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ABSTRACT 

 This dissertation describes a novel technique to creating a simulated team of agents 

through observation.  Simulated human teamwork can be used for a number of purposes, such as 

expert examples, automated teammates for training purposes and realistic opponents in games 

and training simulation.  Current teamwork simulations require the team member behaviors be 

programmed into the simulation, often requiring a great deal of time and effort.  None are able to 

observe a team at work and replicate the teamwork behaviors.  Machine learning techniques for 

learning by observation and learning by demonstration have proven successful at observing 

behavior of humans or other software agents and creating a behavior function for a single agent.   

The research described here combines current research in teamwork simulations and learning by 

observation to effectively train a multi-agent system in effective team behavior.  The dissertation 

describes the background and work by others as well as a detailed description of the learning 

method.  A prototype built to evaluate the developed approach as well as the extensive 

experimentation conducted is also described. 
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CHAPTER 1 INTRODUCTION 

Human beings are naturally social.  Working in teams to accomplish a common goal is a 

predominant trait of humans.  This is not only evident in team games, assembly lines, and 

warfare, but also in the simple activities of daily living such as meal preparation.   When 

preparing a meal, particularly a large meal for many people, it is common to have multiple 

people preparing various parts of the meal.  One person might be preparing vegetables while 

another prepares the meat.  The shared goal is to produce a delicious meal by a predetermined 

time.  The outcome of this scenario is dependent upon how well the team of cooks coordinates 

their efforts. 

Being so prevalent in human activities, teamwork has been heavily studied and modeled.  

Applications of simulated teamwork are indeed numerous.  Automating the opposing team in 

sports games or providing an intelligent group of foes in a video game can add realism and 

excitement to a game.  In military modeling and simulation, a simulated team that behaves like 

real humans adds realistic foes and teammates, thereby enhancing the effectiveness of training 

simulations.  Additionally, the simulated teams can provide examples of desired behavior, or a 

standard against which to compare trainee behavior.   Ongoing research seeks the best techniques 

for programming these simulated teams to perform various tasks. One difficulty in modeling 

teamwork among agents is that the acquisition and representation of the knowledge and expertise 

of the teams and its members can be difficult, time consuming and expensive.   

This dissertation studies methods where the simulated agents can learn the necessary 

skills and behaviors by observing an expert human team at work.  Learning by observation is a 

technique commonly used by humans.  Developing a technique capable of transferring this type 

of learning to a computer model is desirable.   
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Learning by observation or imitation has long been studied in humans and animals.  

[Galef and Giraldeau, 2001]  It is debated whether or not the ability to imitate others is a sign of 

intelligence in animals [Byrne and Russon, 1998], but there is little doubt that it could prove to 

be a time saving technique for training simulated teams of agents.  It is particularly useful when 

opportunities to derive knowledge from the actual human experts are not available, such as when 

the expert or experts are absent or otherwise uncooperative (e.g., an opponent or enemy).   

Learning by observation also offers the opportunity to acquire implicit knowledge that is often 

not easily captured through other conventional knowledge acquisition techniques.  Explicit 

knowledge includes facts, formulas and rules and is comparatively easy to obtain from an expert.  

Implicit knowledge, on the other hand, is more esoteric and difficult to articulate and represent.   

Also known as tacit knowledge, it encompasses habits that the expert may not even recognize. 

This type of knowledge is usually acquired through practice and experience and is often difficult 

to articulate. One definition of implicit knowledge defines it as knowledge that increases task 

performance without an accompanying increase in verbal knowledge about the task.  

[Underwood and Bright, 1996]  Another definition is knowledge acquired without conscious 

knowledge of when and where it was acquired.  [Underwood and Bright, 1996] It is sometimes 

referred to as unconscious memory. [Underwood and Bright, 1996] Learning by observation is 

one possible way to obtain this knowledge.    

In addition to learning tacit knowledge, there are many advantages to learning by 

observation.  These include [Fernlund, 2004]: 

 Amount of expert’s time needed is minimized.  Expert need only demonstrate 

task, not talk about it. 

 Software coding time is minimized as behavior function encoding is automated. 
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 Development of agent is quicker. 

 It is possible to incorporate demonstrations from multiple experts. 

Several techniques exist that use learning by observation to train a single simulated entity.  

Applications exist that have trained agents to drive a car simulator [Sidani, 1994; Fernlund, 

2004], teach planning application operators [Wang, 1995], learn to fly [Sammutt, et al, 1992] 

[Isaac and Sammutt, 2003] drive a simulated tank in formation [Fernlund, et al, 2007] and many 

others.  An extensive review of the recent literature in learning by observation is presented 

chapter 2.  However, learning applications relevant to single agents are often difficult to 

implement in a multi-agent scenario.  [Sycara, 1993]  It is possible to individually train 

individual agents that are part of the team independently from other teammates. This can be a 

useful first step in a multi agent system, but agents trained in this manner often do not work well 

together. [Stone, 2007]   The effort is analogous to putting a group of human strangers in a team 

and expecting them to immediately behave and communicate effectively. 

1.1 Teamwork in Humans 

The question arises as to whether teamwork skills fall into the realm of explicit knowledge, 

implicit knowledge or both.   Before making this determination, it is important to grasp what 

separates a team versus a group of individuals working in the same place.  A good place to start 

is philosopher Bratman’s view of shared cooperative activity [1992] and shared intentions 

[1993].   It seems intuitive that a group of individuals working as a team would at least have 

shared intentions.  Bratman asserts that shared intentions do not exist unless some basic criteria 

are met.  First, a group only has intentions to perform task J when all members of the team have 

the intention to perform task J.  Second, it must be common knowledge among all team members 

that everyone in the group is performing task J. Thirdly, the team members must have a joint 
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commitment to mutual support.   Only if these criteria are met can the group be said to have the 

shared intention to perform task J.  [Bratman, 1993]   

Using our meal preparation example, two people might be working together in the 

kitchen, but one might be planning to serve roast for dinner and the other chicken.  They are not 

a team unless they share the intention to serve the same meal.  Another example of this might be 

the difference between two airplanes flying in the same region of space versus a squadron of 

fighter jets.  The two airplanes probably share the intention to avoid a collision, but as they are 

not necessarily aware of the other airplanes' intention, they are not considered a team. A 

squadron of fighter jets are considered a team because they share the intention of performing a 

mission, are aware that the others share that intention and are working together to make the 

mission occur as planned.   

Training an expert team requires understanding and capturing the behaviors or skills that 

are necessary to perform the tasks assigned to the team.  These can be broken into task skills 

versus team skills. [Salas, et al, 2000]   Team skills or competencies are individual team member 

skills that affect team performance such as communications.  Task skills are those applicable to 

the tasks being undertaken by the teams.  For example, a team of pilots flying a large aircraft 

should all have the task skills to read the instruments and use the controls to manipulate the 

aircraft.  However, it is important that they also have the team skills of communication so they 

are effectively dividing the tasks and handling any emergencies that arise.   Both team and task 

skills can be classified as generic or specific to the team goals.  Generic skills are those that are 

applicable regardless of the task being undertaken, while specific skills do not transfer well to 

other tasks.  Team skills considered generic include conflict resolution, ability to motivate others, 

information exchange, planning and flexibility.  Team specific skills include situational 
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awareness, task interaction, and dynamic reallocation of functions and shared problem-model 

development.   The type of task being undertaken by the team will determine the needed skills 

and competencies of the individual members.  However, all team members will need some basic 

team skills or competencies in order to effectively work together. [Salas, et al, 2000] Defining 

which skills are most important in impacting the effectiveness of a team is more difficult than 

identifying common skills.   Expertise in task specific skills by individuals comprising the team 

was found to have a strong impact on team effectiveness, as is having independent self-aware 

team members. [Mickan and Rodger, 2000]  Additional skills and traits found to positively 

impact team effectiveness were commitment, flexibility, good coordination skills and good 

communication skills.  Team coordination can be defined as interpersonal actions used to 

complete tasks together. [Mickan and Rodger, 2000] Team communication is defined as 

exchange of information and interactions that relate attitudes and values. [Loxley, 1997] 

The amount and type of the competencies needed for an effective team are determined by 

the specific type of team that, in turn, is determined by the type of work to be accomplished.   

[Sundstrom, 1999]  Sundstrom [1999] identifies six different kinds of work teams: production, 

service, management, project, action/performing and parallel teams.  The criteria used to 

differentiate between team are amount of authority, temporary/permanent, external linkage, 

whole team specialization, and within team specialization.  [Sundstrom, 1999] 

Management teams refer to teams of managers and their direct reports.  The team has 

responsibility for work under its purview.  This type of team has a great deal of authority, is 

organized per leader and is generally considered permanent.  Management teams are moderately 

specialized.  Typically, no two management teams in an organization do the same thing.  Project 

teams are also known as task forces.  They are formed to complete a specific task in a definitive 
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time period and typically disband when the task is complete.  The members are experts selected 

for specific skills, and this type of team is highly specialized.  An example from industry would 

be a proposal team.  The members are brought together to produce a proposal for a particular job 

and disband when the proposal is complete. [Sundstrom, 1999] 

  Service teams perform repeated transactions with customers.  These teams typically have 

very little authority and depending upon the service they provide; have various levels of 

complexity and authority. A customer service department is a good example of a service team.   

Parallel teams are highly specialized type of teams that work outside normal channels.  They 

may have characteristics of two or more other types of team.  [Sundstrom, 1999] 

Production teams repeatedly produce tangible outputs of a particular kind.  A common 

example is a manufacturing assembly line.  This type of team has limited authority, is very stable 

and is moderately specialized.  The team is tightly linked with outside teams as well.  

Action/performing teams are very specialized.  Their output is often tangible, but doesn’t have to 

be.  The team is very flexible and coordination among the team members is high.  The 

effectiveness of an action/performing team is often limited until team members adjust to one 

another.  The teams are often not stable so adjustment to new team members is dependent upon 

standardization of skills in individuals and roles.  [Sundstrom, 1999] 

This dissertation concentrates on learning the skills of an action/performing team and 

production teams.   Production teams are often simulated to test the effectiveness of a particular 

configuration of a manufacturing assembly line.  It is much less expensive to move equipment 

and tasks in a virtual assembly line than on an actual factory floor.  Gaming has had a huge 

impact on simulation of action teams.  The simulation of an action team makes for a more 

popular game than the simulation of a service team.    An action team typically performs time-
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limited engagements against adversaries or challenging environments.  Action teams have 

moderate authority, can be permanent or temporary, and have high external linkage.  

Furthermore, whole team and within team specialization are high.  Effective action teams will 

have strong task specific skills; however, the team members will also need skills that are 

considered task generic.    For example, the members of the team must have interdependent roles 

and goals, but they share a fate or outcome.  The team members must see themselves as a team 

and not simply a group of individuals.  The team maintains a specialized collective skill specific 

to the type of engagements they perform.  Examples are various military units, stage actors, and 

public safety incident response teams.  They have highly demanding tasks and are capable of 

quickly adjusting strategies.  This type of team needs members with strong competencies specific 

to the task and team.  If the team experiences high turnover, task competencies become 

particularly important. The amount and type of necessary team skills is heavily influenced by the 

context and task requirements. .  Simulations and team games are often used as training aids to 

help human teams develop their task and team skills.   [Sundstrom, 1999]    

Another aspect of modeling teams is modeling the team decision making process.  This is 

particularly important in action teams where it is often necessary to adjust the team strategy 

quickly.   Several psychologists propose that team decision making is best described by a shared 

mental model of the task and team. [Cannon-Bowers, et al, 2001] [Druskat and Pescosolido, 

2002] [Johnson-Laird, 1983] [Mohammed, et al, 2000] The theory of mental models assumes 

that people organize knowledge into structured meaningful patterns that enable rapid and flexible 

access to the knowledge and processes necessary to act upon it.   This allows for effective 

interaction with their environment.   Effective team members are able to perform this interaction 

with their environment quickly and efficiently.   A shared mental model is a set of organized 
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expectations shared by the team.  This does not mean that each member has an identical mental 

model, but rather that they have shared perception of the team goal and each member’s role in 

the decision making process.  

An example of an action team is the crew of a naval vessel determining whether or not to 

fire at hostile aircraft.  This involves multiple team members operating equipment, determining 

the appropriate response and taking action.  Each team member has to understand the operation 

of the equipment for which they are responsible and how to get information from them.  They 

need to understand what information is significant to the task at hand, what additional 

information is needed and how to combine that information.  Each team member must 

understand their role in the task and know the capability and role of their team members.  In the 

case of the naval vessel, the radar operators must operate the radar and relay the necessary and 

relevant information to their officers.  The officers must know how to combine that information 

with their knowledge about rules of engagement and the present tactical situation.  The 

commander must then make the decision to fire upon the hostile aircraft or defer engagement.  

The weapons operators must then act upon the decision of the officers.  All this must be done in 

a constantly changing environment where the results of the decision could mean life or death.  

 In this example, a joint goal is the safety and defense of the ship against hostile forces.  

Each team member must have that goal as part of their shared mental model as well as 

understand their role and those of the other team members in the decision making process.  In 

addition, in this situation, the team members must have a strong mental model of their individual 

tasks.  For example, the radar operator must have strong understanding of the symbols on the 

radar screen as well as knowing how to operate its controls.  Furthermore, the operator must have 

adequate skills to effectively filter the information on the screen and communicate only the 
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information his team members need to know.  This requires using information from task specific 

mental model for filtering and knowledge of team members’ roles from the shared mental model.  

[Cannon-Bowers, Salas & Converse, 2001] 

These studies on teamwork lead to the conclusion that in order to effectively train 

teamwork, it is necessary to look beyond merely training the individual team members in their 

tasks.  While it is necessary for the team member to learn their individual task-specific skills, 

they must also acquire team based skills such as communication, and share common goals.  

Ideally, each member of the team would have perfect awareness of what the other members 

know and intend.  However, in a simulated system, this is impractical [Barrett, 2007] for all but 

very small and simplistic teams.  It is also not representative of true human behavior.   It is 

possible and desirable for team members to know what the roles and basic skills of their 

teammates are and use this knowledge to allow the team to work together effectively.  An 

effective team is going to be more productive than a group of individuals working in the same 

area.   It is clear that any type of learning algorithm used to train software agents to work in a 

team must include learning individual task skills as well as effective team behaviors. 

1.2 Teamwork Knowledge and its Acquisition 

The skills that contribute to effective teamwork often fall into the realm of implicit knowledge.  

They are hard to articulate.  For example, how do you define “good communication skills”?   

This is a very subjective area and what could be considered good communication skills in one 

team might be inadequate in another or even too much communication in a third.   Since learning 

by observation has been shown to allow learning of this type of implicit knowledge as well as the 

more easily learned explicit knowledge [Sidani, 1994], it seems to be a good fit for training a 

team.  While learning by observation is a natural part of being a human, the translation to a 
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learning algorithm for software agents is not quite as simple.  Effective learning requires 

accurate observation and representation of the expert’s behavior before it can be translated into 

behaviors for the observing agent.   Despite the challenges, learning by observation should prove 

to be an effective means for training a multi-agent system to perform tasks involving teamwork.   

The contributions of the dissertation are a new approach to training multi-agent systems to 

learn teamwork.  This is particularly useful to the military simulation and training community for 

enhancing the existing simulations and training feedback products.  This technique would be 

useful for adding more expertise to automated forces that are used for providing realistic 

opponents or teammates.  In addition, it could be used to train expert agents that could be used to 

play a simulation exercise along with the trainees and provide valuable feedback on trainee 

performance as is done in SmartAAR. [Fernlund, et al, 2009]   

1.3 Organization of Dissertation 

Chapter 2 of this dissertation presents the background of multi agent systems designed for 

teamwork.  Also included are a discussion of various multi agent machine learning techniques 

and a survey of various methods for learning by observation.  Chapter 3 expands upon this 

background to describe a method of training a multi agent system based upon observed behavior 

of an expert team.  Subsequent chapters describe an agent framework based upon the 

Collaborative Context-Based Reasoning framework.  This framework is built and trained to 

perform a military team operation.  The subsequent chapters discuss the machine learning 

algorithm developed and evaluate its effectiveness by determining how well the newly trained 

agents perform compared to the original expert team.   
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CHAPTER 2 BACKGROUND 

This chapter discusses the prior research into simulating teamwork as well as recent research into 

learning by observation.  The background on the theory behind teamwork simulations and 

existing teamwork agent frameworks are explored.  Furthermore, machine learning techniques 

for multi agent systems are reviewed.  Finally, a variety of techniques for learning by 

observation are examined. This background information is important to understand the research 

described in this dissertation. 

2.1 Human Behavior Representation Architectures 

While attempting to simulate human teamwork, it is important to remember that the team 

consists of humans.  Therefore, the agents representing team members must also portray human 

behavior.  The study of human behavior is highly complex.  Cognitive architectures or 

frameworks are the first steps toward creating a complete simulation of human behavior.  This 

task, however, has been termed “possibly the most difficult task humans have yet undertaken”. 

[Pew and Mavor, 1998, p. 8]  This section reviews some of the approaches to simulate human 

behavior using a computer.  The approaches range from attempting to recreate the complete 

human cognitive process to breaking the problem down into contextual pieces. 

  It is also important to avoid agents that are too perfect.   When recreating human 

behavior, it is desirable to capture their individuality and unpredictability as well.  In a simulated 

team, each member of the team is a simulated agent with unique actions and behavior.  The agent 

is responsible for mapping the current state to the next action to take.  This mapping function can 

take a variety of forms ranging from neural networks to rule-based systems.  The following two 

sections examine the research literature of frameworks designed to simulate human behavior.  

Each framework has a unique approach to the type and creation of the behavior function. 
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2.1.1 Cognitively-Inspired Frameworks 

A common approach to describing human behavior is to treat it as a black box system.  External 

stimuli are the input.  Inside the black box is a variety of functions to process the stimuli, and the 

resulting output is behavior.  This black box can also be referred to as the behavior function of 

the agent.   Adaptive Control of Thought (ACT-R) [Anderson, 1993], SOAR [Jones, et al, 1996], 

Sandia’s Cognitive Framework [Forsythe & Xavier, 2006],  COGnition as Network of Tasks 

(COGNET) [Ryder & Zachary, 1991] are among the many agent frameworks that attempt to 

create agents with behavior functions based upon human cognition.   These frameworks use the 

study of human cognition as a starting point and develop software agents that simulate the 

workings of the human brain to varying extents.    

 ACT-R has a modular architecture, with modules for declarative memory, perceptual 

systems and motor systems.  These modules are all synchronized through a central production 

system.  It is intended to simulate human cognition as closely as possible.  The central 

production system is primarily rule-based with a Bayesian mechanism that learns the utility of a 

production rule based on its history.  New production rules are learned or input while the system 

is off-line.  The system has been used primarily as a test bed to explore cognitive theories. [Best, 

et al, 2008] 

 SOAR originally consisted of production rules that acted as long-term memory and a 

single short-term memory that contained information about the current situation.  Learning was 

done through the addition of new production rules in a process known as chunking, that converts 

the process of problem solving into rules.   While this provided a strong foundation and a useful 

cognitive agent, the addition of new modules have extended SOAR to expand the types of 

knowledge represented and perform additional types of automatic learning. [Laird, 2009]   
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SOAR has also been used as a basis of the Virtual Human project. [Swartout, et al, 2006]   This 

virtual reality simulation is intended for use in researching the issues of achieving human level 

performance in cognitive systems.  It has been successfully used in a system designed to teach 

leadership skills in high stake social situations such as military interaction with the civilian 

population.  [Swartout, et al, 2006] 

 COGNET was built as a model of human information processing for specific purposes.  

The range of purposes has grown over time since it was first created.  It does not attempt to 

capture any particular theory of human thought or behavior.  It is intended to provide a 

framework for cognitive model developers who are not necessarily experts in cognition.  Parallel 

processing of perceptual, motor, and cognitive sub-systems is made possible in part by a shared 

memory module.  There is also the concept of attention that allows COGNET to deal with the 

competing needs of the parallel processing.  Application using agents developed in COGNET 

include en-route air traffic control, telecommunications operators and naval command and 

control.   [Zachery, et al, 1996] 

 Sandia’s Cognitive Framework (SCF) approaches human behavior representation a little 

differently.  It uses an interconnected semantic network that feeds into context recognition 

memory.  Domain specific concepts are represented as nodes in the semantic network.  A 

perceptual interface provides sensory information into the semantic network simulating the way 

human senses feed into human cognition.  Rather than attempting to model generic human 

behavior, the approach to SCF has been to model specific individuals.  This allows them to 

validate the results of the modeling against a specific human being’s behavior.  There is currently 

no machine learning interface in the SCF. [Best, et al, 2008]   
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 The Cognitive Foundry integrates machine learning into the Cognitive Framework. 

[Basilico, et al, 2008]  A variety of machine learning tools are provided that populate the 

Cognitive Framework using automatic knowledge capture tools.  The decoupling of the learning 

algorithms from the cognitive frameworks allows for rapid prototyping and quick execution of 

different algorithms and approaches.  The tools include a variety of supervised and unsupervised 

learning algorithms as well as a statistical validation package. [Basilico, et al, 2008] 

 coJACK [Evertsz, et al, 2008] is a cognitive agent framework based upon the JACK 

agent framework.  JACK is a based upon the Belief/Desire/Intention agent model and 

implemented in the Java language.   The key programming constructs provided by JACK are 

events, plans, belief sets and intentions.  coJACK augments these constructs with a moderator 

layer and cognitive architectural constraints and parameters.  It is intended for use in resource 

limited environments.  It has been tested in a simple tank game known as dTank.  This game was 

designed to compare various cognitive architectures in a simulated environment. The framework 

proved successful at playing dTank, but testing is still ongoing on more complicated tasks. 

[Evertsz, et al, 2008] 

 The frameworks listed here are just a few of the currently used cognitively inspired 

frameworks.  Other cognitively inspired frameworks used in modeling and simulations include 

Executive-Process Interactive Control (EPIC) [Meyer & Kieras, 1997], Human Operator 

Simulator (HOS) [Glenn, et al, 1992], Man Machine Integrated Design and Analysis System 

(MIDAS) [Laughery and Corker, 1997], Operator Model Architecture (OMAR) [Deutsch, et al, 

1993] and Situation Awareness Model for Pilot-in-the-loop Evaluation (SAMPLE) [Baron, et al, 

1980].   
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2.1.2 Context-Inspired Frameworks 

Other human behavior representation frameworks are inspired by the idea of context.  Humans 

naturally think in terms of context, one area where humans regularly use context is in 

conversation.  For example, if the phrase, “Where’s a good bank?” was overheard on a city 

street, the assumption is that the speaker is looking for a bank in which to obtain a loan or 

deposit his or her money.  However, if the same phrase is spoken holding a fishing pole near a 

river, the context implies that the speaker is looking for a river bank to fish from.   The idea 

behind context-inspired frameworks is that in any given situation there are a limited number of 

options.  By understanding the situation or context, it is possible to encapsulate the necessary 

knowledge, procedures and actions that are applicable to the situation.  If processing natural 

language and the context is known to be fishing, there is no need to process the word bank in 

financial terms.   

