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Abstract
We study the optimization version of constraint satisfaction problems (Max-CSPs) in the

framework of parameterized complexity; the goal is to compute the maximum fraction of con-
straints that can be satisfied simultaneously. In standard CSPs, we want to decide whether this
fraction equals one. The parameters we investigate are structural measures, such as the treewidth
or the clique-width of the variable–constraint incidence graph of the CSP instance.

We consider Max-CSPs with the constraint types AND, OR, PARITY, and MAJORITY, and
with various parameters k. We attempt to fully classify them into the following three cases:
1. The exact optimum can be computed in FPT-time.
2. It is W[1]-hard to compute the exact optimum, but there is a randomized FPT approximation

scheme (FPT-AS), which computes a (1− ε)-approximation in time f(k, ε) · poly(n).
3. There is no FPT-AS unless FPT=W[1].
For the corresponding standard CSPs, we establish FPT vs. W[1]-hardness results.
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1 Introduction

Constraint Satisfaction Problems (CSPs) play a central role in almost all branches of
theoretical computer science. Starting from CNF-SAT, the prototypical NP-complete problem,
the computational complexity of CSPs has been widely studied from various points of view.

∗ Supported by ERC Starting Grant PARAMTIGHT (No. 280152)
† This research is supported by Deutsche Forschungsgemeinschaft grant BL511/10-1

© Holger Dell, Eunjung Kim, Michael Lampis, Valia Mitsou, and Tobias Mömke;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 294–306

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.294
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


H. Dell, E. Kim, M. Lampis, V. Mitsou, and T. Mömke 295

In this paper we focus on two aspects of CSP complexity which, though extremely well-
investigated, have mostly been considered separately so far in the literature: parameterized
complexity and approximability. We study four standard predicates and contribute some of
the first results indicating that the point of view of approximability considerably enriches
the parameterized complexity landscape of CSPs.

1.1 Parameterized CSPs
The vast majority of interesting CSPs are NP-hard [21, 12]. This has motivated the study
of such problems from a parameterized complexity point of view, and indeed this topic has
attracted considerable attention in the literature [9, 26, 6, 18, 8, 25]. We refer the reader
to [20] where an extensive classification of CSP problems for a large range of parameters is
given. In this paper we focus on structurally parameterized CSPs, that is, we consider CSPs
where the parameter is some measure of the structure of the input instance. The central
idea behind this approach is to represent the structure of the CSP using a (hyper-)graph
and leverage the powerful tools commonly applied to parameterized graph problems (such as
tree decompositions) to solve the CSP.

The typical goal of this line of research is to find the most general parameterization of a
CSP that still remains fixed-parameter tractable (FPT). To give a concrete example for a
very well-known CSP, CNF-SAT is FPT when parameterized by the treewidth of its incidence
graph1 [23] but it is W-hard for more general parameters such as clique-width [16], or even
the more restricted modular treewidth [17]. General (boolean) CSP on the other hand, where
the description of each constraint is part of the input is known to be a harder problem: it
is already W[1]-hard parameterized by the incidence treewidth, but FPT parameterized by
the treewidth of the primal graph [24]. Thus, parameterized investigations aim to locate the
boundary where a CSP jumps from being FPT to being W-hard. It is of course a natural
question how we can deal with the W-hard cases of a CSP once they are identified.

1.2 Approximation
CSPs also play a central role in the theory of (polynomial-time) approximation algorithms
[27, 13, 2]. In this context we typically consider a CSP as an optimization problem (MAX-
CSP) where the goal is to find an assignment to the variables that satisfies as many of
the constraints as possible. Unfortunately, essentially all non-trivial CSPs are hard to
approximate (APX-hard) from this point of view [4, 12], even those where deciding if an
assignment can satisfy all constraints is in P (e.g. 2CNF-SAT or Horn SAT). Thus, research
in this area typically focuses on discovering exactly the best approximation ratio that can be
achieved in polynomial time. Amazingly, for many natural CSPs this happens to be exactly
the ratio achieved by a completely random assignment [11]. This motivates the question of
whether we can find natural cases where non-trivial efficient approximations are possible.

