. W[1]-hardness results

    The Biased Homogeneous r-Lin Problem

    Get PDF

    On the Approximability of Presidential Type Predicates

    Get PDF
    Given a predicate P: {-1, 1}^k ? {-1, 1}, let CSP(P) be the set of constraint satisfaction problems whose constraints are of the form P. We say that P is approximable if given a nearly satisfiable instance of CSP(P), there exists a probabilistic polynomial time algorithm that does better than a random assignment. Otherwise, we say that P is approximation resistant. In this paper, we analyze presidential type predicates, which are balanced linear threshold functions where all of the variables except the first variable (the president) have the same weight. We show that almost all presidential type predicates P are approximable. More precisely, we prove the following result: for any ?? > 0, there exists a k? such that if k ? k?, ? ? (??,1 - 2/k], and {?}k + k - 1 is an odd integer then the presidential type predicate P(x) = sign({?}k{x?} + ?_{i = 2}^{k} {x_i}) is approximable. To prove this, we construct a rounding scheme that makes use of biases and pairwise biases. We also give evidence that using pairwise biases is necessary for such rounding schemes

    Phylogenetic CSPs are Approximation Resistant

    Full text link
    We study the approximability of a broad class of computational problems -- originally motivated in evolutionary biology and phylogenetic reconstruction -- concerning the aggregation of potentially inconsistent (local) information about nn items of interest, and we present optimal hardness of approximation results under the Unique Games Conjecture. The class of problems studied here can be described as Constraint Satisfaction Problems (CSPs) over infinite domains, where instead of values {0,1}\{0,1\} or a fixed-size domain, the variables can be mapped to any of the nn leaves of a phylogenetic tree. The topology of the tree then determines whether a given constraint on the variables is satisfied or not, and the resulting CSPs are called Phylogenetic CSPs. Prominent examples of Phylogenetic CSPs with a long history and applications in various disciplines include: Triplet Reconstruction, Quartet Reconstruction, Subtree Aggregation (Forbidden or Desired). For example, in Triplet Reconstruction, we are given mm triplets of the form ij∣kij|k (indicating that ``items i,ji,j are more similar to each other than to kk'') and we want to construct a hierarchical clustering on the nn items, that respects the constraints as much as possible. Despite more than four decades of research, the basic question of maximizing the number of satisfied constraints is not well-understood. The current best approximation is achieved by outputting a random tree (for triplets, this achieves a 1/3 approximation). Our main result is that every Phylogenetic CSP is approximation resistant, i.e., there is no polynomial-time algorithm that does asymptotically better than a (biased) random assignment. This is a generalization of the results in Guruswami, Hastad, Manokaran, Raghavendra, and Charikar (2011), who showed that ordering CSPs are approximation resistant (e.g., Max Acyclic Subgraph, Betweenness).Comment: 45 pages, 11 figures, Abstract shortened for arxi
    corecore