 There are many definition of the word “context”.   Bazire and Brezillon [2005] built a 

model of context based upon an analysis of dictionary and web-based definitions of context.  The 

model represents the components of the situation that influence context.  They recognize that the 

context of a particular item is influenced by the user or individual looking at the item, the 

environment and the observer of the environment.  As with many terms, there is no single correct 

definition of what context is or how it can be determined.  The authors did determine that there 

are six important factors that analyze and define context. These factors are constraint of the 

context, influence of the context, behavior within the context, the embedded system, nature of 

the context and structure of the context. [Bazire & Brezillon, 2005] 

A contextually based framework has many advantages for agent development. These 

include: 
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 The ability to simulate human behavior 

 The use of context divides the problem space into smaller, easier to handle 

problems. 

 Several techniques have been developed that automatically generate context-

based reasoning agents from observation.   

In many ways contexts are analogous to the mental models [Cannon-Bowers, et al, 2001] that 

humans produce.  Experts in any given area are able to process information, determine the 

context and make a decision based on the perceived context.  The knowledge that only certain 

information is relevant in a particular situation enables the expert to filter the inputs and prune 

the number of possible actions and facilitate decision making. The ability to determine context is 

key to obtaining situational awareness.  Situational awareness is defined as “.. the perception of 

the elements in the environment within a volume of time and space, the comprehension of their 

meaning and the projection of their status in the near future.”  [Endsley, 1995]  Endsley [1995] 

states that complete human situation awareness have three levels.  The first level is the 

perception of the current state. The state data are then synthesized together to form patterns that 

lead to an understanding of the situation.   In a software agent, this is analogous to current 

information from the simulation and other agents.  [Endsley,1995] These mental patterns are 

contexts. By knowing the context, comprehension of the perceived state is made possible. This is 

known as level 2 situational awareness.  This is the level most simulated agents are able to 

achieve.  Level 3 situational awareness involves projection into the future and choosing one’s 

action based on all the possible futures. [Endsley, 1995] Because of the infinite number of 

possibilities, the processing power needed to achieve true level 3 awareness is often prohibitive.  
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However, context allows for the limiting of possible options and brings simulated agents closer 

to achieving true human situational awareness.   

Several researchers have examined the idea of using context as a basis for models of 

human behavior.  Giunchiglia [1993] implemented a contextual system called Multi-Context 

(MC) systems.  The system formalizes each context in terms of separate language, axioms and 

rules of inference.  Bridge rules allow transition between context as well as allowing concepts to 

be shared across contexts.  The system has been used as a framework for mental representation.  

[Giunchiglia, 1993] 

Turner [1998] hypothesized that context-sensitive behavior is the key to accurately 

simulating intelligent behavior.  He approached adaptive problem with schema-based reasoning.  

Frame-like schema known as c-schema were developed to provide context sensitive information.  

The agent determined the context based upon the current situation and selected the appropriate c-

schema.  The c-schema contains information needed to identify and predict possible scenarios, 

set behavior parameters, focus attention on appropriate goals, select proper action and respond 

quickly to events. This approach was tested in applications in medical diagnostics and 

underwater autonomous vehicle controllers.  [Turner, 1998] 

Kokinov [1999] defined context as “.. the set of all entities that influence humans (or 

system’s) behavior on a particular occasion”. [Kokinov, 1999 p. 205]  Kokinov believes that the 

use of context makes systems more flexible and efficient.  This efficiency is gained by reducing 

the amount of information and number of possible actions to only those important in a particular 

context.  The DUAL architecture was developed using this context.  This unique architecture 

pulls together symbolic and connectionist attributes into a system capable of dynamic 
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reorganization.  This architecture was used to design AMBR, a system that simulates the 

deductive and analogical reasoning aspects of human problem solving. [Kokinov, 1999] 

 Zibetti, et al [2001] created a model of human behavior called ACACIA (Action by 

Contextually Automated Categorizing Interactive Agents).  They approached the development 

with a combination of bottom-up (perceptual components) and top-down (cognitive components) 

processing.  Context is determined by already active information from the previous time step 

along with the current time step’s properties.  [Zibetti, et al, 2001] 

 Brézillon [2003] defines three separate aspects of context.  These are contextual 

knowledge, procedural zed context and external context.  Brézillon implements context through 

the use of contextual graphs (CxG).  These specialized decision trees are acyclic graphs that have 

a single source, single sink and series-parallel organization of the nodes.  Contextual graphs have 

been used to successfully implement subway line event management and contextually-aware 

computing programs. [Brézillon, 2003] 

Context-based reasoning (CxBR) is the contextual-based paradigm chosen for use in this 

dissertation.  Because CxBR is a paradigm rather than a framework, it offers flexibility in 

implementation not available with the other human behavior representation frameworks.  CxBR 

simulates human behavior without simulating all of the human thought processes.   The life of a 

software agent typically consists of processing information and making a decision on the next 

action or state.  By knowing the current context, an agent can limit expectations as to what is 

normal in the current context.   When the situation is changed, environmental or internal events 

can trigger a transition to a new context. [Gonzalez, et al, 2008]   

  A CxBR agent categorizes rules and function hierarchically.  The top level of the 

hierarchy is known as the Mission Context.  Each CxBR agent has a single Mission context.  The 
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Mission can be defined as the process of interacting with the environment and making decisions 

while trying to accomplish a goal or objective.  The Mission Context is responsible for 

maintaining that objective, defining the criteria for ending the mission, and maintaining the plan.  

Within a particular Mission, various situations are categorized into Major Contexts that can 

contain Sub-Contexts.  The Mission contains universal rules that are applicable to all contexts 

and contains a list of all the possible Major Contexts applicable to the mission.  These universal 

rules, sometimes called universal sentinel rules, are typically a set of actions triggered by a 

particular state or data transition.     These universal sentinel rules are checked by all the contexts 

because they define conditions that should result in a particular action regardless of the current 

context.  Each context contains additional rules and functionality specific to that context, also 

known as action rules, and rules governing the transition from one context to another, known as 

transition rules.  Sub-contexts represent a lower level of abstraction than the Major Contexts, but 

operate in essentially the same manner with the exception that context transitions are only 

between Sub-contexts of the active Major Context or back to the Major Context.   Each context 

is an object-oriented class with its own set of attributes and methods relevant to that context.  

The flexibility and encapsulation of the contexts make CxBR agents lightweight and easy to 

implement.  Figure 2-1 shows a conceptual model of a CxBR agent. 

2.2 Models of Teamwork 

As discussed in Chapter 1, a group of individuals or software agents does not create a team.  

While using software agents based upon human behavior is a good starting place, additional 

elements are necessary to create an effective team of agents.   Theories of agent teamwork have 

been proposed in the literature. These provide formal requirements for building teams of agents.  

Two of the most popular are Joint Intention Theory [Cohen & Levesque, 1991] and SharedPlan 
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[Grosz & Kraus, 1996].  These two theories are broadly reviewed and compared to the 

psychological models discussed in the first chapter. 

 

Agent

Mission

Major Context A Major Context B Major Context C

Sub-Context A1Sub-Context A1

 

Figure 2-1 Context Hierarchy for a Basic CxBR Agent 

 

Cohen and Levesque [1991] applied the idea of teamwork to software agents that must either 

work together or with human agents.  This theory is known as Joint Intention Theory (JIT). This 

theory is concerned with the design of software agents that have to interact with other agents, 

either real or simulated.  A joint intention is defined as a joint commitment by a team to 

completing a particular action.  In order for a group of agents to be considered a team, they must 

have a joint commitment to a goal.   This is referred to as a joint persistent goal.  The team has a 
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joint persistent goal to achieve P, where P is the completion of the team action when the 

following is true: 

 All team members believe P to be false 

 All team members have a mutual goal to make P become true 

 All team members believe that their team members also have a goal to make P true until 

it is mutually believed to be true, unachievable or irrelevant.    [Cohen and Levesque, 

1991]  

The psychological theory of shared mental models [Cannon-Bowers, et al, 2001] ties in 

nicely with Joint Intention Theory. The knowledge of what P is and its current state would be 

part of the shared mental model of the team.  Each team member’s role in achieving P would 

also be part of the shared mental model.  The specific skills necessary to perform each and every 

task would not be part of the shared mental model; rather, each team member would have a 

unique mental model of their skills and processes necessary to perform their tasks in addition to 

the shared mental model of the team. 

SharedPlan [Grosz & Kraus, 1996] focuses on the collaborative plans of the agent as well as 

their intentions.  Like JIT, it can be used as a specification upon which a team of agents can be 

built.  A group of agents are said to have a Shared Plan to perform A if the following holds true: 

 Each individual intends that the group do A 

 Each individual has a mutual belief in a (partial or full) plan for A 

 All individuals have a plan for the sub-acts involved in A 

 All intend to succeed in doing the sub-acts 

 All commit to group decision-making processes aimed at completing the plan. [Grosz & 

Hunsberger, 2006]  
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Agents have a shared commitment to a goal as well as a shared plan on how to achieve that goal.   

The shared plan breaks down into individual plans for each agent.  Each agent looks at each goal 

in the plan for what it is capable of bringing about and what the group is capable of bringing 

about.   The idea is that collaborative activity is brought about by the individual actions and 

domain actions of each agent.  [Grosz and Kraus, 1999]  

  Like JIT, SharedPlan also fits well into the idea of shared mental models, with the shared 

plan and knowledge of other agent’s capabilities fitting into the shared mental models.  In 

addition, it recognizes the difference between domain skills and team skills discussed in Chapter 

1.  Obviously, JIT and SharedPlan have some similarities, as both require that agents have an 

intention to perform their task.  SharedPlan focuses more on the planning aspect of the task than 

JIT.   Although developed independently, both theories focus on shared intention as a basis, and 

contain elements useful for developing an agent framework.   More importantly, both have 

elements that can be linked with the psychological basis of human teamwork.  This is important 

because we are attempting to simulate human teamwork behavior.  Any framework used to 

simulate human teamwork should have elements that echo the actual human behavior. 

2.3 Teamworking Agent Frameworks 

Several agent frameworks geared toward simulating teamwork have been developed using JIT as 

a starting point.  Two of the earliest frameworks were STEAM [Tambe, 1997] and GRATE 

[Jennings, 1995]. STEAM, a Shell for TEAMwork, is a multi agent framework that adds a 

detailed communication model to the SOAR [Laird, et al, 1987] agent framework.  To 

accommodate teamwork, STEAM adds team operators and team representation structures to 

SOAR.  These additions allow for the monitoring of the team performance.   STEAM 

incorporates aspects of both JIT and SharedPlan.  It primarily uses JIT for specification, but the 
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researchers found issues revolving around communication among teammates, coherency of the 

path forward, and ability to replan when joint intention is seen as unachievable.  To address these 

issues, aspects of SharedPlan were used particularly in the area of replanning.  The hierarchical 

structures used to implement STEAM were also very similar to SharedPlan.  [Tambe, 1997]  

This generic framework for teamwork has been applied to a variety of domains.  These include 

combat air missions [Hill, et al, 1997], robot soccer [Kitano, et al, 1997], and rescue response 

[Scerri, et al, 2003].  More recent updates to STEAM include TEAMCORE [Tambe, et al, 1999] 

and Machinetta [Schurr, et al, 2006].   These updates take advantage of the advances in 

computing power and new computer languages that have emerged through the years to create 

more lightweight and flexible agents. 

 GRATE (Generic Roles and Agent model Testbed Environment) is another agent 

framework developed using JIT. [Jennings, 1995]  GRATE was built upon the concept of joint 

responsibility, essentially joint intention with modifications to handle planning failures or 

unplanned events.  GRATE is built to address the following points of teamwork: [Jennings, 

1995] 

 A joint goal is shared by all agents 

 All agents wish to cooperate with each  other to attain the joint goal 

 All actions performed in the context of the joint action are interdependent 

 Agents must have a means to monitor their commitment. 

In order to address these points and create a general purpose framework for cooperation and 

situational awareness, GRATE agents consist of two components; there is a cooperation and 

control layer that is separate from a domain-level system.  The cooperation and a control layer 

are intended to provide the generic cooperation and representation structures needed by all forms 
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of teams while the domain level provides the details of the particular application.  Problems are 

viewed as atomic units of processing known as tasks to the cooperation layer.  The framework 

has been used to implement a variety of manufacturing control systems. [Jennings, 1995] 

 There have also been several applications based upon the SharedPlan theory.  These 

include Collagen [Rich & Sidner, 1998], a distance learning tool [Ortix & Grosz, 2002], and an 

e-commerce tool [Hadad & Kraus, 1999].  However, they are based on SharedPlan theory, and 

not a common framework or architecture.  Nevertheless, some work has been done towards 

developing a SharedPlan agent framework called MIST [Nguyen & Wobcke, 2006].   None of 

these agent frameworks are particularly well suited for learning teamwork by observation, as the 

frameworks are set up assuming that the agents will use the predefined teamwork modules for 

the communication and coordination of the team.   

 A few agent prototypes have been developed that explicitly implement the concept of 

shared belief or shared mental models for simulating teamwork.    JTEAM is one such prototype. 

[Hsu, et al, 2003]  JTEAM implements the idea of a team goal that translates into a team plan 

which can be chosen from a list of applicable plans based on the goal.  The objective of the team 

plan is to translate the joint goal into sub-goals that are implementable by one agent.  The team 

leader is responsible for apportioning the sub-goals out to the various agents.  There can be only 

one team leader at a time, but the team leader can change over time.  The team has a set of team 

beliefs and every agent has a copy of these beliefs.  Only the team leader can freely change the 

team beliefs to avoid an inconsistency of team beliefs. [Hsu, et al, 2003] 

 CAST, Collaborative Agents for Simulating Teamwork, is another prototype that 

implements the idea of a shared mental model.  [Yen, et al, 2006] Designed to study teamwork-

related issues, CAST agents have individual behavior components and components for 
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maintaining a team-shared mental model.   All the agents are programmed with a commitment to 

maintaining the shared mental model through outgoing communication of their own status and 

processing incoming communication about other team members’ status. [Yen, et al, 2006]     

Another example of research into implementing shared beliefs among a large multi-agent team 

using a token-based algorithm.  [Velagapudi, et al, 2007]  In this research, the communication of 

data pertinent to the shared situation awareness of the team is encapsulated as a token and 

forwarded to a teammate.  That teammate integrates the information with its own set of beliefs 

and determines whether the information is still relevant.  If so, the token is passed on to another 

teammate.  This process is repeated until an agent determines that the information is no longer 

worth propagating.  Using lessons learned from token ring networks, a token-based belief 

sharing policy was developed. [Velagapudi, et al, 2007]  Unfortunately, the research is still in its 

early stages and no prototype is available to try this method of information sharing. 

 Other multi-agent frameworks have found widespread acceptance are JACK agents 

[Howden, et al, 2001] and JADE [Bellifemine, et al, 2007] agents.   Both are based upon the Java 

language.  By using Java, the agents are not limiting themselves to a particular operating system 

or platform in the way that some languages such as C# do.  A few older frameworks like 

AgentBuilder [AgentBuilders, 2006], FIPA-OS [Poslad, et al, 2000] and Zeus [Nwana, et al, 

1999] have found widespread acceptance and are readily available for download, but none of 

these have been updated for use on contemporary operating systems. FIPA-OS is compliant with 

agent specifications developed by FIPA, the Foundation for Intelligent Physical Agents.  Another 

less readily available FIPA-compliant framework is SAGE.  [Ahmad, et al, 2005] SAGE is not 

readily available, but researchers in Asia have used SAGE to develop a multi-agent teamwork 

system based on the teamwork exhibited by honey bees. [Sadik, et al, 2006]     
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2.4 Collaborative Context Based Reasoning 

In this dissertation, the collaborative agent framework chosen for implementation is 

Collaborative Context-based Reasoning (CCxBR).  CCxBR was developed to implement 

teamwork.  Barrett [2007] formalized CCxBR in terms of joint intention and related it to the 

popular Belief-Desire-Intention (BDI) model. [Georgeff, et al, 1999]  In CCxBR, an agent is 

always aware of its current Mission and the current context, whether it is a Major Context or a 

Sub-context.  [Barrett, 2007]   

CCxBR builds upon the work of Johansson, who implemented collaborative behavior 

between CxBR agents using a shared Mission context.  [Johansson, 1999]  This Mission context 

is a form of joint intention as the Mission context contains the high level goal of the agent.  

However, this did not provide any sense of shared situational awareness or means of 

coordination between the agents.  To address this issue, a teamworking class was introduced to 

the framework that focused on communication between collaborating agents. [Johansson, 1999]   

 Johansson’s incorporation of the teamworking class included the creation of a team 

mission known as the team mission context shared by the group of collaborating agents.  This 

team mission included the specification of sub-goals for the team members.  This addition made 

more of the information needed for effective teamwork available to each of the team members.  

Among the information included was team member status, team mission, status of the mission 

objective, and the role of individual team members.  It also provided a means of communicating 

status changes and mission objective changes that could change individual sub-goals.  

[Johansson, 1999]  

CCxBR implements Johansson’s teamworking class using a Team Context.   Figure 2-2 

shows the basic CxBR with the addition of the Team Context.  This Team Context is shared 
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among the CxBR agents functioning as a team.  It contains information about each agent’s 

context as well as the joint goal and status of the joint goal.  The basic concept behind CCxBR is 

that team members can easily maintain coordination by communicating their current context to 

each other via the Team Context.  By virtue of knowing the context of another agent, an agent 

can reasonably predict its actions. 

Agent

Mission

Context A Context B Context C

Sub-Context A1Sub-Context A1

Team Context

 

Figure 2-2 CxBR agent with Team Construct 

 

 Barrett built three separate CxBR prototypes designed to perform the same basic plays in a 

simulated soccer game.  The first prototype consisted of a team of basic CxBR agents with no 

accommodation for teamwork.  This version simply added a shared team context containing the 

current context of the mission.   The second prototype called “CxBRwithJIT” used the same 

basic agent, but added reasoning to allow each agent to infer their teammate’s context based 
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upon position and state of the game.  The third prototype implemented CCxBR and implemented 

explicit communication of each agent’s context among the teammates.  Experimentation showed 

that while the CxBRwithJIT prototype performed better than CxBR with shared Mission, the 

CCxBR prototype was the most effective at teamwork. [Barrett, 2007]   This dissertation uses the 

third prototype as the paradigm of choice for a team displaying collaborative behavior in this 

dissertation. The shared Mission and team context will provide the necessary shared mental 

model and link to JIT needed to effectively duplicate human teamwork behavior. The individual 

agents will have the ability to learn and duplicate individual task skills by developing their own 

Major contexts.  Conceptually, Figure 2-3  shows the team members sharing the Team Context. 

AgentTeam Context

Agent

Agent

Agent

 

Figure 2-3 CCxBR Agents Sharing Team Context 
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2.5 Machine Learning Techniques for software agents 

A variety of machine learning techniques exist to train software agents.  These techniques can be 

divided into two categories: supervised and unsupervised learning.    Supervised learning 

consists of presenting the learning algorithm with training data reflecting the inputs and expected 

outputs.  The learning technique must analyze or classify the data, and create a behavior function 

for the agent from the data.  Examples of supervised learning are Gaussian mixture models, 

artificial neural networks, and Bayesian statistics and support vector machines.    Unsupervised 

learning, on the other hand, provides only input data, and the learning algorithm must explore the 

problem space, developing a behavior function based upon the results of that exploration.  

Reinforcement learning techniques typically fall into the unsupervised learning category 

although they are sometimes given their own category. [Russell & Norvig, 2003]   Learning by 

observation falls into the supervised learning category although the inputs and outputs are not 

explicitly defined. They must be extracted from a sequence of data depicting correct behavior 

over time.   The example behavior and its results are input into the learning algorithm and some 

sort of behavior function is output.  The format of the behavior function will depend upon the 

type of agent being developed.  A rule-based agent will develop a set of rules governing its 

behavior.  An agent governed by a Markov Decision Process will develop a policy that maps 

state to action and state transitions.  A Neural network based agent will develop connections and 

connection weights to each neuron. 

2.5.1 Teamwork Recognition 

A topic related to learning teamwork is that of teamwork recognition.  Recognizing teamwork 

from temporal-spatial data is quite useful as a preprocessing step in learning-by-observation.  It 

provides a means of translating video and simulation data into a data structure easily processed 
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by the learning- by- observation algorithms.   Teamwork recognition is a form of behavior 

recognition.  One approach to the behavior recognition is template-based reasoning. [Drewes, 

1997]  Similar to case-based reasoning, template-based reasoning uses templates consisting of a 

series of attributes.  The attributes in each template are given weighted values indicating the 

importance of the presence of that attribute.  An entity’s attributes are compared to the stored 

templates using a simple weighted sum.  If the sum is large enough, the entity is performing the 

behavior represented by the template.  Template-based reasoning was found to be useful for 

automated performance monitoring.  [Drewes, 1997]    Gerber [2001] enhanced this approach by 

using neural network-based template attributes.  The neural networks were built using learning-

by-observation techniques.  The resulting system was used to decrease bandwidth use when 

synchronizing behavioral models of a human–controlled vehicle with the actual human 

controlled vehicle’s actions. [Gerber, 2001]     

 Sukthankar and Sycara [2006] used team spatial templates and spatially invariant Hidden 

Markov Models to recognize specific maneuvers by a simulated two man military team.   