1.3 Results
In this paper we consider four different types of CSPs where the constraints are respectively
OR, AND, PARITY and MAJORITY functions. Our approach follows, for the most part,
the standard parameterized complexity script: we consider the input instance’s incidence
graph and try to determine the complexity of the CSP when parameterized by various graph

1 See the next section for a definition of incidence graphs
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widths. The new ingredient in our approach is that, in addition to trying to determine which
parameters make a CSP FPT or W-hard, we also ask if the optimization versions of W-hard
cases can be well-approximated. We believe that this is a question of special interest since,
as it turns out, there are CSPs for which W-hardness can be (almost) circumvented using
approximation, and others which are inapproximable.

More specifically, our results are as follows: for OR constraints, which corresponds to the
standard CNF-SAT (MAX-CNF-SAT) problem, we present a new hardness proof establishing
that deciding a formula’s satisfiability is W-hard even if parameterized by the incidence
graph’s neighborhood diversity. Neighborhood diversity is a parameter much more restricted
than modular treewidth (already a restriction of clique-width) [14], for which the strongest
previously known W[1]-hardness result was known [17]. We complement this negative result
with a strong positive approximation result: there exists a randomized FPT Approximation
Scheme (FPT-AS)2 for MAX-CNF-SAT parameterized by clique-width, that is, an algorithm
which for all ε > 0 runs in time f(k, ε)nO(1) and returns an assignment satisfying (1− ε)OPT
clauses. Thus, even though we establish that solving CNF-SAT exactly is W-hard even for
extremely restricted dense graph parameters, MAX-CNF-SAT is well-approximable even
in the quite general case of clique-width. To the best of our knowledge, this is the first
approximation result of this type for a W-hard MAX-CSP problem.

Recalling that MAX-CNF-SAT is FPT parameterized by the treewidth of the incidence
graph, we consider other problems for which the jump from treewidth to clique-width could
have interesting complexity consequences. We show that MAX-DNF-SAT and MAX-PARITY,
which are FPT parameterized by treewidth, exhibit two wildly different behaviors. On the
one hand, the problem of maximizing the largest possible number of satisfied PARITY
constraints remains FPT even for dense parameters such as clique-width. On the other hand,
by modifying our reduction for CNF-SAT, we are able to show not only that maximizing the
number of satisfied AND constraints is W[1]-hard parameterized by neighborhood diversity,
but also that this problem cannot even admit an FPT-AS (like MAX-CNF-SAT), unless
W[1]=FPT. We recall that PARITY and AND constraints are similar in other aspects: for
example, for both we can decide in polynomial time if an assignment satisfying all constraints
exists.

Finally, we consider CSPs with MAJORITY constraints, that is, constraints which are
satisfied if at least half their literals are true. We give a reduction establishing that this is an
interesting case of a natural constraint type for which deciding satisfiability is already W[1]-
hard parameterized by treewidth (we actually show W[1]-hardness for the more restricted
case of incidence feedback vertex set) and by neighborhood diversity. We complement this
negative result with two algorithmic results: first, we show that the corresponding MAX-CSP
is FPT parameterized by incidence vertex cover. Then, we use this algorithm as a sub-routine
to obtain an FPT-AS for incidence feedback vertex set. Both of these algorithmic results also
apply to the more general case of THRESHOLD constraints. We leave it as an interesting
open problem to examine if the approximation algorithm for feedback vertex set can be
extended to treewidth.

