87 research outputs found

    Effects of Training Data Variation and Temporal Representation in a QSR-Based Action Prediction System

    Get PDF
    Understanding of behaviour is a crucial skill for Artificial Intelligence systems expected to interact with external agents – whether other AI systems, or humans, in scenarios involving co-operation, such as domestic robots capable of helping out with household jobs, or disaster relief robots expected to collaborate and lend assistance to others. It is useful for such systems to be able to quickly learn and re-use models and skills in new situations. Our work centres around a behaviourlearning system utilising Qualitative Spatial Relations to lessen the amount of training data required by the system, and to aid generalisation. In this paper, we provide an analysis of the advantages provided to our system by the use of QSRs. We provide a comparison of a variety of machine learning techniques utilising both quantitative and qualitative representations, and show the effects of varying amounts of training data and temporal representations upon the system. The subject of our work is the game of simulated RoboCup Soccer Keepaway. Our results show that employing QSRs provides clear advantages in scenarios where training data is limited, and provides for better generalisation performance in classifiers. In addition, we show that adopting a qualitative representation of time can provide significant performance gains for QSR systems

    Controller for TORCS created by imitation

    Get PDF
    Proceeding of: IEEE Symposium on Computational Intelligence and Games, 2009. CIG 2009, september 7-10, 2009, Milano, ItalyThis paper is an initial approach to create a controller for the game TORCS by learning how another controller or humans play the game. We used data obtained from two controllers and from one human player. The first controller is the winner of the WCCI 2008 Simulated Car Racing Competition, and the second one is a hand coded controller that performs a complete lap in all tracks. First, each kind of controller is imitated separately, then a mix of the data is used to create new controllers. The imitation is performed by means of training a feed forward neural network with the data, using the backpropagation algorithm for learning.This work was supported in part by the University Carlos III of Madrid under grant PIF UC3M01-0809 and by the Ministry of Science and Innovation under project TRA2007- 67374-C02-02

    Virtual Battlespace Behavior Generation Through Class Imitation

    Get PDF
    Military organizations need realistic training scenarios to ensure mission readiness. Developing the skills required to differentiate combatants from non-combatants is very important for ensuring the international law of armed conflict is upheld. In Simulated Training Environments, one of the open challenges is to correctly simulate the appearance and behavior of combatant and non-combatant agents in a realistic manner. This thesis outlines the construction of a data driven agent that is capable of imitating the behaviors of the Virtual BattleSpace 2 behavior classes while our agent is configured to advance to a geographically specific goal. The approach and the resulting agent promotes and motivates the idea that Opponent and Non-Combatant behaviors inside of simulated environments can be improved through the use of behavioral imitation

    The role of attention in robot self-awareness

    Full text link
    A robot may not be truly self-aware even though it can have some characteristics of self-awareness, such as having emotional states or the ability to recognize itself in the mirror. We define self-awareness in robots to be characterized by the capacity to direct attention toward their own mental state. This paper explores robot self-awareness and the role that attention plays in the achievement self-awareness. We propose a new attention based approach to self-awareness called ASMO and conduct a comparative analysis of approaches that highlights the innovation and benefits of ASMO. We then describe how our attention based self-awareness can be designed and used to develop self-awareness in state-of-the-art humanoidal robots. © 2009 IEEE

    A Contextual Approach To Learning Collaborative Behavior Via Observation

    Get PDF
    This dissertation describes a novel technique to creating a simulated team of agents through observation. Simulated human teamwork can be used for a number of purposes, such as expert examples, automated teammates for training purposes and realistic opponents in games and training simulation. Current teamwork simulations require the team member behaviors be programmed into the simulation, often requiring a great deal of time and effort. None are able to observe a team at work and replicate the teamwork behaviors. Machine learning techniques for learning by observation and learning by demonstration have proven successful at observing behavior of humans or other software agents and creating a behavior function for a single agent. The research described here combines current research in teamwork simulations and learning by observation to effectively train a multi-agent system in effective team behavior. The dissertation describes the background and work by others as well as a detailed description of the learning method. A prototype built to evaluate the developed approach as well as the extensive experimentation conducted is also described

    Learning by observation using Qualitative Spatial Relations

    Get PDF
    We present an approach to the problem of learning by observation in spatially-situated tasks, whereby an agent learns to imitate the behaviour of an observed expert, with no direct interaction and limited observations. The form of knowledge representation used for these observations is crucial, and we apply Qualitative Spatial-Relational representations to compress continuous, metric state-spaces into symbolic states to maximise the generalisability of learned models and minimise knowledge engineering. Our system self-configures these representations of the world to discover configurations of features most relevant to the task, and thus build good predictive models. We then show how these models can be employed by situated agents to control their behaviour, closing the loop from observation to practical implementation. We evaluate our approach in the simulated RoboCup Soccer domain and the Real-Time Strategy game Starcraft, and successfully demonstrate how a system using our approach closely mimics the behaviour of both synthetic (AI controlled) players, and also human-controlled players through observation. We further evaluate our work in Reinforcement Learning tasks in these domains, and show that our approach improves the speed at which such models can be learned

    Intelligent classification of ammonia concentration based on odor profile

    Get PDF
    This thesis presents the intelligent classification of ammonia concentration based on the standard of oil and gas industries wastewater discharge. The intelligent classification using signal processing is a well-known technique in many applications and as well in the oil and gas industry. The intelligent classification technique for ammonia concentration classification is a demanding technique especially in the environmental sector. Ammonia solution properties and ammonia solution preparations were studied in this thesis which commonly used in industry. The objectives of this thesis are to develop an intelligence classification of ammonia concentration based on the oil and gas industry wastewater discharge schedule and to analyze performance of the intelligent classification of ammonia concentration based on the oil and gas industry wastewater discharge schedule. In this thesis the ammonia odor profile has been pre-identified by chemist using four sensor array. The ammonia concentration was validated using a commercialized gas sensor and spectrophotometer to cross-validated e-nose instrument. The odor profile from two different samples; high (20 ppm and 25 ppm) and low (5 ppm, 10 ppm and 1 5ppm) concentration that have been normalized and visualized in a 2D plot to extract the unique patterns. The variance of the low and high concentration of ammonia odor profile has been identified as different group samples. This group samples have been analyzed statistically using Boxplot, calibration curve and proximity matrix, The thesis describes the statistical techniques to visualize the pattern and using mean features to classify between the low and high concentration. Two intelligent classification techniques have been used which are Artificial Neural Network (ANN) using the back-propagation approaches and then, the result of ANN model was cross-validated.using CBR. Both ANN model and CBR classifier have been measured using several performance measures. From the results, it is observed that ANN model and CBR classifier are capable of classifying 100% of ammonia concentration odor profile from the water. The results can also significantly reduce the cost and time, and improve product reliability and customer confidence

    Clustering-Based Online Player Modeling

    Get PDF
    Being able to imitate individual players in a game can benefit game development by providing a means to create a variety of autonomous agents and aid understanding of which aspects of game states influence game-play. This paper presents a clustering and locally weighted regression method for modeling and imitating individual players. The algorithm first learns a generic player cluster model that is updated online to capture an individual’s game-play tendencies. The models can then be used to play the game or for analysis to identify how different players react to separate aspects of game states. The method is demonstrated on a tablet-based trajectory generation game called Space Navigator
    • …
    corecore