Predefined templates of spatial positioning were created and compared against the positions of a 

team controlled by human players of the simulation.  A highly efficient randomized search 

algorithm known as RANSAC (Random Sampling and Consensus) was used to do the 

comparison.  In cases where the team behavior could not be determined strictly from spatial 

coordinates, it was necessary to use temporal data to improve the detection algorithm.  The data 

was transformed into a canonical reference frame defined by the team’s motion and a set of 

Hidden Markov Model classifiers were used to further classify the behavior and help 

differentiate between three spatially similar behaviors. [Sukthankar & Sycara, 2006]  
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 Luotsinen, et al [2007] expanded upon this work by adding the capability to add new 

Hidden Markov Models (HMM) based upon representative examples.  A data editor was created 

to isolate the representative examples from a large dataset acquired from a real world warfare 

exercise involving eight tanks organized into two opposing platoons.   Two different techniques 

for detecting Hidden Markov Models were used to create the new classifiers.  The first technique 

was the Baum-Welch algorithm [Baum, et al, 1970] for statistically determining HMM’s and the 

second was the Segmented K-Means algorithm [Juang & Rabiner, 1990].  The HMM classifiers 

obtained were approximately 70 to 80% successful in classifying the representative behaviors 

obtained.  [Luotsinen, 2007] 

Similar work has been done to recognize patterns in sports teams. Han and Veloso [2000] 

used HMMs to recognize team behavior in simulated RoboCup teams.  Intille and Bobick [1999] 

were able to recognize the execution of a particular play from video of a football team.  For each 

play they wanted to recognize, a temporal structure description of the behavior was created.   A 

belief network similar to Bayesian belief networks was constructed for each player from this 

description.  Each network was then compared to a video frame using an agent creating a multi-

agent system attempting to recognize the behavior of the team.  By evaluating the system at each 

video frame, they were able to recognize the desired play about 80% of the time from a video 

containing 29 different plays. [Intille & Bobick, 1999] 

2.5.2 Pervasive and Context Aware Computing 

Behavior recognition also plays an important part in context aware and pervasive computing. 

This area investigates multi-agent software systems meant to encourage teamwork between 

software agents and humans as part of pervasive computing. [Schurr, et al, 2005] [Chalupsky, et 

al, 2002] Pervasive computing applications typically take the form of an assistant to a human and 



32 

 

often tie into the human’s mobile computing device such as a smart phone.  [Lee, et al, 2007]  

The applications are called context aware because the behavior function is often dependent upon 

the context of the user.  While these applications typically include the ability to learn a behavior 

function based on the human user’s action, the actions the agent can take are usually small in 

number and decision making fairly simplistic.  For example, a scheduling agent may choose to 

postpone a meeting by 15 minutes when its user has not arrived at the meeting by five minutes 

after the start time.  [Chalupsky, et al, 2002]   While pervasive computing reflects a different 

type of team than the action team this dissertation is simulating, some of the machine learning 

techniques used in pervasive computing are quite similar to those explored in the following two 

sections.   

2.5.3 Multi-Agent Machine Learning 

Multi-agent systems such as those used to simulate teamwork insert additional complications to 

the learning process.  The predominant approach in the literature seems to be the use of 

reinforcement learning in training multi-agent systems.  Reinforcement learning is a learning 

situation where an agent attempts to improve its behavior by rewarding or punishing actions 

taken.  Reinforcement learning blends supervised and unsupervised learning.  The learning can 

be considered unsupervised because the learning is done while the system is on-line and running 

its normal function.  It could be said to be supervised because the desired end goal is known a 

priori and the reward functions are based upon that fact.  Various algorithms are used to 

determine the reward or punishment given during this trial and error approach to the problem.   

Theoretically, single agent reinforcement learning allows for an eventual convergence to 

a single optimal solution in a stationary environment. [Ng, et al, 1999]  However, it is nearly 

impossible to obtain a stationary environment in a multi-agent learning environment.  Each of 
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the agents is constantly evolving.   The prediction of another agent’s behavior is difficult and 

direct communication of current status with each agent can be difficult and expensive. [Zhang, et 

al, 2009]   Reinforcement learning typically maps the state space vector to an action vector.  In 

multi-agent systems, both of these vectors can become quite large and unwieldy.  This typically 

increases both processing and learning time.  This difficulty has resulted in several modified 

approaches to the problem of reinforcement learning in multi-agent systems. 

 Zhang, et al [ 2009]  use the idea of a supervision framework known as Multi-Agent 

automated Supervisory Policy Adaptation (MASPA) to accelerate the learning process.   

MASPA uses heuristics to guide the learning process. The heuristics fuse the activity of lower-

level agents and generate supervisory information to guide and coordinate the learning process.  

The supervision algorithm was proven to significantly improve learning time over conventional 

reinforcement learning in two separate application domains.  [Zhang, et al, 2009] 

 Case-based reasoning has also been used to improve the performance of reinforcement 

learning in a multi-agent system. [Jiang & Sheng, 2009]  Case-based reasoning is used to aid 

mapping of the current situation to a proposed action.  The reinforcement learning algorithm is 

used to update how well the chosen case matched the situation.  Jiang & Sheng [2009] 

successfully experimented with the technique in a dynamic inventory control application.  

Molineaux, et al [2009] use plan recognition to improve the performance of a case-based 

reasoning based reinforcement learner. By using a clustering algorithm to learn opponent’s 

action, Molineaux, et al were able replace low-level features with a prediction of the opponents 

plan.  This sped up the learning process of their agents that were simulating an American football 

team, significantly from the original application that used only case-based reasoning 

reinforcement learning. [Molineaux, et al, 2009] 
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 The annual RoboCup competition has inspired many multi-agent learning algorithms. 

[White & Brogan, 2006] [Stone & Sutton, 2001] [Kalyankrishnan et al, 2009] One group has 

experimented with batch reinforcement learning algorithms to improve their team’s ability to 

learn. [Riedmiller et al, 2009]  Multi-layer perceptors (MLPs) and regression algorithms are used 

to predict the world model rather than using the sensed environment.  Action decisions are based 

upon predictions of the future rather than the current sensed environment.  The algorithm was 

used in three areas within the context of the Brainstormer’s RoboCup competitive team.  This 

team has been competitive in various leagues of the RoboCup competition since the inception of 

RoboCup in 1997. [Riedmiller et al, 2009] 

 The biggest problem with reinforcement learning is that the learning is done while the 

agents are running in the target system.  During the learning process, the agents’ performance 

typically starts out as very poor and improves as the agent experiences more of the aspects of the 

environment.  While this poor performance is usually acceptable in a simulated domain, it is not 

acceptable in any domain where poor performance could damage equipment or endanger lives. 

Additionally, reinforcement learning can produce behavior that is too perfect rather than human-

like. [Stein, 2009] This is useful when trying to improve upon human behavior, but less useful 

when the goal is reproducing human behavior. 

2.5.4 Learning from Observation 

An alternative to reinforcement learning is learning from observation, also referred to as learning 

by observation.  The process of creating the behavior function of a simulated agent to perform a 

specific task involves knowledge engineering.  In knowledge engineering, information on the 

task is acquired from expert or experts in the task domain.  This information is transformed into 

usable form such as rules for rule-based systems or code for hand coded functions.  The 
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knowledge engineer is the person responsible for obtaining information from the expert and 

transforming it into the desired form.   Computer-aided tools such as CITKA (Context-based 

Intelligent Tactical Knowledge Acquisition) [Gonzalez, et al, 2002] and PEGASUS [Shaw & 

Gaines, 1983] have provided aids to automating the process of interviewing the expert.  

However, even when computer-aided tools are used; it is a long and expensive process that 

generally fails to acquire implicit knowledge.  Observational learning techniques can overcome 

these difficulties. 

 A number of techniques have been used to develop behavior functions for software 

agents using learning by observation.  Another term used in the literature is behavior cloning.  

[Isaac & Sammut, 2003]  In addition, robotics researchers have developed related techniques for 

learning from demonstration. These terms are often used interchangeably. The primary 

difference between them is that during learning from observation, no interruption of the observed 

party occurs.  The learning algorithm must create an implicit association of input data with 

expected results without input from the observed party.  In learning by demonstration, the 

observed behavior is explicitly designed provide input into the learning algorithm.  The 

techniques used are typically applicable for both agents and robots so in this section, we will 

discuss techniques and algorithms developed for both learning by observation and learning from 

demonstration.   

 The goal in learning from observation is to emulate the behavior chosen and create an 

agent or robot behavior function simply by observing original human behavior.  The idea is for 

the target agent to behave nearly identically, given the same or similar circumstances.   The 

simple act of observing can be quite difficult, particularly if the behavior chosen is human 

behavior.  Humans simply do not input and process data in the same way as a computer or robot.  
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Therefore, the first step in learning from observation or demonstration is to observe the behavior 

and classify it into data that are easily processed by a learning algorithm.   

Depending upon the type of behavior being learned, this can be a complicated process, 

particularly when attempting to emulate human behavior.  Sammut modified flight simulator 

code to output the action and situation to a log file to obtain data with which to teach an agent to 

fly the simulator. [Sammut, et al, 1992]  Henninger [2001] observed simulated tanks performing 

a tactical maneuver known as a Road March.  This data was used to train a back-propagation 

feed-forward neural network that would predict control commands to the tank in order to reduce 

band-width across the simulation network.   Sidani [1994] used a series of neural networks to 

create a knowledge base capable of driving a simulated car from observed data. 

Once the observed behavior is placed into a computer readable form, it must be classified 

into behavior functions.  The behavior function generated from the classification of the data can 

take a variety of forms.  A popular behavior function in robotics is typically a mapping of the 

current state information to a particular action or actions known as a policy.  The action selected 

is likely to be what Bentivegna and Atkeson [2001] call primitives.  Primitives are defined for 

each application, in this case playing air hockey.  For air hockey, typical primitives included left 

hit, right hit, straight hit, and prepare to hit.  The primitives were actually a series of commands 

to the hardware of the robotic arm.  The commands to perform a particular primitive did not 

change, so these were not learned from observation.  The behavior function was trained to 

choose a particular primitive for the robotic arm from the human player demonstration. 

[Bentivegna & Atkeson, 2001]   

Once the behavior function is learned, it is often necessary to generalize or add to the 

knowledge of the agent.  It is possible when performing a learned behavior in a new environment 
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that a situation or world state occurs for which there no action policy or rule is associated.   

Bentivegna & Atkeson [2001] used a k-nearest neighbor algorithm for this situation for their air 

hockey playing robot.  The k-nearest neighbor algorithm computes the closest learned state to the 

current state and chooses the action learned in that state.  This works well when there is a 

relatively small state vector. However, the larger and more complex the state vector; the more 

difficult it becomes to determine the nearest neighbor.  One possible alternative technique is to 

request additional demonstrations and continue learning. [Chernova & Veloso, 2007][Stein, 

2009]   

A similar approach was used to teach a robot to navigate a maze. [Chernova & Veloso, 

2007]  This approach was slightly different in that the behavior function was learned by allowing 

the expert to directly control the robot through the task.  The observation of state was made along 

with the expert’s action and a behavior policy was developed from the combination of state and 

action.  Because human input can often be contradictory for the same input, Gaussian mixture 

models were used to classify the inputs of the human experts before adding them to the robot’s 

policy. A model was developed to represent each possible action that the robot could take.  The 

human inputs were classified into one these models.  In order to minimize the amount of 

demonstration needed, the robot could request human demonstration when attempting to utilize 

the learned policy in a new situation.  [Chernova & Veloso, 2007]   

In software agents that learn from observation, developing rules for an expert system and 

training neural networks are popular techniques.  Sammut chose induction to develop decision 

trees as the basis of his behavior function while training an agent to control an airplane in a flight 

simulation.  A separate tree was trained for each of the various controls of the aircraft such as 

altitude, pitch and heading. [Sammut, et al, 1992] Later the researchers discovered that these 
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trees did not generalize to similar situations well.  To allow for more generalization, Isaac & 

Sammutt [2003] added a section to learn goals of the pilot as well as control the various aspects 

of the flight.  Neural networks have also been trained by observation to serve as part of behavior 

functions.  [Stensrud & Gonzalez, 2008] [Stein, 2009]  

Learning by observation or demonstration has also been used to build case libraries for 

use in a case-based reasoning system.  [Ontañón, et al, 2009]  Ontañón, et al created a case-based 

approach to planning for real-time strategy games.  The real-time case-based planning system 

called Darmok 2 uses snippets and episodes observed from a human player to evolve a case 

library.  The demonstrations are used to derive plans represented as petri-nets.  At run-time, the 

petri-nets are evaluated for their similarity to the current situation.  The approach was evaluated 

with three strategy games with different skills needed.  The results varied from human level 

performance down to very poor performance in the various games.  [Ontañón, et al, 2009] 

A similar approach was used to create simulated soccer players capable of imitating 

existing simulated players. [Floyd, et al, 2008]  The imitated players were from previously 

winning RoboCup simulated league teams.  The observed players were rule-based, stateless 

agents.  The log files from games played by the observed players were parsed and used to 

develop a library of cases.  A  k-nearest-neighbor algorithm was used to determine the best-case 

matches during the game.  A genetic algorithm was used to find the optimal weights for the k-

nearest-neighbor algorithm.  Because of time constraints, it was necessary to restrict the number 

of cases in the case base to a number of cases determined by dividing the available time by the 

time to perform a single k-nearest-neighbor distance calculation.   This method was successful in 

training agents in individual behaviors, but failed to adequately capture collaborative behavior 

among agents. [Floyd, et al, 2008] 
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2.5.5  Learning by Observation through Context-Based Reasoning 

Several techniques have been used to develop a CxBR (Context-based Reasoning) agent from 

observed behavior.  In order for a CxBR agent to function properly, it must know how to behave 

in a certain context (action functions and rules) and when it is appropriate to switch to a new 

context (transition rules).  Any learning strategy used with CxBR must evolve both types of 

knowledge in order to be effective.   Because CxBR is a paradigm rather than specific 

implementation, the action rules and transition rules need not be literal rules in an expert system. 

The very nature of CxBR can facilitate learning behaviors from observation.   

Fernlund [2004] created a CxBR agent capable of driving a simulated car through an 

urban setting using learning by observation.  He used genetic programming as his learning 

strategy.   Fernlund modeled human driving behaviors after observing them in a simulated car. 

The driving simulation was  instrumented to allow the human drivers’ action to be logged for use 

in training.  The contexts for the driving tasks were predetermined and the data partitioned to 

match the predetermined context.  A Genetic programming algorithm was created called Genetic 

Context Learning or GenCL.  GenCL was used to evolve the rules controlling the activation of 

the contexts and the actions of the driver within each context.     A population of instruction trees 

that could be translated into C code was developed.  Crossover and mutation operators were 

created to combine the instruction trees in various configurations. The instruction trees were 

converted into compilable source code.   A simulator known as the MicroSimulator was used a 

fitness function.  It contained minimal operational requirements to evaluate the performance of 

an evolving agent. Each individual in the population was run through the MicroSimulator and the 

fitness score was generated based on a comparison with the original observed data in the same 
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situation. The resulting agents performed the initial task well and were able to generalize the 

skills learned in similar scenarios. [Fernlund, 2004] 

Fernlund was able to show the flexibility of GenCL by creating CxBR agents from 

observed live military training data. [Fernlund, et al, 2009]  The data were collected from two 

opposing tank platoons using a Deployable Instrumentation Training System (DITS).  In DITS, 

each tank was instrumented with GPS to accurately record its location and firing events were 

simulated with laser attachments to the weapons.  The information collected by DITS 

instrumentation was transmitted to a central server where it was logged for future analysis.  

Using the DITS data and GenCL, Fernlund, et al [2009] were able to create CxBR agents able to 

simulate the tank platoons’ movements.  These simulations were used to aid in the assessment or 

after-action review of future live training exercises. [Fernlund, et al, 2009] 

Trinh [2009] expanded upon Fernlund’s work by learning the context structure by 

observation in addition to the action function and transition rules.   Trinh actually created two 

version of an observer module that automatically parsed the observed data into contexts.  The 

observed data were the same logs from the human drivers observed in Fernlund’s work. 

[Fernlund, 2004] Using the same simulated car and virtual world as Fernlund, he merged his 

work with GenCL to create an agent capable of navigating the simulated car through the virtual 

world.  The first approach named Contextualized Fuzzy ART (CFA) used the data point 

clustering technique known as Fuzzy ART.  The clustering technique grouped the observational 

data into contexts using instances of time as the basis for clustering.  This provided a benchmark 

against which the second approach could be evaluated.  [Trinh, 2009] 

The second approach known as the Context Partitioning And Clustering (COPAC) 

method consisted of a combination of clustering and partitioning algorithms.  The first 



41 

 

partitioning algorithms were known as standard sequence partitioning and fuzzy partitioning.  

Two clustering algorithms, k-means and similarity clustering were used in conjunction with the 

partitioning to create four unique algorithm combinations.  The resulting contexts are then fed 

into GenCL to complete the development of the final agent.  The generated contexts were quite 

different from the original human generated contexts, but were still meaningful and usable by the 

GenCL algorithm.  Although, the process of creating the agents was computationally expensive 

and time-consuming, the algorithms produced agents that behaved nearly as well as the original 

driving agents developed by Fernlund.  [Trinh, 2009] 

Stensrud & Gonzalez [2008] used learning by observation to learn the criteria for context 

transitions in a CxBR.  He observed a player in a computerized game of strategy.  Sequences of 

observations were associated with the human action taken and grouped into training data.  These 

observations were mapped by the FAM/Template-based Interpretation Learning Engine 

(FAMTILE).  FAMTILE combines the Fuzzy ARTMAP (FAM) neural network clustering 

technique with template-based interpretation.  [Stensrud & Gonzalez, 2008] 

FAMTILE is able to infer the context of the observed human actor and then map that 

context to the environment.  The inference of context is done by the template-based 

interpretation and the mapping utilizes the FAM clustering network.  The input and output 

patterns governing context switches is generated and used to train a neural network to recognize 

observation patterns and map them to contexts.  The algorithm was tested on maze navigation 

games and Texas Hold'Em Poker computerized games.  The authors concluded that FAMTILE is 

an adequate technique for learning high-level behavior.  It also proved to have an excellent track 

record for predicting subjects' actions.  This could be extremely useful in gaining a perspective 

of why the human actor is doing what he/she is doing. [Stensrud & Gonzalez, 2008] 
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Stein [2009] created a multi-modal learning system that incorporates learning by 

observation with instructional and experiential learning.  He created software agents to replace 

human players in computer based games. The goal was to create optimally performing agents 

that incorporated human like behavior. A hybrid learning algorithm was chosen to implement the 

various modes of learning.  For learning by observation, the chosen algorithm was 

neuroeveolution.  Neuroevolution uses genetic algorithms to evolve neural network weights and 

topologies.  The resulting neural network functions as the behavior function of the agent.  The 

initial neural network was created during the learning by observation phase using an algorithm 

based upon Neural Evolution of Augmenting Topologies (NEAT).  [Stanley & Miikkulainen, 

2002]  This was combined with an optimization algorithm known as Particle Swarm 

Organization (PSO) [Kennedy & Eberhart, 1995] to create a learning system with three stages of 

learning; observational, instructional, and experiential. This unique hybrid algorithm is known as 

Particle swarm Intelligence and Genetic programming for the Evolution and Optimization of 

Neural networks or PIGEON.  During experimentation, agents developed using learning from 

observation were only compared against agents using various combinations of the three 

techniques.  While the observation only agents performed well in most domains, the agents 

developed using all three techniques sequentially scored consistently higher in the test domains.  

The additional learning provided by the experiential and instructional modes was especially 

useful in creating agents able to generalize the capabilities to new scenarios.  [Stein, 2009] 

2.5.6 Learning from Demonstration Approaches 

Learning from demonstration attempts to map world states with actions based upon examples or 

demonstrations provided by a teacher.  This mapping is also known as a policy.  This enables the 

robot or software agent to select an action based upon the current world state.  Examples are 
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defined as sequences of state-action pairs recorded during the teacher’s demonstration of the 

desired behavior.  Other techniques typically learn a policy from experience as in reinforcement 

learning. In the robotic community, three core approaches have been developed for policy 

derivation in learning from demonstration.  These are mapping function, system model and 

plans.  In a mapping function approach, the function mapping from state to action is 

approximated directly from the demonstration data.  In a system model approach, a model of the 

world (T(s`|s, a) is determined from the demonstration data.  Often a reward function (R(s)) is 

also derived to improve the model during execution.  The third approach uses the demonstration 

data to learn rules that associate each action with a set of pre and post conditions.  It is not 

uncommon for user intention information to be input along with the demonstration data.  [Argall, 

et al, 2009]  This section looks at a variety of learning by demonstration policy derivation 

algorithms. 

 One approach to learning by demonstration uses Gaussian Mixture Models (GMMs) to 

classify the input data. [Chernova & Veloso, 2007]  A GMM uses statistical probability functions 

to assist in classifying input data.  Chernova and Veloso [2007] utilized a learning by experience 

demonstration technique in their approach.  This means that the robot was under the complete 

control of the expert while experiencing the task through its own sensors.  During each time step, 

the robot recorded its environmental state and the action selected by the human expert.  

Environmental state is represented using a feature vector containing both continuous and discrete 

values.  There is a finite set of possible actions that can be selected in each training time step. 

The goal is to create a policy         where o is the observed environmental vector and a is 

the selected action.  A separate GMM is created for each possible action clustering all the 

environmental state vectors that lead to that action. [Chernova & Veloso, 2007]   
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During training, the observed environment data are assigned to a Gaussian mixture based 

upon the resulting action each time step.   When enough new data points are entered into a 

mixture models, the model is updated and a new probability density function is generated for that 

action.  During the learning process, the robot transitions to a state called confident execution as 

it begins to learn the policy.  During this phase, the robot classifies each observed environment 

state and obtains a confidence value from the appropriate GMM.  If the confidence value is low, 

which will occur when limited demonstration has occurred, the robot will request that the expert 

determine the action and use the new data point to update the GMM.  If a high enough 

confidence value is found, the robot will execute the action associated with the GMM to which 

the input was classified.  This technique was successfully applied to navigation of a circular 

corridor with an AIBO robot.  It was also used to create a software agent representing a 

simulated car on a virtual road. [Chernova & Veloso, 2007]  Although, this approach alone 

produced an adequate behavior function, there were often some problems when attempting to 

generalize the behavior in a new situation.  To solve this, Chernova & Veloso [2007] provided 

additional demonstrations in problem areas.  These demonstrations were used to update the 

behavior policy and improved the ability of the robot to generalize to new tasks. 

This type of policy improvement is popular with learning from demonstration 

approaches.  Although it is not classic learning from demonstration, the improvements found 

have led to development of additional algorithms that incorporate initial learning data with 

additional instruction.   One such algorithm for policy improvement is called Binary Critiquing. 

[Argall, et al, 2009B]  In this approach, a human teacher flags areas where the robot is 

performing poorly.  The robot modifies the policy by penalizing the demonstration data that 

supported the flagged areas of  poor performance.  In a second similar approach known as Policy 
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Improvement, the human teacher correctly demonstrates the behavior that was flagged as poor.  