2 Preliminaries

A Boolean CSP ψ is defined as a set {C1, . . . , Cm} of m constraints over a set X(ψ) =
{x1, . . . , xn} of n variables and their negations. Each constraint Ci is regarded as a function

2 We follow the standard definition of FPT-AS given in [15].
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Figure 1 The structural parameters we study and their relationships. For example, the arrow
between cw∗ and tw∗ means that if the treewidth is bounded, then the clique-width is bounded as
well — more precisely, there is a monotone computable function f : N→ N so that cw∗ ≤ f(tw∗).
On the other hand, tw∗and nd∗as well as fvs∗and nd∗cannot be bounded by each other in general.

cw∗
T2
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nd∗ vc∗

MAX-CNF-SAT
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tw∗ fvs∗
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MAX-MAJORITY-CSP
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MAX-DNF-SAT
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nd∗ vc∗

MAX-PARITY-CSP

Figure 2 The parameterized complexity status of MAX-CSP problems. The gray labels above the
boxes indicate the theorem in which we establish the result; previously known results are displayed
without reference. Red means that the problem is W[1]-hard to compute exactly, and there is no
FPT-AS unless FPT = W[1]. Blue means that the problem is W[1]-hard to compute exactly, and
there is an FPT-AS. Green means that the problem is FPT to compute exactly. The blue/white
stripes mean that it’s W[1]-hard to compute exactly, and it’s open whether there is an FPT-AS.
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nd∗
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nd∗
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MAJORITY-CSP

Figure 3 The parameterized complexity status of CNF-SAT and MAJORITY-CSP. Recall that
DNF-SAT and PARITY-CSP are polynomial-time computable. Red means that the problem is
W[1]-hard and green means that the problem is FPT.
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of literals (positive or negative appearances of variables) mapped to the set {0, 1}, where
literals can take the values 0 or 1. Furthermore, we define |Cj | to denote the arity of constraint
Cj (the number of literals that occur in C) and |ψ| = m the number of constraints in ψ. For
simplicity, we also write li ∈ Cj for a literal li and a constraint Cj if li appears in Cj .

We will be dealing with Boolean constraint satisfaction problems for four well-studied
Boolean functions: OR constraints, AND constraints, PARITY (or XOR) constraints and
MAJORITY constraints. We say that an assignment t : X → {0, 1} satisfies a constraint C
of

OR, if ∃li ∈ C, t(li) = 1;
AND, if ∀li ∈ C, t(li) = 1;
PARITY, if it satisfies some equation Σli∈Ct(li) = b (for b ∈ {0, 1}) modulo 2;
MAJORITY, if at least d|C|/2e literals in C are set to 1. More generally, we may consider
THRESHOLD constraints, where a certain threshold number of literals must be set to
true to satisfy the constraint.

Let occ(ψ) =
∑
C∈ψ |C| be the total number of variable occurrences in ψ, that is, the

total size of the formula. For a variable x, we write ψx for the set of all constraints C ∈ ψ
where x occurs either positive or negative; for the functions we consider without loss of
generality, no clause contains both literals. Thus, the total number of occurrences of a
variable x is equal to |ψx|.

We are dealing also with MAX-CSPs, where given a set of constraints ψ, we are interested
in finding an assignment to the variables that maximizes the number of satisfied constraints.
The natural decision version of this problem is, given a target k, decide whether there exists
an assignment that satisfies at least k constraints. Clearly, the problem where we want
to decide whether we can satisfy all the constraints is a special case of the above decision
problem since we can set k = m, but in some cases we consider this simpler decision version,
particularly when we want to show hardness.

In the case of OR constraints, the CSP and MAX-CSP problems correspond to the more
widely known CNF-SAT and MAX-CNF-SAT problems. In this case we call the constraints
clauses. When the constraint function is AND, the MAX-CSP problem is called MAX-DNF-
SAT. In that case, the constraints are called terms. The problem MAX-PARITY is also
known as MAX-LIN-2 (satisfy a maximum number of given linear equations modulo 2).

For a CSP ψ, the incidence graph G∗ψ is defined as the bipartite graph where we construct
one vertex vi for each (unsigned) variable xi and one vertex uj for each constraint Cj and
connect vi with uj if xi ∈ Cj .

