49 research outputs found

    Unlimited-wokspace teleoperation

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2012Includes bibliographical references (leaves: 100-105)Text in English; Abstract: Turkish and Englishxiv, 109 leavesTeleoperation is, in its brief description, operating a vehicle or a manipulator from a distance. Teleoperation is used to reduce mission cost, protect humans from accidents that can be occurred during the mission, and perform complex missions for tasks that take place in areas which are difficult to reach or dangerous for humans. Teleoperation is divided into two main categories as unilateral and bilateral teleoperation according to information flow. This flow can be configured to be in either one direction (only from master to slave) or two directions (from master to slave and from slave to master). In unlimited-workspace teleoperation, one of the types of bilateral teleoperation, mobile robots are controlled by the operator and environmental information is transferred from the mobile robot to the operator. Teleoperated vehicles can be used in a variety of missions in air, on ground and in water. Therefore, different constructional types of robots can be designed for the different types of missions. This thesis aims to design and develop an unlimited-workspace teleoperation which includes an omnidirectional mobile robot as the slave system to be used in further researches. Initially, an omnidirectional mobile robot was manufactured and robot-operator interaction and efficient data transfer was provided with the established communication line. Wheel velocities were measured in real-time by Hall-effect sensors mounted on robot chassis to be integrated in controllers. A dynamic obstacle detection system, which is suitable for omnidirectional mobility, was developed and two obstacle avoidance algorithms (semi-autonomous and force reflecting) were created and tested. Distance information between the robot and the obstacles was collected by an array of sensors mounted on the robot. In the semi-autonomous teleoperation scenario, distance information is used to avoid obstacles autonomously and in the force-reflecting teleoperation scenario obstacles are informed to the user by sending back the artificially created forces acting on the slave robot. The test results indicate that obstacle avoidance performance of the developed vehicle with two algorithms is acceptable in all test scenarios. In addition, two control models were developed (kinematic and dynamic control) for the local controller of the slave robot. Also, kinematic controller was supported by gyroscope

    Design of Motorized Wheel chai

    Get PDF
    First wheelchair model evolved long back in 18th century, but rapid development in this field initiated since mid of 20th century. Since then, many varieties of models had been designed, extending into broad range of products. This project involves the design of an ergonomically designed electric wheelchair for domestic use by Indian old aged people. Stair climbing functionality is embedded in the design through its structure and mechanism. The product mainly consists of 3 modules viz. seat, links and frame. Anthropometric measures are considered in the dimensioning of seat. The frame and wheels are designed and developed through the equations generated from the statistical data of dimensions of staircases in Indian houses. Focus is laid on different parameters such as form, functionality, technology and architecture of the product. The design is validated by developing Digital Mockups of individual parts are generated in CATIA and are assembled to form the final product. Necessary simulations of the product are generated in virtual environment of CATIA. The physical and focused prototype indicating the structure and functionality is developed using thermocol material. Here wheel carriers are made in RP (Fused Deposition Modelling) using ABS (Acrylo Butadiene Styrene) material. Wheelchair is embedded with some additional features like integrated commode facility, after gathering costumer requirements from different subjects

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    DESIGN OF A SHARED CONTROL INTERFACE FOR A POWERED WHEELCHAIR

    Get PDF
    Powered wheelchairs significantly improve mobility of individuals with physical limitations, but their high cost and challenges associated with traditional joystick controls often limit their accessibility and ease of use. This thesis aims to explore alternative modern input methods for controlling a standard powered wheelchair aiming to redesing the system for shared control implementation. A ground-up approach is taken, covering wheelchair electronics modification, localization, path planning, and comparison of different input methods. The research primarily focuses on the development and evaluation of a experimental prototype based on an Otronica Pulse 310 electric wheelchair with a ZED2 camera and ROS installed laptop. Localization performance was optimized using Simultaneous Localization and Mapping (SLAM) by combining the ZED2 camera with encoders. Caster wheel-aware path planning was achieved using Model Predictive Control (MPC) and potentiometers mounted directly on the axis. Various user input methods, such as touchscreen control and shared control, were investigated, which proved to be more comfortable and user-friendly than traditional joystick controls. Despite the limited time available for implementation, the study provides a solid foundation for future research on wheelchair input methods, path-planning, and control systems. It also offers valuable insights for enhancing the lives of powered wheelchair users through improved control interfaces, shared control, and navigation technologies