The robot updates its policy based upon the new demonstration data.  [Argall, et al, 2009B] 

The Binary Critiquing algorithm is designed to work on control policy that uses a scaling 

factor, mi associated with each training set observation-action pair.  This value is used to weight 

the pairs during the action selection process.  When the robot performs a behavior, a human 

teacher identifies chunks of the trajectory as poorly executed.  For each point flagged, the scaling 

factor associated with the chosen observation-action pair is adjusted so the pair is less attractive 

to the action selection process.  This is very similar to the adjustment of the reward values in 

reinforcement learning. [Argall, et al, 2009B] 

The next step in this process is the Advice-Operator Policy Improvement implementation.  

In this approach, rather than simply critiquing the behavior, additional demonstrations are 

provided.  However, the new demonstration data are synthesized based on student executions 

and teacher advice.  This approach was motivated by situations where demonstration could prove 

dangerous (i.e. lead to physical collision) or difficult to access (i.e. rover teleoperation on Mars).  

The implementation tested used a form of Locally Weighted learning. [Atkeson, et al, 1997]  

Both policy improvement algorithms were tested on a Segway RMP robot.  In both cases, the 

robot was able to improve upon and exceed the performance of the demonstration teacher.  

[Argall, et al, 2009 B] 

Another approach to policy improvement incorporates additional demonstrations with the 

assignment of a reputation mechanism. [da Silva, 2009]  Each demonstrator is assigned a 

credibility rank that estimates how much this demonstrator’s feedback improves the performance 

of the robot.  The reasoning behind this ranking is that different demonstrators may have more 

expertise in one area over another.  The demonstration in the area of expertise gets a high 
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ranking versus an area where another demonstrator is superior.   The rankings are derived from 

teacher critiques after the learning occurs similar to the critiquing stage of Argall, et al [2009B].   

When the robot has disagreeing demonstration data from two sources, the ranking associated 

with the demonstrator allows the robot to choose from the more reliable source in that area. [da 

Silva, 2009] 

A more complex task is mapping the observed state to continuous action spaces.  This is 

known as regression.  Typically, regression approaches are applied to low-level motions and not 

high level behaviors because the continuous-valued output often results from combining multiple 

demonstration set actions.  The various methods can be differentiated by whether the mapping 

function approximation is performed at runtime or prior to runtime.   Approaches that form a 

complete function approximation prior to run time are at one end of this spectrum.  Several use 

neural networks as their behavior functions.  Neural networks have been used to enable 

autonomous road driving  [Pomerlau, 1991], robot arm placing of a peg in a hole [Dillmann, et 

al, 2005], and humanoid robot motion. [Ude, et al, 2004]  

Bentivegna [2004] used a runtime regression mapping function in his learning from 

demonstration algorithm.  His approach started with the idea that restricting behavior options by 

adopting behavioral primitives would speed up the process of learning the mapping.  Primitives 

are defined as small units of behavior above the level of motor or muscle commands.   These 

primitives were predetermined manually before beginning the learning process.  When teaching 

a robot to play air hockey, the primitive list included straight shot, bank shot, defend goal, slow 

puck, and idle.  Each of these primitives related to a specific action that the root was capable of 

executing. Before the robot can learn from observed data, a module was developed to segment 

the observed behavior into primitives.  Once the data are segmented, the result is classified and 
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stored in memory associated with a state vector.  In air hockey, the state vector contained 

information about the position and velocity of the puck.   

The robot was ready to play air hockey once the observed data was processed.  During 

execution, the behavior function of the robot continuously observed the state of the game, chose 

the appropriate primitive to execute and executed the primitive.  Choosing the primitive involved 

comparing the current state to the observed states in memory.  If a match to current state was 

found, the robot agent executed the primitive chosen by the human previously observed.  If no 

match was found, a nearest neighbor algorithm was executed to choose the observation closest to 

the current state.   The nearest neighbor was determined using the simple distance calculation: 

                                             (2-1)               

where x is the current state vector, q is an observed state vector and w is a vector of weighted 

dimensions allowing more importance to be given to various aspects of the state vectors. Once 

the nearest neighbor is determined, that primitive action is chosen for execution.   This approach 

proved most successful in a virtual air hockey game where perception of puck position and 

velocity were near perfect in both the observed data and in actual game play.  It was also used to 

train an actual hardware robot arm.   While the training was equally successful, the robot did not 

play as well as its virtual counterpart due to inaccuracies in sensing puck position and velocity. 

[Bentivegna & Atkeson, 2001]  Additional modules were added to allow the agent and robot to 

learn from practice as well using an approach similar to reinforcement learning. [Bentivegna, 

2004]  K-nearest neighbor classifiers have also been used in robotics to learn obstacle avoidance 

and navigation behaviors. [Saunders, et al, 2006]  
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2.5.7 Collaborative Learning by Observation 

The one thing shared by all of these techniques is that they were developed for a single learner 

observing either a single expert or multiple experts performing the same event.   There has been 

research into using multi-agent reinforcement learning for learning by observation technique. 

[Price & Boutilier, 2003]  In this technique called implicit imitation, the learning agent called the 

observer is assigned another agent termed a mentor to imitate.   In the implemented system, the 

agents are independent entities that do not consider the state or actions of the other agents in the 

system when determining their next action.  However, their joint actions do affect the state of the 

overall system.  Some assumptions are necessary for this type of learning.  The observer and the 

mentor must have the same state space and must have the capability to perform similar actions. 

When the observer begins learning, it has no concept of the transition policy, but does have some 

idea of the reward functions.   The observer’s policy is developed by imitating the expert’s 

actions and deriving rewards along the way.    Using implicit imitation, the observing agent was 

able to learn a policy for traversing a two-dimensional maze previously mastered by its expert 

mentor. [Price & Boutilier, 2003]  Unfortunately, this method is limited to examples where a 

similar expert agent already exists.  Additionally, the application or simulation must be able to 

tolerate mistakes during the time the observer agent is learning.  This approach is inappropriate 

in an environment where a mistake or error by the agent or robot could results in damage or 

injury. 

Robotics has also addressed the concept of learning collaborative behaviors through 

demonstration.  [Chernova & Veloso, 2008]   Using a single human demonstrator, the 

researchers were able to teach two robots a simple sorting task.  The robots were given a queue 

of balls in three distinct colors.  Each robot had two bins for sorting the balls by color.  The 
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robots had to learn whether to place the ball in its left or right bin or pass to the other robot.  In 

this particular example, the robots were able to query for additional demonstration when they 

were unsure of the next step.  Support Vector Machines (SVMs) were used to classify the 

behaviors in this task. [Chernova & Veloso, 2008]     

The existing work in learning by observation and demonstration show us that there are 

three clear steps to the process of learning by observation.  The first step is classifying the 

demonstration or observation into a form understandable by the computer.  The second step is to 

convert that information into the behavior function of the agent or robot.  The final step is to 

generalize that behavior and determine the correct behavior for untrained steps.    Often, the 

second and third steps are combined as done by GenCL.  [Fernlund, 2007] The step most 

affected by training a team of agents rather than a single agent is in the first step.  It is necessary 

to classify not only the demonstrator’s current situation, but the perceived situation of the 

demonstrator’s team in order to properly classify the current state of the team.   Once that 

determination is made, the team situation can be treated as merely another element in the current 

state vector for the behavior function.  

2.5.8 Learning by observation summary 

Among the systems reviewed, there does not seem to be clear favorite among the types of 

behavior functions used.  It seems as though the behavior function is designed to best fit the 

application or simulation being used.  The final step of generalizing the behavior is necessary to 

increase the utility of the trained entity.   Like the behavior function, the method used is highly 

dependent upon the classification algorithm and the application environment.   Each of the 

methods described above, reinforcement learning, request for additional demonstration and k-

nearest neighbor have all proven effective but all are not appropriate in all situations.   Each 
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method has its weaknesses.  Reinforcement learning can only be used in systems where mistakes 

and errors do not result in damage or injury,  additional demonstration is inappropriate when 

expert demonstrators have limited availability, and k-nearest neighbor is computationally 

expensive when a large state vector exists. 
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CHAPTER 3 PROBLEM DEFINITION 

In this chapter, a detailed statement of the problem addressed by this dissertation is presented.  

First, the larger problem of modeling human teamwork accurately in a simulation is described.   

Second, the more specific problem of using learning by observation to solve this issue is 

analyzed along with the motivation for this approach.  The last two sections discuss the 

hypothesis being presented and the contributions made by this dissertation to the research 

community. 

3.1 General Problem 

There are many reasons to simulate effective human teamwork.  The resulting simulated team 

can be used as expert examples, it can provide teammates for training purposes when the whole 

team is not available, and it can provide realistic opponents in games and training simulations.  

Successful teamwork simulations exist, but all require that the behavior of the team members be 

programmed into the simulation.  Typically the method of programming requires at least some 

specialized skills.  Programming could be in a scripting language, XML or traditional high-level 

computer software code.  None are able to observe a team at work and replicate the teamwork 

behaviors.   Several multi-agent systems devoted to the development of simulated teams exist 

that require time consuming knowledge acquisition and programming skill in order to adapt them 

for different domains.   

Learning skills by observation has been successfully performed for individual entity 

simulations, but effective teams require that the individuals have task-specific skills and 

teamwork skills.  When team members are trained individually and given a common goal, the 

results are often merely adequate.  However, most sports fans will tell you that an adequate team 

does not usually have a winning season. Playing games against an adequate opponent will 
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quickly become boring and training will not be particularly productive.   An effective algorithm 

for learning by observation needs to include the capability to learn those extra things that make a 

team greater than the sum of its individual parts. 

3.2 Specific Problem 

There has been no algorithm for learning effective collaborative behavior from observation.   

While it is possible to train each team member individually in their portion of the task using 

observational learning, this type of training does not currently capture the collaborative behavior 

of the team and results in a less effective team.  A system capable of quickly and easily capturing 

both collaborative behavior and domain specific behavior in a single step would greatly simplify, 

improve the fidelity of,  and accelerate the development of simulated action teams.   The use of 

simulated teams, particularly in entertainment and training applications, is growing steadily as 

evidenced by the growing number of multi-player games and computer-based training programs 

available for use.  An algorithm that can accelerate the creation of these simulated teams when 

expert performance is available to observe and emulate would decrease cost and increase 

productivity of the creators of the simulations.  Developing such an algorithm is the specific 

problem addressed by this dissertation. 

3.3 Motivation 

The knowledge acquisition required to recreate an effective team in this manner is time and skill 

intensive.  Experts in teamwork skills are needed as well as individuals capable of capturing their 

knowledge and translating it into computer code or scripts for the simulation to use.  These 

teamwork experts are often few in number and in high demand, so the ability to acquire 

knowledge from them is limited. Acquiring knowledge from an expert verbally can also 

inadvertently result in the loss of implicit or tacit knowledge.   An algorithm capable of learning 
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by observation of a real or simulated expert team would be a significant step forward in the quest 

to create simulated teams quickly, easily and of high fidelity. 

3.4 Hypothesis 

Several collaborative multi-agent systems currently exist.  There has also been success in 

training simulated entities by observation of expert performance.  The hypothesis of this 

dissertation is that the current research in these two areas can be combined to take a multi-agent 

system and train it to effectively simulate the actions of an expert action team.    

 

3.5 Contributions  

 Creation of a novel approach to training simulated action team via observation. 

 A unique multi-agent system for the creation of simulated action teams from observation 

of expert team performances. 

 Evaluation of various learning by observation techniques previously developed for single 

agent training for use in a multi-agent system. 

 Application of this approach in a variety of simulated action teams with increasing 

complexity. 

 Prototype collaborative multi-agent learning system available for use by other 

researchers. 

 Data from prototype system evaluation.  
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CHAPTER 4 CONCEPTUAL APPROACH  

This chapter describes an approach to learning collaborative behavior by observation. The goal is 

to duplicate or imitate the behavior of a team autonomously, without actual interaction with the 

observed team.  The concept behind this new approach to learn team behaviors is that the actions 

leading to effective teamwork require constant coordination among the team members.  In order 

to build a model of coordinated action among team members, it is important that the members of 

the team build an implementation of a shared mental model.  In a simulated entity, this shared 

mental model is implemented as shared or collaborative data.  While this shared data need not be 

identical for each team member, it does require that they be aware of each others' movements 

and actions.  This collaborative data builds the foundation for the implementation of the shared 

mental model. 

Observational learning techniques allow for the learning of implicit behavior as well as 

explicit behavior.  The combination of observational learning with the inclusion of collaborative 

data will facilitate the learning of tacit understandings and interactions among the teammates; 

these are collaborative behaviors that the team members may not even be aware that they are 

performing.  This moves beyond the Joint Intention Theory that states that they only need to 

share the intention, and not knowledge about each other’s actions in order to work together 

effectively.  So while each team member is trained individually, the training data used includes 

the usual information about individual tasks and adds information on teammates actions and 

intentions.  

This, however, gives rise to a problem of potentially too much data – much more than can 

be handled efficiently by a single-entity learning mechanism.  To address this, the approach 

decomposes the behaviors into contexts. Each agent identifies its individual context by learning 
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cues about the environment.   Once the context is identified, the potentially overwhelming 

amount of data can be reduced to include only the data relevant in that particular context.  The 

list of applicable behaviors is also limited to those appropriate for the context.  These reductions 

turn the overwhelming problem into a solvable one. 

A system was developed named Contextually-based Observational Learning of Teamwork 

System (COLTS).  This system is a set of tools and processes that can be combined to create a 

simulated team from observation.  The tools include a Collaborative Context-based Reasoning 

(CCxBR) multi-agent framework and a learning algorithm derived from single entity learning by 

observation systems.  The idea behind COLTS is to create a generic approach to learning 

coordinated team behavior by observation. While some adaptations must be made for various 

application domains, the bulk of the system is reusable from application to application.  The 

tools are divided into three parts: observation, off-line learning and run-time multi-agent 

framework. The output of the observation feeds the learning portion.  The output of the learning 

portion is then used by the run-time multi-agent framework to drive the behavior of a team of 

agents. These agents emulate not only the individual expertise of the observed team members, 

but collaborative behavior as well.  To demonstrate this flexibility and adequately evaluate the 

system, a total of three separate prototypes in different applications were developed, each in a 

different application.  These are defined at the end of this chapter and discussed in detail in 

subsequent chapters. 

4.1 Conceptual Approach 

COLTS approaches the problem of learning collaborative behavior from observation in a manner 

very similar to previous single-entity learning from observation approaches. However, there are 

several key enhancements needed to capture the collaborative elements of the team and scale 
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upwards from a single entity to an entire team.  The hypothesis presented in Chapter 3 states that 

the combination of  multi-agent framework proven to have the elements necessary to perform 

collaborative behavior with a proven learning from observation algorithm are the answer to 

observing and emulating collaborative behavior. 

As the chosen multi-agent framework, CCxBR has been proven to have the ability to 

perform collaborative behavior. [Barrett, 2007]  CCxBR links the agents representing the 

teammates together through the use of a team context.  The team context is designed to track and 

share the individual contexts of all the team members.  Knowing the context of teammates gives 

each team member agent valuable insight into the state of the team and serves as important 

collaborative data.  This collaborative data can be included into the individual situational and 

task data of each team member and used to drive the behavior function of the team members. 

 One of the largest drawbacks to learning the behavior of an entire team rather than a single 

entity is the large amount of data needed to represent this collaborative information at both 

observation and run-time.  A software agent working alone has to obtain and use data related to 

the task it is undertaking.  A software agent working as a team member must get that data as well 

as collaborative information about the state of the team goal and its teammates.  COLTS and 

CCxBR address the handling of this large amount of data through the use of context.  In 

psychology, context has many definitions mostly related to the concepts of situation, 

background, milieu and field. [Bazire & Brezillon, 2005]  In COLTS, context is defined by the 

values of the data describing the current situation of a particular agent.  The use of context allows 

the problem of driving imitative behavior to be broken down into smaller problems where the 

amount of data used in any given context is limited to a more manageable amount. 
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The use of CCxBR as the run-time portion of COLTs did not force any decisions on 

behavior functions or learning algorithms.  However, it was important that the method chosen be 

capable of capturing and using the collaborative information provided by the team context at run-

time.  The run-time behavior function has its roots in robotic memory-based policy and case-

based reasoning.  The function is driven by a  behavior map that contains a set of situations or 

cases against which the current situation of the agent can be compared.  When an exact or similar 

situation is found in the behavior map, the agent can extract the action associated with that 

situation from the behavior map and use it to drive its next step.  The primary difference between 

this approach versus the inspiration approaches is the inclusion of collaborative data in both the 

situations stored in the behavior map and the run-time situation.  

The COLTS learning algorithm is described in detail in Section 4.4.2.  It builds these 

behavior maps from observed data.  It takes inspiration from single-entity learning from 

observation and adds the ability to collect and use collaborative information.  This can be done 

because the observational module does not collect information one team member at a time, but 

rather collects team information at each time increment available.  Having this collaborative data 

available during learning allows for it to be factored into the learned behavior function.   So at 

run-time, the agent gathers its task data from its sensors and data source and collaborative data 

from the team context and compares both against the stored situations in the behavior map. 

The use of context is also very important in making this approach scalable for use in 

teamwork as well as single agents.  A separate behavior map is developed for each individual 

context.  Without the breakdown into contexts, it is quite likely that the behavior maps would 

contain a very large number of entries and make the run-time process of finding a match take a 

large amount of execution time. 
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The following sections describe in more detail the implementation and approach of the 

COLTS system.  The system is broken down into three modules: observer, learner and run-time.  

The ability to learn and perform effective teamwork using COLTS hinges upon the ability of 

each team member to observe, learn and use collaborative data at run-time in addition to 

individual task data.  COLTS provides the tools and algorithms necessary to make possible the 

inclusion of collaborative data through context and behavior maps. 

4.2 Learning Collaborative Behavior by Observation 

The approach to learning collaborative behavior by observation has many similarities to learning 

by observation for a single entity.  The idea is to replicate or imitate the behavior of an example 

entity or entities while performing a task.  Both single-entity and collaborative systems require 

the acquisition of observed data for use in training and testing the system.  The difference 

between single-entity and collaborative behavior in the data acquisition phase is primarily the 

amount of data needed.  Compared to a single-agent learning-by-observation algorithm, the 

amount of data needed to recreate behavior is typically multiplied by the number of agents being 

observed.  Furthermore, depending upon the application, there can be additional collaborative 

data. Depending upon the team activity, collaborative data may be as simple as messages being 

passed among the teammates or can encompass detailed information about teammates’ position 

and activities. In CCxBR, collaborative data typically include the team context and information 

about the current context of the teammates.   
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Figure 4-1 Typical Learning by Observation System 

 

Learning-by-observation systems commonly break the task down into modules.  Typically, there 

is an observer module, a learning module, and a run-time module.  Figure 4-1 shows a block 

diagram of the usual components.  The observer module is responsible for acquiring the 

observed data from the entity or entities being learned from.  It is responsible for taking the 

observations and converting them into a format readable by the learning module.   The observer 

module used in this dissertation consists of data logs output by a simulation.   These data logs 

exhibit the knowledge (albeit indirectly), movement, and actions of the various team members.  

The simulation is agnostic as to the source of the team members’ behavior.  The observer module 

is incorporated in the observed system in such a way that it does not interfere with the behavior 

and timing of the observed agents in any way.  These agents can be programmed software 

agents, human performers, or some combination of the two.    
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The observer module can be one of the most difficult aspects of a learning-by-

observation system to implement, particularly when attempting to observe behavior of physical 

(i.e., non-simulated) entities.  In some cases it is possible to instrument physical entities to 

provide position and action data electronically.  This approach was used by Fernlund, et al 

[2009] where they were able to observe tank movements via instrumentation on actual tanks.  

The tank instrumentation transmitted GPS data on tank movements and actions to a central 

server where it was placed into logs similar to those used in this dissertation.  If such 

instrumentation is not available, it is sometimes possible to use image recognition software to 

create logs from video capture.  This approach was used by Bentivegna [2004] to capture human 

behavior for robotic learning by demonstrations.   

The second phase of learning by observation is processing the collected data and learning 

from it by using a learning module.  This involves translating the observed data into some 

learned function usable by the software agent or agents replicating the behavior of the observed 

entity or team.  In the case of COLTS, the learning module must translate the simulation data 

logs into a behavior function usable by the run-time agents. Several learning by observation 

techniques were discussed in Chapter 2.  The technique used in COLTS is a memory-based 

policy technique inspired by the learning by demonstration work of Bentivegna [2004] and the 

case-based reasoning techniques used by Floyd, et al. [2008]   

 The final step is the recreation of the original behavior in a run-time agent or agents.  The 

approach used here is by necessity tied very closely to the learning algorithm.  The output of the 

training algorithm is used to drive the behavior of the new agent.  The choice of CCxBR as the 

paradigm used to implement the new simulated team does not dictate a particular behavior 

function.  This opens the door to a variety of possibilities.  Previous implementations of CCxBR 
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simply used a manual approach to create the behavior function based on input from domain 

experts.  There was no obvious choice of a behavior function for use in capturing collaborative 

behavior. Ideally, the chosen technique for capturing the behavior would scale linearly, meaning 

that the amount of work to scale upwards would correspond directly to the number of teammates.   

Since CCxBR consists of CxBR agents, the next logical place to investigate was the 

implementations used in previous CxBR learning by observation systems. Specifically, 

FAMTILE [Stensrud & Gonzalez, 2008] and GenCL [Fernlund, 2004] were analyzed as 

potential methods for use.  While successful for single agent learning, the complexity of the two 

systems would most likely prove very difficult to scale linearly into a teamwork application.   

The robotic learning by demonstration approaches reviewed in Chapter 2 showed more promise 

for linear scalability.  The memory-based approach to behavior used by Bentivegna [2004] is the 

inspiration for the learning algorithm of COLTS.  A memory-based policy will need to be 

developed for each team member and possibly for the team context transitions.  This amount of 

work is close to a linear scale.  In addition to Bentivegna's successful research in robotics, a very 

similar case-based reasoning technique was successfully used to learn simulated soccer 

techniques by observation.  [Floyd, et al, 2008]   Floyd, et al [2008] developed a single case base 

for a single entity.  When applied to a group of entities, the number of additional case bases 

would be proportional to the number of entities. 