We are interested in parameterizations of the incidence graph p(G∗ψ) (or simply p∗ if G∗ψ
is clear from the context), where p is a structural parameter of G∗ψ. We are mostly interested
in the two most widely studied graph parameters, treewidth tw∗ and clique-width cw∗. We
refer the reader to standard parameterized complexity textbooks for the definitions, as well
as the definitions of standard parameterized complexity terminology used in this paper [5].

3 CNF-SAT and MAX-CNF-SAT

In this section, we consider one of the most fundamental problems in computer science:
the satisfiability problem for CNF formulas, which can be viewed as a constraint satisfac-
tion problem where the only allowed constraints are clauses, that is, ORs of literals. An
optimal solution for MAX-CNF-SAT can be computed in FPT when parameterized by the
treewidth tw∗ of the incidence graph [1], and hence CNF-SAT can be solved in the same
time. When parameterized by the clique-width cw∗ of the incidence graph, all known exact
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algorithms for CNF-SAT and MAX-CNF-SAT run in XP time [22, 19]. Moreover, we don’t
expect these problems to be in FPT since they are both W[1]-hard parameterized by cw∗ [17].

In Section 3.1, we construct an approximation scheme for MAX-CNF-SAT that runs
in FPT time. Intuitively, our algorithm works as follows: given a formula φ with ‘small’
incidence clique-width, we first examine the formula to see if it contains many or few ‘large’
clauses. If the formula contains relatively few large clauses, then we simply disregard them.
We then know that the incidence graph does not contain ‘large’ bi-cliques, so by a theorem
of Gurski and Wanke [10] the remaining formula has small treewidth and we can solve the
problem. If on the other hand the original formula contains a large number of large clauses,
then we observe that we can rely on a random assignment to satisfy almost everything.

In Section 3.2, we explore a class of CSP instances that is smaller than the class of
bounded incidence clique-width instances; our goal is to understand which incidence graph
parameter is responsible for the transition from FPT to W[1]. To this end, we have to look
for a graph parameter that is bounded by a function of cw∗ (where it’s hard) but can leave
the tw∗ unbounded (where it’s FPT). In fact, [17] shows that the problem is W[1]-hard
parameterized by the modular treewidth mtw∗ of the incidence graph, which lies between
cw∗ and tw∗.3 We study the incidence neighborhood diversity nd∗, which is incomparable to
tw∗; however, mtw∗ is bounded when nd∗ is. We prove that CNF-SAT remains W[1]-hard
parameterized by nd∗.

I Definition 1. A graph G(V,E) has neighborhood diversity nd(G) = k if we can partition
V into k sets V1, . . . , Vk such that, for all v ∈ V and all i ∈ {1, . . . , k}, either v is adjacent to
every vertex in Vi or it is adjacent to none of them.

In other words, nd(G) = k if V can be partitioned into k modules that are either cliques
or independent sets.

Formulas whose incidence graph has neighborhood diversity at most k seem very restrictive:
there are only at most k variable- and clause-types, where all variables of the same type
belong to the same clauses and all clauses of the same type involve the same variables. This
class of formulas is a subset of formulas with mtw∗ ≤ k because contracting all modules
leaves a graph of order at most k, which trivially has treewidth at most k.

3.1 Approximation Algorithm parameterized by clique-width
I Theorem 2. There is a randomized algorithm that, given a CNF formula ψ with n variables,
m clauses, and incidence clique-width cw, runs in time f(ε, cw) · poly(n+m), and outputs a
truth assignment that satisfies at least (1− ε) ·OPT clauses in expectation.

We formulate the following basic lemma about probability distributions.

I Lemma 3. For all ε, L > 0 there is a c = c(ε, L) > 0 such that all c′ ≥ c and all sequences
p1, . . . , pc′ ≥ 0 with

∑c′

i=1 pi ≤ 1 have an index d ≤ c/L with the property

p[d,L·d]
.=
L·d∑
j=d

pj < ε .