    Obstacle Avoidance and Path Planning for Smart Indoor Agents

    Get PDF
    Although joysticks on motorized wheelchairs have improved the lives of so many, patients with Parkinson\u27s, stroke, limb injury, or vision problems need alternate solutions. Further, navigating wheelchairs through cluttered environments without colliding into objects or people can be a challenging task. Due to these reasons, many patients are reliant on a caretaker for daily tasks. To aid persons with disabilities, the Machine Intelligence Laboratory Personal Electronic Transport (Milpet), provides a solution. Milpet is an effective access wheelchair with speech recognition capabilities. Commands such as ``Milpet, take me to room 237’’ or ``Milpet, move forward’’ can be given. As Milpet executes the patient’s commands, it will calculate the optimal route, avoid obstacles, and recalculate a path if necessary. This thesis describes the development of modular obstacle avoidance and path planning algorithms for indoor agents. Due to the modularity of the system, the navigation system is expandable for different robots. The obstacle avoidance system is configurable to exhibit various behaviors. According to need, the agent can be influenced by a path or the environment, exhibit wall following or hallway centering, or just wander in free space while avoiding obstacles. This navigation system has been tested under various conditions to demonstrate the robustness of the obstacle and path planning modules. A measurement of obstacle proximity and destination proximity have been introduced for showing the practicality of the navigation system. The capabilities introduced to Milpet are a big step in giving the independence and privacy back to so many who are reliant on care givers or loved ones

    Effort reduction and collision avoidance for powered wheelchairs : SCAD assistive mobility system

    Get PDF
    The new research described in this dissertation created systems and methods to assist wheelchair users and provide them with new realistic and interesting driving opportunities. The work also created and applied novel effort reduction and collision avoidance systems and some new electronic interactive devices. A Scanning Collision Avoidance Device (SCAD) was created that attached to standard powered wheelchairs to help prevent children from driving into things. Initially, mechanical bumpers were used but they made many wheelchairs unwieldy, so a novel system that rotated a single ultra-sonic transducer was created. The SCAD provided wheelchair guidance and assisted with steering. Optical side object detectors were included to cover blind spots and also assist with doorway navigation. A steering lockout mode was also included for training, which stopped the wheelchair from driving towards a detected object. Some drivers did not have sufficient manual dexterity to operate a reverse control. A reverse turn manoeuvring mode was added that applied a sequential reverse and turn function, enabling a driver to escape from a confined situation by operating a single turn control. A new generation of Proportional SCAD was created that operated with proportional control inputs rather than switches and new systems were created to reduce veer, including effort reduction systems. New variable switches were created that provided variable speed control in place of standard digital switches and all that research reduced the number of control actions required by a driver. Finally, some new systems were created to motivate individuals to try new activities. These included a track guided train and an adventure playground that including new interactive systems. The research was initially inspired by the needs of young people at Chailey Heritage, the novel systems provided new and more autonomous driving opportunities for many powered wheelchair users in less structured environments.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design of Motorised Handicaps Wheelchair

    Get PDF
    First wheelchair model advanced lengthy again in 18th century, but speedy development on this field initiated considering the fact that mid of twentieth century. Seeing that then, many forms of fashions were designed, extending into extensive range of merchandise. This task involves the design of an ergonomically designed electric powered wheelchair for domestic use by using Indian old aged people. Stair hiking functionality is embedded in the layout through its structure and mechanism. The product particularly consists of three modules viz. seat, hyperlinks and body. Anthropometric measures are considered inside the dimensioning of seat. The body and wheels are designed and advanced through the equations generated from the statistical records of dimensions of staircases in Indian houses. Cognizance is laid on extraordinary parameters including shape, capability, generation and architecture of the product. The design is verified by using growing virtual Mockups of man or woman elements are generated in CATIA and are assembled to shape the final product. Necessary simulations of the product are generated in digital surroundings of CATIA. The physical and focused prototype indicating the structure and functionality is evolved the usage of thermocol fabric. Right here wheel vendors are made in RP (Fused Deposition Modeling) the use of ABS (Acrylo Butadiene Styrene) cloth.
    corecore