 Bentivegna [2004] created a system that taught a robotic arm to play air hockey by 

observing a human playing the game.  He began by using human domain knowledge to create a 

series of primitives which translated into game actions.  These were basic game skills such as 

defend_goal and straight_shot.  When a predefined critical event such as the puck approaching 

the paddle was observed, a state vector was created.  This vector contained information about the 
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puck, the paddle and the primitive being executed.  The recorded state was associated with the 

primitive action taken and stored into a memory-based policy.  During run-time, the robot 

observes the current state of the game, compares it against the stored state vectors, and executes 

the action associated with the stored state vector that is closest to the current state.   A k-nearest 

neighbor algorithm is used to determine the closest state vector.  Initial testing was done with a 

simulated arm and game, but eventually transferred successfully to a physical robotic arm and 

actual air hockey table.  The method was further tested by teaching the arm to roll a marble 

through a wooden maze.  [Bentivegna, 2004] 

 Floyd, et al [2008] used case-based reasoning as the behavior function for their software 

agents that learn to imitate from other agents.  The observation and learning modules of their 

approach create a case base consisting of example states with actions taken.  The case base 

serves the same function as the memory-based policy used by Bentivegna.  At run-time, a k-

nearest neighbor algorithm is also used to determine the case to use from the case base.  Rather 

than robots, Floyd, et al train simulated soccer agents based upon expert examples provided by 

winners of the annual RoboCup simulated soccer league.  The technique has proved successful at 

training single players to imitate other players performing a limited number of basic behaviors 

such as Chase Ball and LineRun.  [Floyd, et al, 2008]   

4.3 Behavior Maps 

Bentivegna’s memory-based policy and Floyd’s case-based reasoning approach were the 

inspiration for the behavior function at the center of the COLTS toolkit.  Behavior maps drive 

the behavior of the COLTS team.  A behavior map is analogous to the case base in case-based 

reasoning.  The behavior map is differentiated from these approaches by the inclusion of 

collaborative data in the state vector.  The inclusion of collaborative data enhances the traditional 
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approaches for use in emulating an entire team.  Additionally, both of the fundamental 

approaches used a single policy or case base for each entity.  Since CCxBR breaks the behavior 

of the team and team members into contexts, there will be a behavior map for each identified 

context in an application.  This is vital to creating a scalable application.  Limiting the number of 

state vectors to compare against to those relevant to a particular context keeps the size of the 

behavior map small enough to execute more quickly than a single case base or policy. 

  The behavior of the observed agent or agents can be thought of as a series of situations 

and actions.  The situation can be represented by a state vector S containing the available 

information about each agent’s environment.  For use in learning collaborative behavior, this 

vector must be expanded to include information about teammates and team goals. The behavior 

maps are built from observed data that contains both environment information and collaborative 

information.  The situation vector S will contain m items of environment information, E,  and n 

items of collaborative information, C.  At run-time, the environment information is derived from 

agent sensors and communications and the collaborative information is provided from the team 

context.  The values of m and n will vary based upon the application domain.  The actual 

collaborative information stored in S may be specific contexts of teammates or information about 

the teammate such as position and bearing from which the teammates’ context can be 

determined.   It is also important to determine if all teammates’ contexts are relevant and 

available at run-time.  In many team situations, only certain teammates’ information is relevant 

to determining behavior. 

                                    (4-1) 
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There are a finite number of possible situations for each domain.  The number of possible 

situations is driven by the possible values of the data elements contained in S.  It is usually not 

necessary to know all possible situations before building the behavior maps. 

                                      (4-2) 

Each agent also has a set of possible actions A that can be taken.  This list is typically driven by 

the simulation environment. Most simulations have a limited number of actions available for 

agents.  These available actions are the members of the possible actions vector.   This is a finite 

list of 1 to m possible actions.  However, a particular action may have a parameter associated 

with it.  For example, a MOVE command may have a parameter indicating the heading in which 

to move.   

                                    (4-3) 

The actual elements of the Situation and Action vectors will vary from application to application, 

but each application will have a definable situation and a finite set of actions.  In any given 

simulation, the behavior of the agent can be seen as a series of Situations, Sx,, followed by an 

Action, Ax that leads to a new situation Sx+1. Because this mapping contains more information 

than a typical case base or memory-based policy, this dissertation defines the mapping of 

situations to actions as a behavior map.   

                                                        

(4-4) 

The COLTS learning module is designed to build the behavior map based upon observed data 

from the expert team.  The run-time agents use the behavior maps to determine the actions of the 

run-time agents.     



65 

 

 A teamwork application is very likely to have a larger situation vector and choice of 

actions than the robotic arm [Bentivegna, et al, 2006] and single soccer player [Floyd & 

Esfandiari, 2008] implemented using this method.  Without modification, this approach can 

consume large amounts of memory to store the mappings of situation and action and the k-

nearest neighbor algorithm could potentially consume excessive processing time.  However, 

COLTS uses collaborative context-based reasoning (CCxBR) to break the problem down using 

the natural contextual partitioning of the problem. This breakdown of the problem into contexts 

enables the development of a separate behavior map for each context making the use of behavior 

maps feasible by limiting the size of the behavior maps.  The size of each behavior map is 

determined by the number of mappings of situations to actions stored in the map. The use of a 

single behavior map using this approach for a team of agents would make it a large consumer of 

memory and probably too slow for practical use.  The use of contextually-based behavior maps 

will also address the possibility that the expert might encounter very similar situations in 

different contexts that result in differing actions.  

4.4 Scalability of the COLTS Algorithm 

The scalability of behavior maps is directly related to the size of the situation vector, S.  The size 

of S would differ based upon the application and data available to the entity, but will be a fixed 

size for each application. While each context may not use all of the data within S, all data in S is 

available for each context.  For definition purposes, the situation vector, S, requires n bytes to 

implement.  The size of the action vector, A, will also vary from application to application but 

can be defined as m bytes. If behavior maps were implemented for a single entity, there would be 

j contexts.  This would result in j behavior maps.  The size of each behavior map, b, can be 
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represented as a sum of the size of one situation vector plus one action vector times the number 

of entries in the behavior map. 

                                

 (4-5) 

The number of entries in the behavior map is driven by the training data available.  Each 

behavior map will have a different number of entries based on how often the observed entity 

enters a particular context.  Ideally, a similar number of entries for each context will be found 

and the resulting total size of all behavior maps will be the number of contexts times the 

maximum size of a behavior map. 

                   (4-6) 

Execution time for behavior maps is also related to the size of the situation vector and the 

number of entries in the behavior map.  At run-time, the worst case is that the k-nearest neighbor 

algorithm must compare all of the entries in the behavior map against the current situation.  If we 

calculate that this algorithm requires q seconds for each data element in the situation vector, we 

can calculate the worst case run-time, r, for a single-entity as follows: 

                               (4-7) 

So, the two biggest factors in determining the run-time viability of a software agent using 

behavior maps to drive the behavior function are the number of data elements in the situation 

vector and the number of entries in the behavior map. 

 When scaling upwards for a team as opposed to a single-entity, it is possible to calculate 

the worst-case impact of teamwork on the number of data elements.  As stated above, the 

situation vector consists of two types of data; environmental data elements, E, and collaborative 

data elements, C.  The size of a team does not typically impact the number of environmental data 
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elements for an agent, but it does impact the number of the collaborative data elements.    In a 

worst case scenario, the amount of collaborative data would be multiplied by the size of the 

team. If a situation vector has v environmental elements and w collaborative elements for each 

team member and a size of u team members, the size of the situation vector  becomes: 

                    (4-8) 

If the contexts for a team application are appropriately chosen, the number of entries in each 

behavior map should remain about the same as with a single element.  However, in a worst-case 

scenario the number of total contexts could also be multiplied by the number of team members, 

u.    This means that the total memory usage of the behavior maps is multiplied by the number of 

team members, u.  Since execution time is impacted by number of entries and situation vector 

size, n, the worst case execution time for an individual agent is also the single entity time 

multiplied by the team size, u.  In big-O notation, the scalability of both memory and execution 

time would be O(u) where u is the size of the team.  This makes the COLTS algorithm linear in 

complexity 

4.5 COLTS Toolkit 

The COLTS toolkit is a collection of processes and tools that combine to form a learning by 

observation toolkit.  It is intended to be a generic starting point capable of being adapted to 

observe and imitate the behavior of different types of teams.  It is intended to reduce the amount 

of time and work necessary to create a simulated team.  Learning from observation systems have 

been proven to reduce the time and effort necessary to acquire the knowledge to create an expert 

agent. [Sidani, 1994] [Stein, 2009] [Fernlund, 2004] [Bentivegna, 2004] [Floyd, et al, 2008]  So 

it is expected that it will provides the same reduction for developing a team of expert agents.   In 

addition, the run-time framework provides reusable agent and context classes, which are 
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designed to reduce the amount of software development.  This dissertation presents a basic 

system capable of adaptation to various teams.  In addition to the various tools, a set of processes 

for adaptation to various domains is provided.  The system is flexible enough to support the 

future addition of tools to further automate and simplify the process of creating a simulated team 

with behavior based upon an observed team.  A conceptual description of each module within the 

COLTS toolkits and the associated processes are described in the following sections. 

4.5.1 Observer Module 

In order to learn by observation, there must be some form of observation.  In the case of COLTS, 

it is necessary to observe the current situation vector at time (t, St), and note the action taken 

within that time-step, A.  In the prototypes developed in this dissertation, all the teams being 

observed are part of a simulated environment that creates log files consisting of situational data 

and action taken by various members of the team.  A set of data about each agent is logged at the 

end of each simulation time step. Each simulation log file had a different format and different 

data.   The log files serve as input to the COLTS learning module.  Each of the three prototypes 

developed for this dissertation used a slightly different approach to the observer module and the 

log files all had different formats. However, all three used log files automatically generated from 

the simulation in which the observed team operated. A possible extension to COLTS could be 

tools capable of generating similar textual log files from images or binary data when the 

observed team is not operating in an environment capable of creating usable log files. 

 The observer portion of COLTS is the least reusable and most domain-specific of the 

three portions of the system.  This is the step requiring the most domain knowledge and 

expertise.  If access to a small amount of time with a domain expert is available, this is the 

portion of the process where it would be used most effectively.   
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First, a team to observe must be chosen and log files must be collected for use as training 

data.  The choice of the observed team will probably be influenced by the success and expertise 

of the team, but the criteria should be determined by the end use of the COLTS team.  If the 

observed team operates in a virtual environment such as a simulator or computer-based game, 

the observation module must do less work to translate the team’s situation data and actions into 

training data for the learning module.  All the teams observed for the prototypes developed in 

this dissertation operated in a virtual environment, where a log file containing at least some 

information was already being produced.  Some domain knowledge of the virtual simulation was 

needed in order to determine whether the content and type of data being logged was sufficient to 

serve as training data.  In the third prototype developed, additional pieces of data were added to 

the existing logged data in order to create adequate training data. This additional data logging 

was added only to ease the development of the third prototype and was not part of the original 

simulation.  In all of the prototypes, the logging was done by the simulation and not the software 

agents representing the observed team. 

The next step is analysis of the data available in the log files.  The expected outcome of 

this step is a definition and software implementation of the data elements used to create the 

situation vector, S and an enumeration of the possible actions for the team.  The format of this 

data structure requires knowledge of the environment in which the COLTS team will operate.  

The situation vector data will consist of the information available to each team member at run-

time.  If the team under development is the cockpit crew of an aircraft, the situation vector data 

would contain the information presented to the crew by the flight instruments such as altitude, air 

speed, landing gear status and so on.  It should also contain collaborative information, such as 
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current team context, teammate contexts and communication from team members.  It is also 

important that this type of data be available in the training data log files from the observed team.   

The next set of data needed is the list of possible actions.  These data represent the action 

vector, A.  Typically, this list is driven by the type of actions available in the simulated 

environment.  In the case of the cockpit crew, this list might contain such things as adjusting 

airspeed, adjusting flaps, lowering landing gear and turning the aircraft.  It is not always 

necessary for the action taken in any given time-step to be explicitly logged.  If the action can be 

derived from the change in situational data between two time-steps, that is sufficient for training.  

For example, if logged data indicates that landing gear is up during time-step t, but time-step t+1 

indicates that it is now down, it is fair to infer that the action to lower landing gear was taken in 

time-step, t.   Once all possible actions are known and enumerated, the building blocks of the 

behavior maps became available.  The situation vector S is defined and ready to be populated 

with values and the possible actions are enumerated and ready to be paired with populated 

situation vectors. 

The final step of the observation stage is contextual analysis.  Each problem domain will 

have a unique set of contexts. There has been some research into automatically determining 

contexts for a single agent in a particular problem domain. [Trinh, 2009] However, this has not 

been expanded into determining contexts for a team of agents.  Therefore, it is necessary for the 

researcher to analyze the behavior of each observed team and manually determine the contexts 

used.  If domain expertise is available, this is the step where it should be used. If no domain 

expertise is available, it is still possible to continue with contextualization, but the resulting 

contexts may be suboptimal.  An optimal contextualization will result in fairly evenly sized 

behavior maps and better emulation of observed behavior.  At the worst, it may not be possible 
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to create a set of meaningful contexts without some domain expertise.  The team contexts should 

be determined first.  These contexts represent the current goal of the team as they proceed 

through the mission.  Continuing the example of a cockpit crew of a commercial airliner, 

possible team contexts might include take-off, landing, ascent, descent and cruising.   The crew 

of a different type of aircraft or mission such as one that involved search and rescue might have 

additional contexts (e.g. search patterns).  Once a preliminary list of contexts is manually drawn 

up, it is necessary then to look at the situation vector and see which data indicate a particular 

context.  For example, the landing gear being down would indicate that the aircraft is probably 

either in a take-off, a landing or a ground operation context.  Additional data such as speed, 

altitude and aircraft angle of attack could be used to further narrow down the context of the crew.  

If there is insufficient data in the situation vector to differentiate between two contexts, it may be 

necessary to combine those two contexts into a single context.  Once the team contexts are 

determined, each team member must be analyzed to determine their individual context.  Like the 

team context, domain knowledge should be used to list possible contexts and available data 

examined to ensure that the contexts can be distinguished using the available training data.  

Some overlap of individual context is expected between the team members, so the final step after 

each team member is analyzed is a consolidation of all the individual contexts into one list. 

Context specification is very highly tied to the application domain.  It does require 

domain knowledge and expertise.  The COLTS prototypes developed for this dissertation each 

had very different contexts and very different factors driving the contexts.   More details about 

the contexts chosen for each of the prototypes are provided in Chapters 5, 6, and 7.   
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4.5.2 Learning Module 

The learning algorithm portion of COLTS is responsible for processing the observed training 

data and building contextually-based behavior maps.  It takes as input the outputs of the 

observation module.  This includes the training data log, the situation vector data structure, the 

enumerated list of actions, and list of team and individual contexts.  The list of contexts should 

include the criteria for determining that context from the available situational data.  The learning 

module implements an  algorithm that accepts these inputs and creates a set of behavior maps for 

use by the COLTS run-time agents. 

 In order to derive the behavior map for each individual context, the entire training log file 

must be read and parsed into situation vectors.  The expectation is that the log file data is ordered 

sequentially by time.  This means that the data for all team members are grouped by time-step.  

A typical log entry would contain the simulation time, information for team member #1, 

information for team member # 2, and so on until information for all team members is presented.  

The entry may also contain state data not associated with a particular team member, such as the 

current score in a simulated game.   This type of data represents collaborative data in the 

situation vector and typically used by all members of the team. 

Figure 4-2 describes the algorithm used by COLTS.  It begins by creating empty behavior 

maps for each context.  The number of team members in the observed team determines the 

number of times the log file is parsed through.  For each team member, the log file is reset to the 

beginning. An application-specific function is called that will parse a time-step from the log and 

place the data into a Situation class called previousSituation.  Because each time-step contains 

information about all team members, this function accepts a team member designation as input to 

determine how to parse the information appropriately.  Additionally, any actions logged in that 
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time-step for the designated team member are placed into a data structure called previousActions. 

The context of the designated team member in the parsed time-step is determined by another 

application-specific function called getContext.  This value is stored in previousContext. The 

algorithm next enters a loop until it hits the end of the file.  The application-specific parsing is 

called again to create a Situation class called currentSituation and an action class called 

currentActions.   The context of this Situation class is determined by getContext and placed in a 

variable called currentContext.   

 The next step is comparison of previousSituation and currentSituation.  This comparison 

will determine if any non-logged actions such as a context-transfer occurred between the two 

time-steps.  If so, these actions are added to the Action class called previousActions.  Finally, 

behavior map for previousContext is retrieved.  The information in previousSituation and 

previousAction are paired and added to the retrieved behavior map.  Finally, before the next 

time-step is parsed, currentSituation and currentActions are saved as previousSituation and 

previousActions. 

 When the last time-step has been parsed for the last team member, the behavior 

maps are saved to files.  Each behavior map is saved in an individual file named for its 

associated context.  For example, the behavior map for a LANDING context would be named 

“LANDING.MAP”. 
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Figure 4-2  Training Algorithm Pseudo-code 
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4.5.3 Run-time Module 

The COLTS run-time module consists of a generic multi-agent framework capable of being 

customized for each application and a contextually weighted k-nearest neighbor technique.  

These provide the elements of the system that recreate the behavior of the observed team as 

COLTS agents. 

4.5.3.1 Agent Framework 

The choice of a multi-agent framework was primarily driven by the research into the 

psychological basis of human collaborative behavior, as discussed in Chapters 1 and 2.  A 

framework capable defining team goals and implementing shared memory models is a necessary 

part of COLTS.  The framework must be capable of accurately representing human behavior in 

addition to team goals and shared memory models.  The Collaborative Context-based Reasoning 

(CCxBR) paradigm [Barrett, 2007] was chosen as the basis of COLTS run-time agent framework 

because it demonstrates all of these characteristics and was the clear choice for the multi-agent 

framework portion of COLTS.  Each agent in the framework is a CxBR agent [Gonzalez, et al, 

2008], a proven paradigm for representing human behavior.   The addition of a team context in 

CCxBR provides a mechanism able to capture collaborative behavior and implement a 

representation of shared memory model.  In addition, CCxBR has also been formally shown to 

effectively model collaborative behaviors as defined by Joint Intention Theory, an important 

element in reproducing collaborative behavior. [Barrett, 2007]   

The CCxBR framework contains a set of generic software classes that accept behavior 

maps as input to create the behavior functions for a team of software agents. These agents are 

linked together by a team context.  At any given time, each agent is in a particular individual 

context.  In COLTS, the contextually-based behavior maps developed by the training algorithm 
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are used to develop the behavior function.   Each context has a unique behavior map.  Each agent 

will begin a time-step by building a situation vector, S, using information available to the agent 

from sensors or messages.  S will be compared against the situation vectors stored in the current 

context’s behavior map.  A contextually based k-nearest-neighbor algorithm described in the 

next section will be used to determine the stored situation most similar to S.  The agent will then 

execute the actions paired with the stored situation.  This allows for a significant amount of 

software reuse, as each context and agent within a particular application inherits from the same 

software class.  The behavior map provides the uniqueness to each context.   

4.5.3.2 Contextually weighted k-nearest neighbor technique 

The behavior maps can only contain the states encountered in the log files used for training.  

Typically, this is a subset of all the possible situations.  So, there must be some method to 

determine actions when the current situation faced has not been stored in the behavior map 

during run-time.  The most direct solution is to find the situation "closest" or most similar to the 

current situation.   Defining similarity among the various situation vectors is basically a 

clustering problem.  Because the calculations may be done during a time-sensitive simulation, it 

is important to choose a clustering algorithm that can be executed quickly.  It must also be 

generic enough to be used in a variety of applications.  Bentivegna [2004] used a nearest 

neighbor algorithm in his robotic arm applications. The calculation will return the state vectors 

that is defined as "closest" to the original vector x.     The equation used there was : 

                              (4-9) 

where x and q are state vectors being compared and w is a vector of weights.  The weight vector 

allows for different elements to have more or less importance in the calculation.  For example, in 

a sports team application, a difference in position of the ball might have more importance than 
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the difference in position of a teammate.  In this equation, differences are squared to eliminate 

possible negative differences, then multiplied by the weight and finally, the square root is taken.  

This nearest neighbor algorithm is a calculation of the Minkowski distance with n =2.  [Xu & 

Wunsch, 2005]  The Minkowski distance is a commonly used clustering algorithm for finding 

similarity objects in Euclidean space.  [Xu & Wunsch, 2005]   

 Floyd, et al [2008] used a similar k-nearest-neighbor algorithm to implement the distance 

calculations for his simulated soccer player.  The version used was city-block distance which is a 

specialized version of Minkowski distance with n=1. [Xu & Wunsch, 2008]  In city-block 

distance, the absolute value of the difference is used rather than the square. This is typically used 

in applications where the distance is measured in two-dimensions.  The name city-block distance 

refers to  a typical calculation of distance on the streets of Manhattan where the streets are laid 

out in a grid fashion.  This change should shorten the execution time of the distance calculations 

without impacting the effectiveness of the calculations.  The city-block distance calculation was 

the one chosen for use in COLTS.  The equation is: 

                              (4-10) 

In the above equation, x and q represent the situation vectors being compared and w represents 

the weight vector.  One of the benefits of using a contextually-based framework is that the set of 

weights used can be different for each context.  This is particularly useful when two team 

members have drastically different tasks to perform, but may encounter similar situations.   The 

initial weights chosen are typically an estimation based upon knowledge of typical behavior in 

the context.  It is expected that not all situation vector elements will be relevant to each context 

and by setting the weights of irrelevant elements to 0, they can be eliminated from the 

calculation. Relevant elements can be given an initial weight of 1.0 in each context or if some 
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knowledge of the application exists, educated guesses for the weights can be used. For each 

application, it is expected that some trial and error experimentation with different weight values 

on relevant elements becomes necessary to find the optimal weights for each context.  

4.6 Theoretical Example  

Let’s look a simple example of how COLTS could be used to learn behavior from simulated 

entities.  Using the TeamBots software [Balch, et al, 2000], the user can create a variety of 

scenarios where simulated robots move through a virtual landscape.  One such application is a 

simple game of “catch” between two simulated robots.  The two robots alternately kick the ball 

back and forth across the soccer field.  There is no real goal to the game; it is simply an exercise 

in moving the robots towards the ball and kicking at the appropriate time.  In this simple team 

application, there is the need for collaborative behavior between the two robots.  The 

collaborative behavior involves knowing which robot’s turn it is to kick the ball.  Without 

knowing this, the robots would simply move around the field trying to kick the ball all the time 

rather than taking turns.  The TeamBots simulation can be instrumented to output player 

positions, ball position and information about turns to a data log.  This section discusses the steps 

necessary in each of the three COLTS modules to create agents able to create new COLTS 

agents that reproduce the observed robots behavior. 

4.6.1 Observer Module 

The output of the observer module is a textually-based training log file, defined situation vector, 

defined action enumerations, and a list of contexts and their criteria.  The TeamBots-generated 

log file is ordered sequentially.  A time-step within the TeamBots simulation is defined as 50 ms.  

At each 50 ms time-step, the simulation will first log the position, steer heading and speed of 

each robot.  Steer heading is defined as the angular heading of the simulated robot.  In addition, 
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the position of the ball is recorded and a notation of which robot’s turn it is to approach and kick 

the ball back towards the other robot. 