3 A graph of bounded modular treewidth is a graph of bounded treewidth after merging modules into a
single vertex, where a module is a set of vertices with same neighborhood outside of the set. In fact,
the reduction in [17] constructs a formula whose incidence graph has small feedback vertex set after
contracting modules.

IPEC’15
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Proof. Let ε, L > 0. We set c = c(ε, L) below. Assume for contradiction that p[d,L·d] ≥ ε holds
for all d ∈ [1, c/L]. If there are 1/ε+ 1 disjoint intervals [a1, L · a1], . . . , [a1/ε+1, L · a1/ε+1] ⊆
[1, c], then we arrive at a contradiction with the fact that the pi’s are non-negative and sum
to at most one. Clearly there exists a constant c = c(ε, L) such that 1/ε+ 1 disjoint intervals
of the form [a, La] fit into [1, c]. This proves the claim. J

For an arbitrary given ε > 0, we fix L = ε−4. We use Lemma 3 as follows: For a CNF
formula ψ, we define pi as the fraction of clauses of size i, that is,

pi
.=

∣∣∣{C ∈ ψ ∣∣∣ |C| = i
}∣∣∣

|ψ|
.

Then Lemma 3 gives us a number d ≤ c(ε) such that the total fraction of clauses whose size
is between d and ε−4d is bounded by ε. It is now natural to partition all clauses into short,
medium, and long clauses. More precisely, we define ψ = ψ<d ∪̇ ψ[d,D] ∪̇ ψ>D for D = ε−4d

as follows:

ψ<d
.=
{
C ∈ ψ

∣∣∣ |C| < d
}
,

ψ[d,D] .=
{
C ∈ ψ

∣∣∣ d ≤ |C| ≤ D} , and
ψ>D

.=
{
C ∈ ψ

∣∣∣ |C| > D
}
.

An immediate corollary to Lemma 3 is thus that we can choose d ≤ c(ε) in such a way that
|ψ[d,D]| ≤ ε|ψ|.

I Corollary 4. For all ε > 0 there is some c = c(ε) > 0 such that all CNF formulas ψ have
some d = d(ε) ∈ [1, c] with |ψ[d,ε−4d]| ≤ ε · |ψ| .

If ψ[d,D] = ∅ holds for D = ε−4d and d ∈ [1, c(ε)], we say that ψ is ε-well separated. We
call ψ ε′-balanced if, in addition, we have |ψ<d| ≥ ε′m and |ψ>D| ≥ ε′m.

I Lemma 5. Let ψ be an ε-well separated formula (and thus V = V (ψ<d) ∪ V (ψ>D)).
Then, for each subset ψ̂ ⊆ ψ>D with |ψ̂| > ε2m, there is a variable y such that |ψ<dy | ≤

ε2|ψ̂y|.

That is, for every set ψ̂ that contains a significant fraction of long clauses, there is a variable
that occurs |ψ̂y| times in ψ̂, but only at most an ε2-fraction of that in the short clauses.

Proof. Let ψ̂ ⊆ ψ>D with |ψ̂| > ε2m. Note that the total number of literal occurrences in ψ̂
is occ(ψ̂) > D · ε2 ·m = ε−2dm. In contrast, occ(ψ<d) < dm. Now suppose that there was
no variable y with the claimed properties, that is, suppose that every variable y satisfies
|ψ<dy | > ε2|ψ̂y|. Then the total number of variable occurrences in ψ<d can be bounded from
below as follows:

occ(ψ<d) =
∑
y

|ψ<dy | >
∑
y

ε2|ψ̂y| = ε2 occ(ψ̂) > d ·m.

This yields a contradiction and thus proves the claim. J

Proof of Theorem 2. The algorithm A works as follows. Let ε′ = ε2, and we assume w.l.o.g.
that ε < 1/8. Given a CNF formula φ, we compute an ε′-well separated formula ψ by
dropping all clauses in φ[d,D]. Corollary 4 guarantees that the fraction of deleted clauses is
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bounded by ε′. If ψ is not ε/2-balanced, we discard the smaller side (with fewer clauses) and
only handle the larger one: If ψ<d is the larger side, we compute an optimal assignment
for ψ<d in FPT time, by using the result of Gurski and Wanke [10]. This way the total
number of unsatisfied clauses is at most εm/2, and together with the unsatisfied clauses due
to applying Corollary 4, the total number of unsatisfied clauses is smaller than εm. Since
OPT > m/2, we get the approximation guarantee.

If ψ>D is the larger side, we use a random assignment. This way, at most εm/2 clauses
from ψ<d are violated, and in expectation at most a 2−D fraction of clauses from ψ>D are
violated. Since 2−D is smaller than ε/4, we conclude that – together with unsatisfied clauses
due to applying Corollary 4 – at least (1− ε)m clauses are satisfied in expectation.

This finishes the analysis of unbalanced formulas, and in the remaining proof we may
assume that ψ is ε/2-balanced. To handle this case, we determine a set of variables Y such
that

there are at most εm/4 short clauses with variables from Y and
there are at most ε2m long clauses that contain ≤ 1/ε variables from Y .

Before we construct Y , let us verify that the properties of Y imply the correctness of
the theorem. Our algorithm computes a satisfying assignment of the short clauses without
variables from Y , again using the result of Gurski and Wanke [10]. Afterwards it assigns
values uniformly at random to the variables in Y .

There are at most ε′m = ε2m unsatisfied clauses due to applying Corollary 4, εm/4 short
clauses clauses that we did not consider when satisfying clauses from ψ<d, and ε2m clauses
from ψ>D that we did not consider in the random assignment. Additionally, in expectation
there are less than 2−1/εm clauses left unsatisfied from the remaining |ψ>D| − ε2m clauses
from ψ>D. Since we assumed that ε < 1/8, the theorem follows.

To construct the set Y , we iteratively apply Lemma 5 with the parameter ε/4. Initially,
we set ψ̂ = ψ>D. In each iteration, we identify a variable y according to the lemma and add
the variable to Y . In the subsequent iterations, we mark y to be inactive and handle it as if
it was not contained in any clause. Whenever we identify a clause C that has at least 1/ε
inactive variables (i. e., variables from Y ), we remove C from ψ̂. We continue this process
until |ψ̂| ≤ ε2. Note that applying Lemma 5 for ε/4 but having an ε′-well separated formula
ensures that at all times, all clauses in ψ̂ have sufficiently many literals to apply Lemma 5.
Therefore the process terminates and the generated set Y has the aimed-for properties since
|Y | ≤ m/ε. J

3.2 Hardness parameterized by neighborhood diversity
A constraint on r variables is a relation R ⊆ {0, 1}r. We define the unary constraints
U0 = {0} and U1 = {1}, which corresponds to clauses (¬x) and (x), respectively. We define
the equality = and disequality 6= constraints on two groups of Boolean variables x = x1 . . . xn
and y = y1 . . . yn in infix notation in the usual way: For an assignment a to the x- and
y-variables, we say that a |= x = y if and only if, for all i ∈ [n], we have a(xi) = a(yi), that is,
the assignment sets xi to the same value as yi; as usual, x 6= y is interpreted as the negation
of x = y.

I Lemma 6. CNF-SAT parameterized by nd∗ is W[1]-hard, where nd∗ is the neighborhood
diversity of the input’s incidence graph.

Proof. We devise an FPT-reduction from k-Multicolored Clique to CNF-SAT. Given a
k-partite graph G, whose parts V1, . . . , Vk all have the same size n, we construct k groups of

IPEC’15
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variables x1, . . . , xk, which together are supposed to represent a k-clique in G, should one
exist. Each group xi consists of logn Boolean variables and represents the supposed clique’s
vertex in the part Vi. Without loss of generality, we assume that logn is an integer.