Mission:

Play Catch

Context:

Awaiting Turn

Context:

Kick Ball

Context:

Approach Ball

 

Figure 4-3  "Catch" Player Contexts 

 

 Once the data log is obtained, the next step in the COLTS process is to manually identify 

the contexts used by the robots.  Since this is a simple example, there are not many contexts 

involved.  Analysis of the task shows the contexts shown in Figure 4-3.  The figure shows that 

there are three player contexts: Approach Ball, Kick Ball and Awaiting Turn.  The shared Team 

Context will have two possible values: East Player Turn and West Player Turn.  Once the 

context is determined, the next step is to identify the elements of the situation vector S as well as 

the possible actions A taken by the robots.  The elements of S must be data that are available to 

the robots at run-time as well as available in the data logs. The first data element of S will be the 

current individual context and the second will be the team context.  These elements are available 

at runtime and easily derived from the logged data. At runtime, each robot is able to obtain its 

own position in x, y coordinates with 0,0 being the center of the field.  In addition, they are able 

to receive the position of their opponent and the ball in relation to their own position.  The 
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opponent relational data are in the form of a data structure containing the difference in x, 

difference in y, distance and angle.  Although the logged data of opponents are in absolute x,y, it 

is easy to derive the relational data from the log file. The ball position is not noted explicitly, but 

rather as an angle to and distance from the player.  The team and individual context for the 

opponent can also be derived.  The team context is derived from the data logged about which 

robot’s turn it is to kick the ball.  The team context as well as position data also drive the 

determination of individual context.  Table 4-1  shows a list of the data elements in the situation 

vector S.  The possible actions that each robot can take are listed in Table 4-2.  The actions 

include the possible movements of the robot.  Additionally, it includes individual and team 

context transitions.  Although the initial team and individual contexts are set at the initialization 

of the simulation, any transition after that is made by the behavior function of the run-time 

agents as driven by the behavior maps.   

Table 4-1  Data Element in Situation Vector 

Name Data Type Possible Values In log or derived Sensor data or derived 

my_position.x double -1.37  to 1.37 In log Available via sensors 

my_position.y double -0.76 to 0.76 In log Available via sensors 

my_side enum EAST or WEST In log Available via sensors 

ball_distance double 0 to 2.7 Derived from logged 

my_position and 

ball position 

Available via sensors 

angle_to_ball double -π to π Derived from logged 

my_position and 

ball position 

Available via sensors 

team_context enum EAST or WEST In log Available in team 

context 

my_context enum APPROACH, 

KICK, WAIT 

Derived from log 

data 

Available in team 

context 
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Table 4-2  Enumeration of Actions 

Action Name Parameters 
Move Angle, speed 
Stop None 
Kick Angle 
Transition to Approach None 

Transition to Kick None 

Transition to Wait None 

Transition Team Context to East None 

Transition Team Context to West None 

 

The team context will know to transition from one context to another when one of the robots 

transitions to awaiting turn.  The player and ball positions are reported in two-dimensional (x,y) 

coordinates.  The coordinates refer to a position on the soccer field.  The TeamBots coordinate 

system defines the middle of the field as 0,0.  The x-coordinate can have a value between -1.37 

to +1.37.  The y-coordinate can have a value from -0.76 to + 0.76.  The players are differentiated 

by the side of the field they inhabit.  The possible values are East and West.  The actions 

supported by TeamBots for each robot are the ability to set a steer heading and speed.  The 

possible values for the steer heading are angular values from 0 to 2π where 0 is due East and π is 

due West.  The possible speed values are 0, 0.5 and 1.0.  The robot can also choose to kick.  This 

kick will always be in the currently-faced direction. 

 Using this information and knowledge about the game, it is possible to for the developer 

to manually derive the contexts of the robots.  Two team contexts are defined: East turn and 

West turn. This indicates which robot’s turn it is to kick the ball.  These data are logged from a 

coordinating class in the original game. These log data can be used to determine team context.  

At run-time, a change in team context is triggered by a robot kicking the ball.   The developer 

can analyze the individual behavior by watching the game and looking at the training data.  This 

process led to the individual contexts shown in Figure 4-3.  In this figure, the contexts derived 
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are: APPROACH_BALL, KICK_BALL, and AWAITING_TURN.  In order to determine 

context, the first piece of data from the log that is analyzed is the information on whose turn it is.  

If this is the East robot, and it is East’s turn, then AWAITING_TURN is eliminated as a possible 

context.  Since kicking the ball is a useless endeavor when the ball is not within kicking distance, 

the differentiation between the remaining contexts is made by the proximity of the robot to the 

ball.  If the ball is within kicking distance and the robot is facing toward opposite side of field, 

the context becomes KICK_BALL.  Otherwise, the context is APPROACH_BALL.  Table 4-1 

shows the representation of the data elements contained in the situation vector.  The table 

contains information on data element names, possible values, data type and how determined 

during training and run-time.  Some elements can be obtained directly from the log file and 

sensors, other elements are derived by simple mathematical calculations or decision trees.  A 

Java implementation of this data structure is shown in Figure 4-4. 

 

 

Figure 4-4  Java Implementation of Situation Vector 

 

public class Situation  

{ 

 public enum SIDES {EAST, WEST}; 

 public enum IND_CONTEXT { APPROACH, KICK, AWAIT_TURN}; 

 public double myPositionX; 

 public double myPositionY; 

 public SIDES my_side; 

 public double ball_distance; 

 public double angle_to_ball; 

 public SIDES team_context; 

 public IND_CONTEXT my_context; 

 

 

} 
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4.6.2 Learning Module 

 The next step in COLTS is to create the behavior maps for each context.  This does 

involve writing code unique for each domain.  The main Java class of this application is called 

Trainer.  The Trainer class must be modified to read the text logs output from the TeamBots 

simulation and translate it into Situation classes containing the elements described in Table 4-1 

for each time-step.  Once a Situation vector is built for a log entry, the actions taken by the robot 

following that situation are determined by examining the log further.  Each time a Situation 

vector and action vector are paired, the pairing is stored into the behavior map for the context 

defined in the Situation vector.  Once all log entries have been parsed, each behavior map is 

saved to a file named for the context. 

4.6.3 Run-time Module 

The run-time classes associated with COLTS are largely reusable.  The reusable classes are 

defined in a UML class diagram in Figure 4-5.  Before execution, the Agent class must be 

modified to add the application-specific code to get the sensor inputs of each team member and 

build a current Situation class.  The Team Context must also be modified to instantiate an 

instance of each of the defined individual contexts.  The Team Context also needs a file to accept 

the name of an individual context from an agent and return an instance of that context.   
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Figure 4-5  Reusable COLTS Run-time Java classes 

At run-time, the simulation calls the Agent class step() method.  The Agent class pulls in sensor 

data from the simulation and context data from the Team Context class to build a Situation 

vector for each time-step.  Once the vector is built, the appropriate context class is called.  

Within the context, the current situation is compared to existing situation in the behavior map 

and the closest one found.  The contextually-weighted nearest-neighbor algorithm must be coded 

to find the individual differences for all the data elements in the Situation Vector, S.  The 

contextual weights may need some adjustment at this point.  This should be done initially using 

some common domain knowledge.  For example, when a player is in context 

AWAITING_TURN, the ball distance and angle weights are irrelevant to processing and can be 

set to 0.  However, team context weight is quite important because the individual context will 
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change once the team context indicates that this robot is now authorized to kick the ball.  In more 

complex simulations, it may be necessary to adjust weights further using trial and error.  Upon 

completion of weight adjustment, the newly-trained COLTS agents are ready to play “catch”. 

4.7 Experiment Plan 

COLTS provides a generic approach to observing teamwork behavior and creating a multi-agent 

software system capable of replicating the observed behavior. In order to demonstrate the generic 

nature of the approach, three prototypes were developed using COLTS.  One of the drawbacks of 

the memory-based behavior policy used is that the more complicated the problem, the larger and 

more elaborate the state and action vectors become.  Therefore, it makes sense to begin with a 

minimally-complex application upon which to experiment and work up to more complex tasks.  

A minimally-complex application will have a small situation vector and the number of possible 

situations and actions will also be finite and relatively small.   Another issue is the difficulty in 

acquiring examples of effective teamwork that have adequate information associated with them.  

In addition, the use of human teams with limited availability also hampers the ability to get 

enough original samples to make a true statistical analysis.  For that reason, this research uses 

simulated teams as examples to develop prototypes of COLTS.  The simulated teams chosen 

have strengths and weaknesses just as an actual human team would, but with the additional 

ability to produce as much training and evaluation data as is needed so that significant tests of 

transferred behavior can be made. 

   The first team chosen to observe and prototype is a simulated bucket brigade.  There are 

only four types of team members for the chosen simulation and the number of behaviors is 

minimal.  This offers the ability to develop, implement and debug the run-time frameworks, 

behavior maps and training algorithm without great complexity.  The behaviors to be observed 
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and learned are so simple that if the COLTS approach were to not work with this type of 

teamwork, it would have quickly shown the COLTS approach to be fatally flawed.   

 The second prototype involved learning from a grid-based pursuit-evasion game.  The 

team being observed was a four member pursuit team attempting to capture a single evader.  A 

30x30 grid offered significantly more potential positions and situations than the one bucket 

brigade prototype, which is one-dimensional.  Although the number of teammates is not 

significantly larger, the communication amongst the team members is more complex. The size of 

the action vector is also increased. In the bucket brigade, communication is limited only to the 

team members on either side of a particular player.  In the pursuit-evasion game, the 

effectiveness of the team depends upon insight into the positions and goals of all teammates and 

the sharing of insight into the opponents’ position.  These additional complexities gave insight 

into the effectiveness of the learning algorithm and provided an opportunity to fine-tune the 

training and nearest-neighbor algorithms. 

  The third prototype developed learned from a simulated soccer team in the TeamBots 

[Balch, et al, 2000] simulation.  TeamBots was developed to test software for robots entering the 

RoboCup small-size soccer league competition.  The five member teams and simulated soccer 

pitch provide an excellent testbed for stressing the algorithms.  The larger number of teammates 

and opponents increases the complexity of the situation vector and the variety of actions 

available to perform is much greater than in either of the first two prototypes. In the small-size 

league, each robot agent has insight into all of the players on the field.  This requires each agent 

to track position and heading information for themselves, the ball, four teammates and five 

opponents.  This prototype also requires that the behavior function return actions within a 

predetermined time in order for the game to be played in real-time.  This means that the nearest-
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neighbor distance calculations for all five teammates must occur within approximately 20 ms or 

the game will be held up.  In order to achieve the time goal,  the size of the behavior maps must 

be kept as small as possible and nearest neighbor calculations be kept to a minimum as well.  

This is a balancing act, as a too small behavior map will be unable to generalize well. Therefore, 

it is necessary to manually tune the size of the behavior maps by adjusting the amount of training 

data input into the learning algorithm. 

 Each prototype was evaluated for effective transfer of skills.  First, the prototype is tested 

under the same conditions as the observed team.  If COLTS is effective, the prototype should be 

able to perform the same task as efficiently as the observed team.  This requires that the task 

performed be measurable in some way.  A typical measurement can be the achievement of a goal 

or set of goals within a set amount of time.  The prototype was also evaluated for the 

generalization of the transferred skills.  This places the prototype in a new, untrained scenario 

and again measures its achievement against the observed team.  The same measurement used for 

the training scenario can be used. 

  The observed teams from which teamwork and individual skills are learned are discussed 

in detail in Chapters 5 through 7, one for each of the prototypes.  The application-specific 

implementations of the CCxBR framework, training algorithm and contextually-weighted nearest 

neighbor algorithm are presented there as well.  The testing types and results of each individual 

prototype and conclusions drawn are also described in these chapters.  Chapter 8 presents overall 

conclusions from the experimentation and possible future work based on this approach to 

learning teamwork by observation. 
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CHAPTER 5 PROTOTYPE 1: BUCKET BRIGADE 

The bucket brigade is an example of teamwork with a small situation vector, a limited number of 

possible situations and limited number of actions.   This example of a production team is the 

basis of the modern assembly line.  A bucket brigade is a method of transporting buckets of 

water from a low-pressure water source to a location where it is needed, such as a fire, when a 

source of pressurized water is unavailable.  A line of people is formed from the source to the fire.  

The person at the water source fills the bucket with water and passes it to the next person in line.  

The bucket is then passed from person to person down the line until the last person in line 

empties the bucket onto the fire.  The emptied buckets can be transported back to the water 

source in one of two ways.  A designated runner or runners can take the buckets from the end of 

the line back to the beginning.  Another method is that after emptying the bucket, the person can 

then run back and take position at the beginning of the line and everyone advances a place in 

line.  For purposes of this experiment, a brigade of varying sizes is simulated with a single 

runner to return buckets from the end to the beginning of the line.   A log was created indicating 

current state and action taken for each member of the brigade.  In this simulation, the brigade 

members were stationary with a runner moving the empty buckets back to the beginning of the 

line.  The time to move a fixed number of buckets is used as the metric of team effectiveness.  A 

team of COLTS agents were created from observation of the simulation.  The COLTS team is 

considered effective if it can meet or exceed the count of buckets emptied by the observed 

simulated team.  Generalization can be tested by increasing the number of brigade members and 

testing against a similar increase in the observed team. 
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5.1 Observer Module 

The following subsections describe the processes and tools used in the observer module to create 

the new COLTS bucket brigade team agents. 

5.1.1 Observed Team and Simulation Environment 

The bucket brigade simulation chosen consists of a game portion that tracked status and executed 

the simulated actions, and the agents. Figure 5-1 shows a block diagram of the observed bucket 

brigade simulation.  It shows that the simulation consists of a simulation engine portion that 

drives a simple GUI and communicates with agents representing the team members.  The 

diagram also depicts the four types of agents developed for the simulation: source, sink, runner, 

and node agents.  These were the portion of the simulation replaced with the prototype CCxBR 

team. 

 

Figure 5-1 Observed Bucket Brigade Block Diagram 

5.1.2 Training Data 

The simulation in which the agents performed their task was instrumented to log data to a text-

based log file.  This instrumentation served as the observer module for COLTS and the log file 

served as input into the COLTS learning algorithm.  The simulation output the state of each 

agent at the end of each time-step to the log.   
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Table 5-1  Logged Data  Types for each Time-step 

Data Element Type 

Simulation time Integer Seconds 

Number of buckets at source Integer 

Number of buckets at sink Integer 

Brigade Member 1 State State Data 

Brigade Member 2 State State Data 

Brigade Member 3 State State Data 

Brigade Member 4 State State Data 

Brigade Member 5 State State Data 

Brigade Member 6 State State Data 

 

Table 5-2  Brigade Member State Data Types 

Data Element Type 

Current Activity DIPPING, DUMPING, HANDING, GRABBING, TURNING_TO_HAND, 

TURNING_TO_GRAB, WAITING, RETURNING_TO_SINK, RETURNING 

Message Sent True or False 

Message Received True or False 

Action Taken DIP, DUMP 

 

The types of data logged each time-step are described in Table 5-1.  Table 5-2 further defines the 

state data logged for each brigade member.  A bucket brigade with six members was observed 

for the time it took to move 50 buckets of water from the source to the fire.  An example of the 

log file output is shown in Figure 5-2.  This figure represents the log entries from simulation 

time=20 to simulation time=24.  Each entry is started by a line showing the simulation time and 

how many buckets of water have been dumped at the fire.  These values are tab-delimited.  The 

second line shows the number of empty buckets currently at the source and the third line 

indicates how many empty buckets are at the sink (the fire).  The lines following are the current 

states of the various agents in the system.   
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Figure 5-2 Bucket Brigade Data Log 

In this case, there are six agents.  They are identified by their node number.  Each line contains 

five pieces of information that are tab-delimited.  The first piece of information is the identifying 

node number, the second indicates the state of the agent at the end of the time-step, the third 

indicates any actions taken in that time-step, the fourth indicates whether a message was received 

from an adjacent agent and finally, the fifth piece of information indicates whether a message 

was sent.  The term message is used to represent the interaction between the brigade members 

when a bucket is passed.  A message sent indicates that a brigade member has taken a bucket 

offered by an adjacent member.  A message received acknowledges that the offered bucket has 

been taken.   The log file is complete and contains adequate information to construct a new set of 

COLTS agents driven by behavior maps. 

Sim time: 20  buckets moved: 2

Buckets at source: 16

Buckets at sink: 2

0 TURNING_TO_GRAB NONE false false

1 TURNING_TO_HAND NONE false false

2 TURNING_TO_GRAB NONE false false

3 TURNING_TO_HAND NONE false false

4 TURNING_TO_GRAB NONE false false

5 WAITING NONE false false

Sim time: 21  buckets moved: 2

Buckets at source: 16

Buckets at sink: 2

0 DIPPING NONE false false

1 HANDING NONE false false

2 GRABBING NONE false false

3 HANDING NONE false false

4 GRABBING NONE false false

5 WAITING NONE false false

Sim time: 22  buckets moved: 2

Buckets at source: 15

Buckets at sink: 2

0 TURNING_TO_HAND DIP false false

1 HANDING NONE false true

2 TURNING_TO_HAND NONE true false

3 HANDING NONE false true

4 TURNING_TO_HAND NONE true false

5 WAITING NONE false false

Sim time: 23  buckets moved: 2

Buckets at source: 15

Buckets at sink: 2

0 TURNING_TO_HAND NONE false false

1 TURNING_TO_GRAB NONE false false

2 TURNING_TO_HAND NONE false false

3 TURNING_TO_GRAB NONE false false

4 TURNING_TO_HAND NONE false false

5 WAITING NONE false false

Sim time: 24  buckets moved: 2

Buckets at source: 15

Buckets at sink: 2

0 HANDING NONE false false

1 GRABBING NONE false false

2 HANDING NONE false false

3 GRABBING NONE false false

4 DUMPING NONE false false

5 WAITING NONE false false



92 

 

5.1.3 Situation and Action Vector specification 

As discussed in Chapter 4, the next step in the development of COLTS agents after obtaining a 

textual training log of data is the development of the situation vector S as a Java data class.  The 

class must consist of data that are available to the brigade agent at run-time, and also available 

through the log file.  Table 5-3 describes the data elements of the situation vector S.  All of the 

data listed can be derived from the log file and at run-time, all the data except non-neighboring 

agent states is available.  The column entitled source of data indicates whether it comes directly 

from log or is derived.  

Table 5-3  Bucket Brigade Situation Vector Data Elements 

Element Name Description Data Type 

timeInContext Amount of time the agent has been in this particular 

context.  

integer 

messageSent Whether or not agent has sent a message to neighboring 

agent.  

boolean 

messageRecvd Whether or not a neighboring agent has a sent a message to 

this agent.  

boolean 

bucketsAtSource Number of buckets at water source.  integer 

bucketsAtSink Number of buckets at sink (fire).  integer 

isSinkNode Is this agent the final member before sink (fire).  boolean 

isSourceNode Is this agent the member closest to water source. boolean 

isRunnerNode Is this agent the runner.  boolean 

myState Enumeration describing the context.   Contexts 

enumeration 

nodeNum Number assigned to brigade member (agent) by game.  Integer 

agentStates[] An array of all brigade members and their current context.  Contexts 

enumeration 

 

 Table 5-4 shows the enumerated types used in the situation class.  The table also shows the 

enumeration of possible actions in the simulation.  This enumeration includes actions within the 

simulation and context transfers as well. The context transition actions are driven by the 

contextual analysis described in the next section.  The remaining actions are determined by the 

simulation.  These are the available actions for each agent in the simulation.  Each action and 
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context transfer can execute within one time-step. The final enumeration is the message type sent 

between brigade members.  In this simulation, there is only one type of message sent and 

received. 

Table 5-4   Enumerations 

Enumeration Values Description 

Contexts GRABBING,  

DIPPING, 

TURNING_TO_HAND, 

HANDING, 

TURNING_TO_GRAB,  

DUMPING, 

WAITING, 

RETURNING, 

DUMPING_BUCKETS, RETURNING_TO_SINK, 

UNKNOWN 

 

The names of the various 

contexts in the system. 

Actions NONE, DUMP, DIP, TAKE_BUCKET, 

TAKE_BUCKETS, RETURN_BUCKETS, 

TRANS_GRABBING, TRANS_DIPPING, 

TRANS_TURN_HAND, TRANS_HANDING, 

TRANS_TURN_GRAB, TRANS_DUMPING, 

TRANS_WAITING, TRANS_RETURNING, 

TRANS_BUCKET_DUMP, 

TRANS_RETURN_SINK 

Possible actions for an 

agent to take within a 

time-step.  Enumerations 

beginning with TRANS 

indicate that an action is 

a context switch. 

Message Types TAKE_BUCKET Coordination message 

  

Each data element of the Situation Vector described in Table 5-3 can be mapped directly to a 

data element in the data log.  This mapping is shown in Table 5-5.  The data elements can also be 

obtained at run-time by method calls to the simulation or from agent state data.   The actual 

situation vector is implemented as a Java class with public data elements of the types designated 

in Table 5-3.  To represent the action vector, an enumerated data type containing the 

enumerations described as Action in Table 5-4 was used.  
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Table 5-5  Mapping of Log Data to Situation Vector 

Situation Vector Name Logged Data Name Derivation Required? 

timeInContext Simulation time No 

messageSent Brigade Member State Yes, match node number to 

Brigade Member number 

messageRecvd Brigade Member State Yes, match node number to 

Brigade Member number 

bucketsAtSource Number of buckets at source No 

bucketsAtSink Number of buckets at sink No 

isSinkNode Brigade Member State Yes. Does node number match 

Sink Agent node number 

isSourceNode Brigade Member State Yes. Does node number match 

Source Agent node number 

isRunnerNode Brigade Member State Yes. Does node number match 

Runner Agent node number 

myState Brigade Member State Yes. Match node number to 

Brigade Member number 

nodeNum Brigade Member Number No 

agentStates[] Brigade Member 1-6 States Yes, only neighboring states used 

in situation vector 

 

 

5.1.4 Contextualization 

The next step of developing the learning algorithm for the bucket brigade was to manually 

analyze the observed simulation and determine the appropriate contexts for the COLTS agents.  