Starting from the empty CNF formula, we construct a formula φ on the x-variables as
follows. First choose, for each i ∈ [k], an arbitrary bijection bini : Vi → {0, 1}logn that maps
any vertex u ∈ Vi to its binary representation bin(u); for convenience, we drop the index i.
For each i, j ∈ [k] with i < j, and for each non-edge (u, v) 6∈ E(Vi, Vj) between Vi and Vj ,
we add the following constraint Ci,j,u,v to φ:

xixj 6= bin(u)bin(v) .

Clearly, this constraint excludes exactly one of the 22 logn possible assignments to xixj , and
so it can be written as an OR of literals of the x-variables. In the end, φ is a CNF formula
with |E(G)| clauses.

For the completeness of the reduction, let vi ∈ Vi for all i ∈ [k] be such that v1, . . . , vk is
a clique in G. For all i ∈ [k], set xi = bin(vi). This assignment satisfies all constraints: for
all (u, v) 6∈ E(Vi, Vj), we have that bin(vi)bin(vj) 6= bin(u)bin(v) because (vi, vj) is an edge
and (u, v) is not, and bin is a bijection.

For the soundness of the reduction, let a1, . . . , ak ∈ {0, 1}k logn be a satisfying assignment
of φ. For each i ∈ [k], let vi be the unique vertex in Vi for which bin(vi) = ai. Let i, j ∈ [k]
with i < j. Since the assignment satisfies all constraints of φ, it must be the case that (vi, vj)
is an edge in G. For if it was a non-edge, its corresponding constraint in φ would have
excluded the assignment aiaj for xixj . Hence v1, . . . , vk is a clique in G.

It remains to argue that the neighborhood diversity of the incidence graph of φ is at most
k +

(
k
2
)
. The modules of the incidence graph are the variable group xh for each h ∈ [k] and

the clause group {Ci,j,u,v} for each i, j ∈ [k] with i < j. Indeed, the incidence graph between
xh and Ci,j,∗,∗ is a bipartite clique if h ∈ {i, j}, and otherwise it is an independent set.

We constructed an FPT-reduction from the W[1]-complete problem Multicolored Clique
to CNF-SAT parameterized by nd∗, which finishes the proof of the theorem. J

4 From Treewidth to Clique-width

In the previous section, we have seen that MAX-CNF-SAT is fixed-parameter tractable when
parameterized by tw∗, which is a sparse graph parameter, and it is W[1]-hard to compute
exactly and has an FPT-AS when parameterized by nd∗, which is a dense graph parameter.
In this section we observe that the transition from sparse to dense parameters has different
effects on the complexity of MAX-CSP, depending on which types of constraints are allowed.

By modifying our reduction for CNF-SAT we show that MAX-DNF-SAT, the problem
of maximizing the number of satisfied AND constraints is W[1]-hard parameterized nd∗.
Furthermore, because the maximum number of constraints that could be satisfied in our
reduction is also bounded by some function of the parameter, we show that the problem does
not have an FPT-AS unless FPT=W[1]. Thus, while MAX-DNF-SAT is FPT parameterized
by tw∗, it does not even appear to have an FPT approximation scheme when parameterized
by nd∗.

I Theorem 7. Suppose that there exists an FPT-AS which, given ε > 0 and an instance φ of
MAX-DNF-SAT, computes a (1−ε)-approximate solution and runs in time f(nd∗, ε) ·poly(n),
where nd∗ is the neighborhood diversity of the incidence graph of φ. Then FPT = W[1].