While examining the logged data, it became clear that a natural contextualization existed in the 

agent’s current activity.  Each activity represented a unique context of the agent. The various 

contexts of the observed agents are shown in Figure 5-3, 5-4, 5-5, and 5-6. These figures show a 

contextual flow for each agent in the observed simulation.  This analysis is used to determine the 

various contexts in this particular application.  As a result, a total of 10 contexts were determined 

to exist in the simulation.  These contexts are enumerated in Table 5-4.  
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Figure 5-3 Context Analysis Source Agent 
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Figure 5-4  Context Analysis of Sink Agent 
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Figure 5-5 Context Analysis of Node Agent 
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Figure 5-6 Context Analysis of Runner Agent 

 

These contexts were determined by manually examining the parsed states of each agent in the 

log file.  The actions defined in the observed simulation easily translated into actions for the 

prototype.  Actions indicating a transfer to a new context were added. The enumerations of the 

actions, states and messages are defined in Table 5-4.   Only one team context was needed.  The 

team goal is always to move as many buckets of water from the source to the sink as quickly as 

possible.  The determination and designation of the contexts along with the situation and action 

vectors provide the input needed to begin the learning portion of the COLTS system. 

5.2 Learning Module 

The learning module creates the behavior maps for the COLTS bucket brigade members. It was 

implemented as a stand-alone Java application.  Two Java classes are shared between the 

learning algorithm and run-time agents.  These are a Constants interface class and a Situation 

class.  The Constants interface contains the enumerations of the contexts and actions as described 

in Table 5-4.  The Situation class is an implementation of the situation vector S.  The complete 

source code for the Constants and Situation Java classes is available in Appendix A.  Once these 

classes were created, the log file parsing was implemented in the main class of the learning 
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module named Trainer.  Like the Situation and Constants class, the code for this parsing is 

specific to the log file output by the observed bucket brigade simulation and is not reusable for 

other applications of COLTS.   The source code for the parsing is also available in Appendix A. 

The learning algorithm was implemented in a Java class called Trainer.  The algorithm 

shown in chapter 2 is used as the basis of this class.  The parsing of the log file from text to data 

elements in the Situation class is one of the elements that is specific to this prototype.  The 

second is the determination of context from the data parsed in the log.  For this application, that 

determination was not difficult to implement.  For each time-step, a textual description of the 

current state is given.  These are translated directly into one of the contexts listed in Table 5-4.  

A method of the parsing algorithm is designed to translate from the textual state description into 

an enumerated context value.   

Figure 5-8 shows a high-level flow chart of how the learning algorithm was implemented 

for the bucket brigade.  The algorithm handles each brigade member in turn.  For each brigade 

member, the log file is reset to the beginning and iterates through each time-step logged.  As the 

data for each time-step is read in, the parsing code creates an instance of the Situation class for 

the brigade member currently being examined.  Next, the context of that Situation instance is 

determined from the state description in the log file.  The log file also contains certain actions 

that occurred during that time-step.   The actions that are can be parsed from the log and directly 

associated with a Situation are: DUMP, DIP, TAKE_BUCKET, TAKE_BUCKETS, and 

RETURN_BUCKETS. 

Determining a context transfer action is more complicated than simply parsing the log 

file.  Because each time-step represents the state of the agent at the end of the time-step, the 

Situation from the prior time-step is used to determine the context of the agent at the beginning 
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of the time-step.  The Situation instance at time t is compared with the Situation instance at time 

t-1 to determine whether or not a context switch occurred. A context switch has occurred if the 

agent context at time t is different than the context at time t-1.  If a context switch did occur, the 

appropriate action enumeration is added to the action list associated with time t-1.   For each 

Situation class parsed, there could be from zero to two actions associated with it.  The first 

possible action would be one of the actions parsed from the log file.  The second possible action 

would be a context transition action.   Once, the Situation class was paired with a set of actions, 

it was stored in the behavior map for that context.  Behavior maps were implemented as Java 

Hashmaps with the key being an instance of the Situation class and the data being the set of 

actions. 

 

Figure 5-7  Textual Representation of Behavior Map 

 

For the bucket brigade, the majority of the actions taken were context transfers as they moved 

from one activity to another.  It was not necessary to utilize an algorithm to resolve conflicting 

actions for the same situation as the bucket brigade members consistently performed the same 
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actions given the same situation.  Once the Trainer class completes the process of parsing for 

every agent at every time-step, the behavior maps are saved to individual files.   

The files are named for the context they represented.  For example, the behavior maps for 

the "HANDING" context is named "handing.map".  While the map files themselves are saved as 

binary files, debugging code was added that also outputs a textual representation of the behavior 

map.  Figure 5-7 shows an entry from the textual representation of the DUMPING context 

behavior map.  The majority of the entry is data elements of the Situation class.  The last two 

entries are the two actions to be taken when this situation is chosen.   

5.3 Run-time Module 

The run-time module consists of the agent implementation and the contextually-weighted k-

nearest neighbor implementation.  These are described in the following sections. 

5.3.1 Agent Implementation 

The next step is to create the COLTS agents to replace the preprogrammed agents in the 

observed simulation.  The COLTS agents created to learn from the preprogrammed agents were 

designed to appear programmatically identical to the observed agents from the viewpoint of the 

game engine.  Figure 5-9 shows the new prototype bucket brigade block diagram.  It was not 

necessary to alter the simulation engine and GUI to work with the new COLTS agents.  

However, a COLTS framework was implemented to replace the observed hard-coded agents of 

the observed bucket brigade.  The Java classes created for the framework were simply named: 

TeamContext, Context, and Agent.  Each class is designed to be as reusable as possible between 

COLTS applications.   

 



100 

 

Agent =0

Open file

Begin

Another agent?

Parse 1
st
 timestep 

and create 

previousSituation

Parse next 

timestep and 

create 

currentSituation + 

add action to 

actionList

currentContext 

== prevContext

No

Add prevSituation 

+ actions to 

behavior map for 

prevSituation 

context

More timesteps 

available?

Agent = 

agent +1;

Yes

No

Yes

Add context switch 

to actionList for 

prevSituation

No

Save 

behavior 

maps to 

files

Yes

End

 

Figure 5-8 Bucket Brigade Trainer Flow Chart 

A UML diagram in Figure 5-10 shows the relationship among these classes and the 

Situation and Constants classes that are common with the Trainer class.  While not shown in this 
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diagram, an instance of Agent is created for each team member.  The behavior maps output by 

the learning algorithm are input into their associated Context instance when the class is 

instantiated via the InitializePolicy method of the class.  The team context within the Run-Time 

framework was created to maintain the team’s goal and group situational awareness. It is a 

singleton class, meaning that only one instance of the TeamContext exists in any given 

application.  The TeamContext class instantiates all the Context class instances, maintains 

context information about all agents and contains a method that converts the action vectors 

obtained from the behavior maps into action.  

The COLTS agents are all identical. At instantiation, each is given a unique node number 

and starting context.  The starting context and node number provide the information necessary 

for the agent to determine its role on the team. Like the agents, the implementation of each 

context instance is identical.  The difference between context objects is in the name and the 

behavior map.  These maps are linked to a particular context and contain a mapping of situation 

to actions appropriate in that context.   The behavior maps are the output of the training 

algorithm stored in binary files.  The step() function of the class compares a passed-in instance of 

Situation and returns the action vector associated with the closest Situation in the behavior map. 

 



102 

 

 

Figure 5-9  Bucket Brigade with CCxBR Framework 

 

 

Figure 5-10  UML Diagram of CCxBR Framework 
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At runtime, the step() method of each agent is called by the game’s SimEngine during 

each time-step just as the observed hard-coded agents were called.  The code within this method 

then calls the step() method of the current context as shown in Figure 5-11.  When the step() 

method in the agent is called, a data structure containing the current situation is built.  That data 

structure is compared to the situations stored within the context object’s behavior map for the 

closest match.  When that match is found, a list of actions is returned.  The actions are nothing 

but a list of enumerations that map to the behaviors supported by the game.  The context 

implementation contains an inherited method capable of translating from the action enumeration 

to the appropriate game engine call or context transfer.  This method must be hard-coded to the 

specifications of the unique domain. 

 

Figure 5-11  UML Sequence Diagram of Agent time-step 

 

5.3.2 Contextually-weighted k-nearest-neighbor Algorithm 

Finally, the run-time nearest neighbor algorithm and appropriate weight vectors were developed.  

For this application, the state vectors being compared were two Situation classes with a variety 

of data types.  A member method of the Situation class provides the evaluation of the "closeness" 

of two situation classes using a nearest-neighbor algorithm.  Initially, a single k-nearest-neighbor 
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algorithm was developed for all contexts of the agents with a single weight vector.  However, 

deriving the weight vector for the evaluation proved quite difficult.  The set of weights that 

resulted in good behavior for the agents passing buckets was unable to duplicate the behavior of 

the agent running buckets from end point to beginning.  To solve this problem, multiple sets of 

weights were determined based on the current context.  This contextually-weighted nearest 

neighbor algorithm was successful in creating agents able to duplicate the behavior of the 

observed bucket brigade.  The weight vectors were set manually using trial and error.   

This trial and error method involved a little bit of common sense domain knowledge.  

The common sense portion came when looking at the behavior of each type of observed agent 

and analyzing which data were relevant to the current context.  For example, the runner agent 

had no need to know the state of adjacent agents.  This agent was strictly interested in how many 

buckets were currently sitting at the end of the brigade and whether or not there were enough to 

make a run back to the beginning worthwhile.  Data elements in the situation vector relating to 

messages and adjacent agents could be given a weight of 0 in contexts used by the runner agent.  

Conversely, a bucket brigade agent involved in passing buckets has no need to care how many 

buckets are currently at the end of the line.  Only the source agent has a need to know how many 

buckets are available at the source, so only the DIP context has a non-zero weight for that data 

element.  For remaining elements, an initial weight of one was used and if an agent did not 

behave as expected in a particular context as determined by looking at the data log, the weight 

was adjusted up or down until better behavior resulted. 

Run-time processing of a simulation time-step is the same regardless of the current 

context.  When the step() function of a context is called, the behavior map for that context is 

loaded.  The current Situation is compared to each entry in the behavior map using the 
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contextually-weighted k-nearest neighbor algorithm.  The lowest scoring entry is chosen.  The 

actions mapped to that entry are executed in that time-step.  The k-nearest-neighbor equation is 

modified slightly to avoid performing square root calculations and use a set of weights related to 

the current context.  The modifications simplify the implementation and offer a small 

performance improvement without losing precision.   The new equation is as follows: 

 

                       

where x equals original Situation class, q equals the compared against Situation class and wc is 

the weight vector for a given context.  Each data member of the Situation class is an element in 

the associated state vector. There is no magic formula to develop the weight vectors.  Knowledge 

of the actions that normally occur during each context provides insight into which data are 

important in each context.  The final weight vectors are shown in Tables 5-6 and 5-7  Table 5-6 

shows the weights that remain constant regardless of context.  Table 5-7 .shows the context 

specific weights and the contexts that use them.  These weights have a value of zero for all other 

contexts. 

Table 5-6  Common Weight Vectors for COLTS Bucket Brigade Prototype 

Weight Name Weight Value 

My state  300 

Is runner node 100 

Is source node 100 

Is sink node 100 
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Table 5-7 Context Specific Weights 

Weight Name Weight Value Context 

Message recvd 300 HANDING 

Left neighbor state 100 GRABBING 

Right neighbor state 100 HANDING 

Time in context 100 RETURNING, 

TURNING_TO_HAND, 

TURNING_TO_GRAB, 

RETURNING_TO_SINK 

Buckets at source 1 DIPPING 

Buckets at sink 10 WAITING 

 

5.4 Experimental Results 

By using the weights associated with the context of the agent, the nearest-neighbor algorithm 

was able to accurately choose the correct actions for the agent.  The COLTS prototype bucket 

brigade was able to exactly match the efficiency of the observed brigade.  Since the simulation 

engine of the observed bucket brigade was used, the prototype output a log file in the same 

format as the observed simulation.  The output of the prototype was matched line for line with 

the original training data.  The two files were identical, indicating that the prototype bucket 

brigade was able to perform identically to the observed given the same situation.  Each was able 

to move 50 buckets in 307 simulation time-steps.  Repetition showed that the behavior of the 

prototype to be consistent from run to run. The results of all the testing is summarized in Table 

5-8. 
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Table 5-8  COLTS Bucket Brigade Testing Results 

Number of Members Observed Team Time COLTS Team Time 

5 307 seconds 307 seconds 

6 309 seconds 309 seconds 

5 (different start context) 308 seconds 308 seconds 

5 (with random turn times) 346 seconds 308 seconds 

20 337 seconds 336 seconds 

 

Next, the prototype was tested to see whether the learned behavior could be generalized to 

different starting conditions.  Without repeating the training process, the prototype was given an 

additional team member in the bucket brigade.  The resulting simulation was able to efficiently 

perform the task given.  The observed simulation was also given an additional team member and 

the time to move 50 buckets from beginning to end was used as the metric for determining 

efficiency.  Both the observed and prototype bucket brigades were able to move the 50 buckets 

within 309 seconds. The slight increase in time is consistent with the extra time needed to pass 

the first bucket down the longer line of team members.  This test showed that the prototype was 

able to generalize the behavior of the observed team to duplicate the behavior when additional 

team members were added.  This test stressed the contextually-weighted nearest-neighbor 

algorithm because no example behavior for the new team member existed.  The new team 

member had to generalize behavior from similar team member in order to perform effectively.  

Since any additional nodes would be identical to the single one added in this test, there is every 

reason to believe that any additional nodes added would also behave identically to the observed 

simulation.   
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A second generalization test involved changing the starting context of the agents moving 

buckets.  Initially, the source agent was initialized as turning to grab a bucket for dipping and the 

remaining agents were poised to grab a bucket as soon as it was available.  In this test, the source 

agent was initialized in a dipping position and the other members were initialized in a turning to 

grab position.  There were not any other choices as the remaining contexts assumed that the 

agent was already holding a filled bucket.  So these were the only other choices for a realistic 

starting state.  Again, the performance of the prototype was matched against the observed 

brigade in the same configuration.  This time it took 308 seconds to move the 50 buckets.  

These very exact results reflect that fact that observed team is perfectly efficient.  Each 

action taken always took the same amount of time and no motion was wasted.  The prototype 

agents trained from this example showed the same efficiency.  While this was an excellent test of 

the CCxBR framework's ability to replace the observed agents and use the trained behavior 

maps, it was not a true representation of actual human behavior that is rarely perfectly efficient.  

A team of real humans performing this task would probably have some variations in the time it 

took to move a bucket from place to place.  

 For this reason, the experiment was repeated using a variation of the observed team that 

incorporated some variability into the timing of the movements of each agent.  The new observed 

team uses a random number generator to determine if an agent will take two or three seconds to 

turn.  If the random number generator uses an even distribution, the agent should turn in two 

seconds half the time and three the other half. 

The new bucket brigade with random behavior takes 346 seconds to complete a 50 bucket 

run.  Subsequent runs showed variations on this time, but the observed run at 346 second was 

chosen to train the new prototype.  The prototype trained with these data was able to complete it 
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in 308 seconds indicating that the nearest-neighbor algorithm consistently chose the more 

efficient turning path.  Repetitions of the prototype showed that this was consistent behavior and 

moving 50 buckets always took 308 seconds. 

During the testing, some observations of execution time were made.  Specifically, the 

time to run the behavior functions of the COLTS agents was measured at the various team sizes.  

The goal was to determine whether or not the execution time truly did scale no more than O(n) 

where n is team size.  It would be expected that the bucket brigade would not be a worst-case 

scenario and scale linearly.  This is due to the fact that the individual team members do not have 

access to information about all their teammates.  Access is limited to the teammates on either 

side of a team member.  Therefore, the size of the situation vector does not increase with the size 

of the team.  The times given are worst case found in a short run of about 10 seconds since the 

times were not exact every cycle due to operating system usage. Measurements were made in 

milliseconds.   The worst-case scenario is expected to be O(n), but the results showed that the 

actual time was significantly less.  If the run time was O(n), the expected execution time for 

teams of 12 and 18 would be two and three times the execution time for the team of 6.  Table 5-9 

shows the actual times detected.  As expected, they are below the anticipated worst-case scenario 

of O(n). 

Table 5-9 Execution Time of Various Team Sizes 

Team Size Largest Execution Time 

(ms) 

6 0.420 

12 0.500 

18 1.220 

The success of the original test and generalization tests indicate that the training algorithm and 

CCxBR agent framework are suitable for learning teamwork by observation.  The original tests 

proved that the combination of the behavior map and the contextually-weighted nearest-neighbor 



110 

 

algorithm were effective in transferring the behavior of the observed team to the new prototype.  

As expected, the first prototype behaved identically to the observed team in the identical 

situation.  The prototype was also able to behave identically in similar situations as well.  While 

the second prototype did not behave identically, the team still performed the expected behavior 

in an efficient manner.  Because the behavior of the bucket brigade is simple in the sense that 

there are limited possible situations and actions, this prototype does not prove the effectiveness 

of this method in capturing collaborative behavior.  However, it did provide an  excellent test bed 

for developing the COLTS framework of agents, behavior maps and the contextually-weighted 

nearest neighbor algorithm.  A second and third prototype using more sophisticated teams will 

offer more opportunity to weigh the usefulness of this machine learning approach. 
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CHAPTER 6 PROTOTYPE 2: PURSUIT-EVASION GAME 

The second prototype developed used a pursuit-evasion game as its basis.  In this game, a 30x30 

two-dimensional grid contains a single "Red" submarine (the evader) and four "Blue" surface 

ships (the pursuers).  At each step of the game, entities both the Blue ships and Red submarines 

can choose to move up, down, left, right or stay in their current space.  The game ends when the 

four Blue entities are able to surround the Red entity, thereby preventing its future movement, or 

the Red entity is able to reach any edge of the grid, and thus escape.  The COLTS prototype team 

learns its behavior from the Blue pursuit team.  The Red evader remains the same for both 

observed and COLTS pursuit teams.  In order to be effective, the Blue pursuit team must work 

together effectively to search the entire grid and locate the evading agent.  Once the evader is 

detected by one of the pursuit team, the collaborative behavior continues with communication of 

the evader’s position and seeking to attain the boxing positions. 

 The pursuit team is a more complex team than the bucket brigade team.  Since each team 

member is aware of all the other team members, the situation vector size increases to contain the 

additional collaborative data involved with this four-member team.  The number of possible 

situations is also significantly larger than the bucket brigade.  Each team member must track 

positions for itself, its team member, and the Red evader.  This gives a total of five entities to 

track each of which has 900 possible positions.  There are also a slightly larger number of actions 

that each team member can perform in a given time-step.  The larger number of possible 

situations requires more training data than the bucket brigade in order to  adequately imitate the 

behavior of the observed team.   
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6.1 Observer Module 

The following subsections describe the processes and tools used in the observer modules to 

create the new COLTS pursuit team agents. 

6.1.1 Observed Team and Simulation Environment 

The pursuit-evasion game has been a popular choice for testing distributed intelligence 

algorithms [Singh, 1993], and more recently, genetic algorithms [Nitschke, 2003].  There are 

several approaches to the pursuit team available.  The observed team using an approach known 

as "Control distributed among altruistic peers". [Singh, 1993, p. 724]  The four team members 

are all peers working together to trap the Red evader.  Each team member has awareness of its 

own position and can detect other entities within a five step area.  The team members are capable 

of communicating their own position and any detected entities to the other team members.  Each 

team member has an assigned quadrant to patrol and an assigned position to box in the evader 

once it has been detected.  Their operating instructions are straight-forward.   

 When the evader's position is unknown, patrol the assigned quadrant in a search pattern 

designed to take full advantage of the sensors.   

 When the evader's position is known either through its own sensors or message 

transmission from a team mate, compute the fastest path towards the evader and attempt 

to block the assigned position.   

In both the observed and COLTS games, the evader agent  moves randomly in the four possible 

directions.  Approximately 10% of the time, it will remain stationary.  Because of  the pseudo-

random nature of the Java random number generator, there is a slight bias to the Move Up action.  

Figure 6-1 shows a screenshot of the observed simulation.  
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 Figure 6-1 Pursuit-Evasion Game Screenshot 

The Red evader is designated with a red dot in the grid and the four Blue pursuers are designated 

with blue dots in the grid. The basic infrastructure of the pursuit-evader game has some 

similarities to the bucket brigade as shown in Figure 6-2.  The team member agents are separate 

classes and easily replaced by COLTS agents, just as in the bucket brigade game.  The game is a 

discrete, time-stepped simulation and the Pursuit Game Engine calls each of the agents once each 

time-step and then updates the GUI to reflect the changes.   
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Pursuit Game Engine

GUI

Pursuit Team Member  

Agent

Evader Agent

 

Figure 6-2  Observed Pursuit Game Block Diagram 

6.1.2 Training Data 

The observer module for COLTS was added to the Pursuit Game Engine and outputs data to a 

simulation log each time-step.  The data logged at each time-step included simulation time, the 

evader’s position, the pursuit team members’ positions and whether or not the pursuers had 

detected the evading agent yet.  An example of the data log showing three time-steps is shown in 

Figure 6-3.  The data log entries are made at the end of each time-step, so the position shown is 

the result of any moves made within that time-step.  Because the simulation is discrete, the 

position of the agents’ does not move except during the time-step, so the moves made can be 

determined by comparing this position with the position at the last time-step.  
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Figure 6-3  Example of Pursuit-Evasion Log 

For the bucket brigade, a log file of one run through the simulation was used as input to the 

learning module of COLTS.  This was sufficient for the bucket brigade with its limited number 

of possible states.  The pursuit-evasion game has a much larger number of possible states and 

actions, so more data are necessary.  The objective is to get the minimum amount of data needed 

to get good results.  Since the simulation inserts 500 ms between time-steps to allow the GUI to 

be viewable by human eyes without excessive flicker, the size of the behavior maps and the 

amount of time to process them is of little concern in this simulation as long as the run-time 
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agents combined take less than 500 ms.  For that reason, fifteen different starting positions for 

the Blue team were chosen for use in collecting training data.  The Red evader is always started 

in the center of the grid. The starting positions were chosen to make sure that each agent has a 

training data point over most of the grid.  A total of ten games for each of the 15 starting 

positions were run and logged into a text file that was used as input to the learning algorithm.  

This creating a training file with 150 games total.  The starting configurations were chosen from 

the thirty test cases listed in Table 6-1. The starting positions chosen for the training were:  Test 

Cases 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 12, 18, 19, and 23.   