The proof is similar that of Theorem 6 and deferred to the full version.
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When parameterized by tw∗, MAX-CNF-SAT and MAX-DNF-SAT are both FPT, and
when parameterized by a dense graph parameter, such as nd∗, the former problem is hard
but approximable while the latter problem is hard even to approximate. We next consider
natural constraint types where the corresponding CSPs stay FPT both for sparse as well as
dense incidence graph parameters. MAX-PARITY wants to find an assignment that satisfies
the maximum number of linear equations modulo two. While deciding whether there is
an assignment that satisfies all equations is in P (by Gauss elimination), the maximization
version is a typical APX-hard problem [11]. Here we show that computing the optimal
solution of MAX-PARITY is FPT, regardless of whether the parameter is the treewidth or
the clique-width of the incidence graph. Our intuition for why MAX-PARITY appears to be
so much easier than CNF-SAT is that negations are (almost) irrelevant, and so the incidence
graph seems to capture most of the structure relevant to the complexity of the CSP instance.

I Theorem 8. Given an instance φ for MAX-PARITY, we can find an optimal solution in
time f(cw∗)|φ|O(1), where cw∗ is the clique-width of the incidence graph of φ.

The proof relies on the meta-theorem of [3] and appears in the full version.

5 Majority and Threshold CSPs

In this section we describe our results for CSPs where each constraint is a MAJORITY
constraint. Here a constraint MAJORITY({`1, . . . , `d}) stipulates that at least d/2 of the
literals `i are set to true. We denote the resulting CSP problem with MAJORITY, and the
resulting MAX-CSPwith MAX-MAJORITY.

5.1 Hardness of exact algorithms
We parameterize MAJORITY by the size fvs∗ of the smallest feedback vertex set, or by the
neighborhood diversity nd∗ of the instance’s incidence graph. These parameterized problems
turn out to be hard, even for the special case of MAJORITY constraints. Thus, neither
dense nor sparse incidence graph parameters appear to put the problem in FPT.

I Theorem 9. MAJORITY parameterized by the incidence feedback vertex set number fvs∗

is W[1]-hard.

I Theorem 10. MAJORITY parameterized by the incidence neighborhood diversity nd∗ is
W[1]-hard.

While the former theorem is proved by a technical reduction from Multicolored Clique,
the latter is established using a straightforward reduction from Lemma 6. Proofs appear in
the full version.

5.2 Exact Algorithm parameterized by vertex cover
Motivated by the negative result of Theorem 9 we now investigate the complexity of MA-
JORITY for more restricted parameters. The first parameter we consider is the vertex cover
of the incidence graph. This is a natural, though quite restrictive, parameter which is often
considered for problems which are W-hard for treewidth.

I Theorem 11. MAX-THRESHOLD parameterized by the incidence vertex cover vc∗ is FPT.

The proof appears in the full version, and it works by reducing the problem to integer linear
programming parameterized by the number of variables, which is FPT.

IPEC’15
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5.3 Approximation Algorithm parameterized by feedback vertex set

The results of Theorem 9 naturally pose the following question: can we evade the W-hardness
of MAJORITY by designing an FPT-AS for the problem? In this section, though we do not
resolve this question, we give some first positive indication that this may be possible. We
consider THRESHOLD parameterized by the incidence graph’s feedback vertex set (that is,
the number of vertices that need to be deleted to make the graph acyclic). This is a natural,
well-studied parameter that generalizes vertex cover but is a restriction of treewidth. It is
also connected to the concept of back-door sets to acyclicity, which is well-studied in the
parameterized CSP literature [16, 7].

Observe that approximating this CSP is non-trivial, since MAX-MAJORITY with
constraints of arity two already generalizes Max-2SAT, and is hence APX-hard. On the
other hand, MAX-MAJORITY can easily be 2-approximated by considering any assignment
and its negation. Hence, the natural goal here is an approximation ratio of (1− ε). Using
Corollary 11 as a sub-routine we achieve this with an FPT-AS.

I Theorem 12. There exists an FPT-AS which, given ε > 0 and an instance φ of MAX-
THRESHOLD, computes a (1− ε)-approximate solution and runs in time f(fvs∗, ε) · poly(n),
where fvs∗ is the size of the smallest feedback vertex set of the incidence graph of φ.
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