Some test cases were specifically chosen to ensure that each blue ship starts in different 

quadrants, while others were chosen to enable comparison to previous implementations, and a 

few were simply chosen randomly.  Table 6-2 shows the average percentage of blue wins for 

each test case using the random evader.  In addition, the results are displayed for the same series 

of tests with the observed team against a more intelligent, smart evader. Since the COLTS 

prototype was trained only with games played against the random evader, these results against 

the smart evader can be used to test the prototype for generalization.   
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Table 6-1 Test Case Starting Positions 

Test 

Case # 

Blue1 Position 

(row, column) 

Blue2 Position 

(row, column) 

Blue3 Position 

(row, column) 

Blue4 Position 

(row, column) 

Red Position 

(row, column) 

1 (0,0) (0, 29) (29, 0) (29,29) (14,14) 

2 (0,0) (0,1) (0,2) (0,3) (14,14) 

3 (0,26) (0,27) (0,28) (0,29) (14,14) 

4 (29,0) (29,1) (29,2) (29,3) (14,14) 

5 (29,26) (29,27) (29,28) (29,29) (14,14) 

6 (0,28) (0,1) (0,2) (0,29) (14,14) 

7 (0,28) (29,28) (29,29) (0,29) (14,14) 

8 (0,0) (0,1) (29,0) (29,1) (14,14) 

9 (0,28) (0,29) (29,28) (29,29) (14,14) 

10 (0,0) (0,1) (29,28) (29,29) (14,14) 

11 (29,0) (0,0) (29,29) (0,29) (14,14) 

12 (0,29) (29,29) (0,0) (29,0) (14,14) 

13 (29,29) (29,0) (0,29) (0,0) (14,14) 

14 (0,14) (7,14) (21,14) (29,14) (14,14) 

15 (14,0) (14,7) (14,21) (14,29) (14,14) 

16 (0,0) (7,7) (21,21) (29, 29) (14,14) 

17 (0,29) (7,21) (21,7) (29, 0) (14,14) 

18 (5,8) (21,25) (27,29) (2,4) (14,14) 

19 (18,18) (7,11) (2,3) (9,9) (14,14) 

20 (7,20) (3,9) (23,26) (29,7) (14,14) 

21 (0,29) (1,28) (2,27) (3,26) (14,14) 

22 (1,5) (1,10) (1,15) (1,20) (14,14) 

23 (16,16) (17,17) (18,18) (19,19) (14,14) 

24 (13,13) (12,12) (11,11) (10,10) (14,14) 

25 (29,3) (5,19) (16,18) (2,2) (14,14) 

26 (29,11) (0,11) (0,16) (29,16) (14,14) 

27 (4,28) (28,4) (26,7) (7,26) (14,14) 

28 (3,15) (7,15) (19, 15) (23,15) (14,14) 

29 (15,3) (15,7) (15,19) (15,23) (14,14) 

30 (28,4) (4,28) (7,26) (26,7) (14,14) 
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Table 6-2 Observed Team Test Case Win Statistics 

Test Case 

Number 

Random Evader 

Blue Win % 

Smart Evader 

Blue Win % 

1 72.28 20.38 

2 88.30 59.20 

3 63.95 19.30 

4 58.75 13.24 

5 48.18 20.45 

6 67.51 22.64 

7 68.69 23.19 

8 70.10 17.68 

9 70.09 24.35 

10 69.58 18.11 

11 68.87 16.45 

12 63.25 14.77 

13 15.75 3.52 

14 97.47 75.05 

15 54.04 20.44 

16 79.72 37.17 

17 66.67 23.33 

18 41.60 9.21 

19 59.98 11.75 

20 72.74 37.11 

21 67.74 23.78 

22 83.17 32.62 

23 94.61 57.46 

24 47.31 12.99 

25 17.22 7.58 

26 81.21 21.72 

27 79.71 30.12 

28 97.96 77.57 

29 76.78 42.03 

30 80.51 28.78 

The smart evader moves randomly in the grid until a blue ship moves within detection range.  

Once it has been detected, the smart evader moves toward the nearest edge.  In order to give the 

blue ships a chance to catch it, a small amount of random behavior is programmed into the 

evader even when it is moving toward the edge.  Otherwise, the win ratio for the blue ships was 
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often 0%, which did not allow for meaningful analysis of the trained agents.  Because a test 

scenario with  a set of randomly moving blue ships resulted in a win ratio of 0% against both the 

random and the smart evader, it is difficult to determine if behavior is truly learned with a very 

low win ratio.  

  Table 6-3 lists the data element logged for each time-step.  Each time-step entry begins 

with a line describing the current simulation time.  Following that are the entries for each Blue 

team member.  Each Blue team member’s position is given in x,y grid coordinates.  Additionally, 

an indication of whether the team member is currently aware of the Red evader’s position is 

given.  The last line of each entry indicates the Red evader’s position.  This information is given 

whether or not the Blue team has detected the evader or not.   

Table 6-3 Logged Data Types for each Time-Step 

Data Element Type 

Simulation Time Integer time-steps 

Blue 1 Position X Coordinate Integer 

Blue 1 Position Y coordinate Integer 

Blue 1 Detected Red Boolean 

Blue 2 Position X Coordinate Integer 

Blue 2 Position Y coordinate Integer 

Blue 2 Detected Red Boolean 

Blue 3 Position X Coordinate Integer 

Blue 3 Position Y coordinate Integer 

Blue 3 Detected Red Boolean 

Blue4 Position X Coordinate Integer 

Blue 4 Position Y coordinate Integer 

Blue 4 Detected Red Boolean 

Red Position X Coordinate Integer 

Red Position Y Coordinate Integer 

This data matches the information available to the Blue team at run-time.  They have awareness 

of each other’s position through communication channels.  They are also aware when teammates 

have detected the Red evader because this information is also communicated to each other.  Blue 
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team does not always have knowledge of Red position so at training time, this information must 

be hidden at training time if unknown to the Blue agents.  

6.1.3 Situation and Action Vector specification 

Once the training logs were obtained, the elements of the situation vector S were defined.  These 

data consists of information that is available in the simulation log and at run-time.  Since the 

ships have communication capability, the position of all Blue ships is always known and can be 

part of the situation vector.  Once the Red evader’s position is detected, it is known to all Blue 

ships.  However, since Red position is not always known a flag indicating its presence is used in 

the situation vector.   All of these elements can be found or derived from the log file and are 

available via messages or sensors to the run-time agents.  Table 6-4 lists the data elements 

contained in S and their types. 

Table 6-4 Pursuit-Evasion Situation Vector Data Elements 

Element Name Description  Data Type 

myState Enumeration indicating current context of the agent Context 

myType Enumeration indicating numeric assignment of the team 

member, i.e., BLUE1, BLUE2, BLUE3, BLUE4 

PlayerType 

myPosition This team member’s current position in x,y Position 

Blue1Position BLUE1’s current position in x,y Position 

Blue2Position BLUE2’s current position in x,y Position 

Blue3Position BLUE3’s current position in x,y Position 

Blue4Postion BLUE4’s current position in x,y Position 

redPositionKnown Boolean indicating whether the agent knows the position 

of the Red evader. 

boolean 

RedPosition If known, the position of the red evader in x,y Position 

TeamContext Enumeration indicating the current team context TeamContext 

The action vector associated with the situation vector in the behavior map for each context will 

contain from one to three possible actions.  The one action that will always be present is a 

movement action.  The possible values for this action are: UP, DOWN, LEFT, RIGHT and 

NONE.   The second possible action is a context transition.  The third possible action is 

SEND_MESSAGE.  This action sends a message with the detected Red position to all the blue 
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ships.   The enumerations for all of these actions are available in Table 6-5.  Table 6-5 also 

contains the other enumerations used in the simulation to describe individual contexts, player 

types, and team contexts.  As in the bucket brigade prototype, the situation vector is implemented 

as a Java class named Situation and the enumerations are available in a class named Constants.  

The COLTS code files developed for the pursuit-evasion game are available in Appendix C. 

Table 6-5  Enumerations  

Enumeration Values Description 

Context SEARCH_TOP_LEFT, SEARCH_TOP_RIGHT, 

SEARCH_BOT_LEFT, SEARCH_BOT_RIGHT, 

GO_TO_TOP, GO_TO_RIGHT, GO_TO_LEFT, 

GO_TO_BOTTOM, INTERCEPT_TOP, 

INTERCEPT_BOTTOM, INTERCEPT_RIGHT, 

INTERCEPT_LEFT 

The names of the various 

individual contexts in the 

system. 

Actions UP, DOWN, RIGHT, LEFT, NONE, 

NOTIFY_RED_POSITION, 

TRANS_SEARCH_TOP_LEFT, 

TRANS_SEARCH_TOP_RIGHT, 

TRANS_SEARCH_BOT_RIGHT, 

TRANS_SEARCH_BOT_LEFT, 

TRANS_GO_TO_TOP, TRANS_GO_TO_RIGHT, 

TRANS_GO_TO_LEFT,TRANS_GO_TO_BOTTOM, 

TRANS_INTERCEPT_TOP, 

TRANS_INTERCEPT_BOTTOM, 

TRANS_INTERCEPT_RIGHT, 

TRANS_INTERCEPT_LEFT 

Possible actions for an agent to 

take within a time-step.  

Enumerations beginning with 

TRANS indicate that an action 

is a context switch. 

TeamContexts SEARCHING, BOXING The names of the team 

contexts. 

Player Types BLUE1, BLUE2, BLUE3, BLUE4, RED Enumerations assigned to each 

player in the game by the 

game engine.  BLUE# are 

team members, RED indicates 

the red evader. 

 

6.1.4 Contextualization 

As with the bucket brigade, a contextual analysis of the observed game is necessary in order to 

set up the training algorithm for the COLTS pursuit team.  The contextual analysis was done 
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manually by comparing the available log data with the behavior observed by watching the 

observed team.  The observed team implemented four distinctly different agents to represent the 

teams.   

The team has two easily observed contexts.  The first is Search, where the four pursuers  

are attempting to find the location of the Red evader.  In the observed team, each of the four 

pursuers has an assigned quadrant to search in a predefined pattern until someone detects the Red 

evader.  Once the Red evader has been located, the team context switches to Capture context. In 

this context, each of the four pursuers attempts to intercept the Red evader and block a particular 

side.  Figure 6-4 shows the two team contexts.  Note that arrow goes only from Search to 

Capture and not back.  Once the observed team had a location, the observed detecting ship 

always stayed within range of the evader so there was no need to return to a search pattern. 

Team Mission:

Capture Red 

Submarine

Context:

Capture

Context:

Search

Begin

 

Figure 6-4 Pursuers Team Contexts 

The individual contexts for each ship are quite similar to each other, but have important 

differences. The search patterns are similar, but in vastly different areas for each of the four 

quadrants so that separate contexts are needed for each search quadrant.  In addition, each blue 

ship has a predetermined position around the evader and intercepting that location is slightly 
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different from intercepting the position of the evader only. Therefore, intercept contexts must 

also be different for each ship.  

Each ship begins the mission in a search context.  There are four different search 

contexts, one for each quadrant to be searched.  When the position of the pursued Red submarine 

is detected by one or more of the Blue ships, all ships are notified of the location. Once the 

position is known, the ships proceed to transition to either an intercept context or a blocking 

context.  An intercept context is used when the evader is outside sensor range of the ship and the 

ship needs to intercept its position using the information provided by the closer ship or ships.  A 

blocking context is when the submarine is within sensor range and the ship must get to a 

particular side of the submarine to block and capture it.   Figure 6-5, Figure 6-6, 6-7 , and 6-8 

show the contexts and their names of each of the blue ships.  In total, there are two team contexts 

and twelve individual contexts of the blue team.   

 

Mission:

Blue 1 Agent

Context:

Go To Grid on Top 

of Evader

Context:

Intercept Grid on 

Top of Evader

Context:

Search Top Left 

Quadrant

Begin

 

Figure 6-5 Blue Ship 1 Individual Contexts 
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Mission:

Blue 2 Agent

Context:

Go To Grid Right 

of Evader

Context:

Intercept Grid  

Right of Evader

Context:

Search Top Right 

Quadrant

Begin

 

Figure 6-6 Blue Ship 2 Individual Contexts 

Mission:

Blue 3 Agent

Context:

Go To Grid Left of 

Evader

Context:

Intercept Grid Left 

of Evader

Context:

Search Bottom 

Left Quadrant

Begin

 

Figure 6-7 Blue Ship 3 Individual Contexts 

Mission:

Blue 4 Agent

Context:

Go To Grid on 

Bottom of Evader

Context:

Intercept Grid on 

Bottom of Evader

Context:

Search Bottom 

Right Quadrant

Begin

 

 

Figure 6-8 Blue Ship 4 Individual Contexts  
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6.2 Learning Module 

Once the situation vector, action vector and contexts were determined, the development of the 

Trainer application for the pursuit game could begin.  The stand-alone Java Trainer application 

developed for the bucket brigade prototype was used as a starting point.  However, since this 

domain has a differently formatted log file and new contexts, the code to parse the log file and 

determine context had to be modified.  The parsing code was modified to read the pursuit-

evasion data log and convert the data parsed into the new Situation class.  Context was 

determined by two basic pieces of data.  The data elements used to determine context for each 

Blue ship are redPositionKnown and redPosition. 

The SEARCH context is always the starting context at run-time.  If Red position is 

known and the ship is more than five steps from the Red evader, the ship is in the appropriate 

INTERCEPT context for the ship number. If Red position is known and ship is less than five 

steps from the Red evader, the ship is in the appropriate GO_TO context for the player number.  

Figure 6-5, 6-6, 6-7 and 6-8 above show the mapping of the different categories of context to 

ship number.  

 The actions could not be directly parsed from the log, so all had to be determined from 

the changes in one time-step to the next.  However, the basic algorithm was the same as the 

conceptual algorithm in Chapter 4.   Figure 6-9 updates the learning algorithm presented in 

Chapter 4 to show the prototype 2 specific needs and the following section describes the 

algorithm. 
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Figure 6-9  Pursuit Team Learning Algorithm 
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6.2.1 Learning Algorithm Description 

As in the bucket brigade prototype, the log file is parsed separately for each of the observed team 

members.  Since the observed team has four members, the log file was parsed and analyzed four 

times.  For each time-step, the log file is read and a Situation class for time, t, is created.  Before 

actions are assigned to this Situation instance, the Situation class for time, t+1, is created and its 

context determined.  The Situation instances for time t and time t+1 are compared.  First, the 

position data for the ship being analyzed is compared to the previous time-step to determine the 

movement action taken in time t.  If the x coordinate of the ship has changed positively, the 

movement action is RIGHT.  If the x coordinate has changed negatively, the movement action is 

LEFT.  If the y coordinate has changed positively, the movement action is DOWN.  If the y 

coordinate has changed negatively, the movement action is UP.  If no coordinates changed, the 

movement action is NONE.   

Next, the contexts of the two Situation classes are compared.  If they are different, an 

appropriate context transition action is added to the action set.  Finally, if the agent being 

analyzed is within sensor range of the Red agent, a SEND_MESSAGE action is added to the 

action set.  This action set is paired with the Situation instance for time t.  This mapping of 

Situation class to actions is stored in the behavior map for the context of the Situation instance at 

time t.  As in the bucket brigade prototype, this behavior map is implemented as a Java Hashmap 

with the Situation class used as a key. When parsing of the input log file is complete for all 

agents, the behavior maps are stored as binary files for use by the run-time COLTS agents. 

While the behavior maps have a similar format to those of the bucket brigade, the data 

stored are different.  An example of an entry in the INTERCEPT_RIGHT context behavior map 

is shown in Figure 6-10. 
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Figure 6-10 Example Behavior Map 

 

6.3 Run-time Module 

The COLTS agent framework developed for the bucket brigade provided an excellent starting 

point for prototype 2.  Since both are time-stepped simulations, the Agent and Context classes 

required little change.  The Agent class required some update to acquire the situational data from 

the available sensors before calling the current context and a change to the processing of data 

received as a message from a teammate.  Within the team context, the instantiations of the 

various contexts were tailored to the pursuit-evasion game contexts.  Figure 6-11 shows a UML 

class diagram of the prototype run-time application.  In Figure 6-12, the replacement of the 

observed game agents with the COLTS agents is shown in block diagram.   
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Figure 6-11  COLTS Prototype Run-time UML 
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Figure 6-12  COLTS Prototype Pursuit-Evasion Game 

6.3.1 Contextually-weighted k-Nearest Neighbor Algorithm 

Once the behavior maps were populated by the training algorithm and the run-time agents in 

place, the next step was to determine the weights for the contextually-weighted k-nearest-

neighbor algorithm.  Although there are a total of 12 possible contexts for the agents, the 

contextual weighting is divided into three categories.  The first category is the search category 

and includes the contexts named SEARCH_TOP_RIGHT, SEARCH_TOP_LEFT, 

SEARCH_BOT_RIGHT and SEARCH_BOT_LEFT.  In these contexts, the position of the 
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submarine is unknown and the ships are following a predetermined search pattern within a 

particular context to find it.   

When creating the initial weights for this category of contexts, the current position of the 

ship is the most important factor in determining the next move.  The positions of the remaining 

three ships factor slightly into the decision, and only when they may be blocking the desired 

move of the ship.  The position of the Red evader is unknown and therefore receives a weight of 

zero in this category.  Whether or not the position of the Red evader is known is also highly 

weighted as this will determine whether a context switch is needed.  After some brief 

experimentation with various weights, a set of weights were calculated and Table 6-6 shows the 

compared data and associated weights used in this category of contexts.  The table shows two 

possible values for each Blue ship.  The first value reflects the weight used when the value of 

myType matches the designation of the ship building the weight vector is that ship. The second 

value reflects the weight when the designated ship is a teammate. For example, if the ship 

building the weight vector is designated BLUE1, the BLUE1 position weight difference will be 

3.0.  The weights for BLUE2, BLUE3 and BLUE4 will all be 0.25. 

Table 6-6 Search Context Weights 

Data Description Weight Explanation 

Blue1 Position Diff 3 or 0.25 Weight = 3 if this is Blue1, 0.25 

otherwise 

Blue2 Position Diff 3 or 0.25 Weight = 3 if this is Blue1, 0.25 

otherwise 

Blue3 Position Diff 3 or 0.25 Weight = 3 if this is Blue1, 0.25 

otherwise 

Blue4 Position Diff 3 or 0.25 Weight =3 if this is Blue1, 0.25 

otherwise 

The second category of contexts is the intercept category.  The names of the context associated 

with this category are INTERCEPT_TOP, INTERCEPT_LEFT, INTERCEPT_RIGHT and 

INTERCEPT_BOTTOM.  In this category, the ships are attempting to move to a position that 
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will allow them to capture the Red submarine.  A ship in an intercept context is receiving the 

Red position from another ship as the position is outside sensor range.  The initial weights for 

this category were set to emphasize the location of this ship and the Red submarine.  However, it 

soon became clear during testing of the algorithm that this was not necessarily calling for an 

action that best reflected the behavior of the observed team.  A modification to the algorithm to 

compute the angle between the ship and the Red position and giving a strong weight to that value 

proved to be a better comparison.  Table 6-7 shows the calculation and weights used to 

determine a nearest-neighbor score for these contexts.  While it appears the position of the ship is 

given no weight, this position is used in the calculation of the angle to Red evader and distance 

to Red evader.  In this context, the position of the ship in relation to the Red evader is much more 

important than actual position on the grid. 

Table 6-7 Intercept Context Weights 

Data Description Weight Explanation 

Blue1 Position Diff 0.0 Not used in these contexts. 

Blue2 Position Diff 0.0 Not used in these contexts. 

Blue3 Position Diff 0.0 Not used in these contexts. 

Blue4 Position Diff 0.0 Not used in these contexts. 

Distance to Red Diff 1.0 Calculated from current position 

and Red position provided in 

Situation data. 

Angle to Red Diff 3.0 Calculated from current position 

and Red position provided in 

Situation data 

The third and final category of the contexts is the capture category.  In this category, the 

associated contexts are GO_TO_TOP, GO_TO_LEFT, GO_TO_RIGHT, and 

GO_TO_BOTTOM.  In this category, the ship is within sensor range of the red submarine and is 

trying to capture and maintain a particular position around the Red submarine.  This was the 

most difficult category of context to weight.  Initially, it was weighted similarly to the intercept 

category.  However, this did not account for the type of movement that the observed agents 
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would perform to maneuver around teammates.  It became necessary to look at not only the 

angle to the Red evader, but also the distance.  Since teammates can be in close proximity and 

cause roadblocks, the angles and distances between the various blue ships were also taken into 

account to find the situation-action pair that accurately reflected the behavior of the team mates.   

Table 6-8 shows the calculation and weights used to determine nearest-neighbor scores in these 

contexts. 

Table 6-8 Go_to Context Weights 

Data Description Wt Explanation 

Blue1 Position Diff 0.0 Not used in these contexts. 

Blue2 Position Diff 0.0 Not used in these contexts. 

Blue3 Position Diff 0.0 Not used in these contexts. 

Blue4 Position Diff 0.0 Not used in these contexts. 

Distance to Red Diff 1.0 Calculated from current position and Red position provided in 

Situation data. 

Angle to Red Diff 3.0 Calculated from current position and Red position provided in 

Situation data 

Distance to Blue1 

Diff 

0.2 Calculated from current position and blue position data provided in 

Situation data 

Distance to Blue2 

Diff 

0.2 Calculated from current position and blue position data provided in 

Situation data 

Distance to Blue3 

Diff 

0.2 Calculated from current position and blue position data provided in 

Situation data 

Distance to Blue4 

Diff 

0.2 Calculated from current position and blue position data provided in 

Situation data 

Angle to Blue1 Diff 1.5 Calculated from current position and blue position data provided in 

Situation data 

Angle to Blue2 Diff 1.5 Calculated from current position and blue position data provided in 

Situation data 

Angle to Blue3 Diff 1.5 Calculated from current position and blue position data provided in 

Situation data 

Angle to Blue4 Diff 1.5 Calculated from current position and blue position data provided in 

Situation data 
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6.4 Results and Conclusions 

This section describes the results from the experimentation performed using the COLTS pursuit 

team.  The criteria used to evaluate the COLTS team are discussed.  In addition, modifications to 

the original run-time algorithm are discussed and final results are analyzed. 

6.4.1 Criteria for Evaluation 

The question arises as to what measurable statistic is a true indicator of the behavior of the team.  

Some measure is needed to determine whether or not the COLTS prototype exhibits the same 

team effectiveness as the observed team.  The win ratio at a variety of different starting position 

was chosen as a measure of effectiveness. The decision to use this particular statistic was based 

on comparison of two existing teams with different algorithms used for the pursuit team.  

Comparison of the two existing teams indicated that the win ratios are affected by the algorithm 

used by the pursuit team.  To prove this theory, ten test cases used to test an expert system 

implementation of the pursuit game by Proenza in 1997 [Proenza, 1997] were duplicated by the 

observed team.  While the basic game was the same, Proenza took a different approach to the 

problem. He used a central controller to direct the four ships that were implemented in an expert 

systems tool known as CLIPS.  Another difference was that his ships always knew where the 

Red evader was, but not necessarily each other.  The Blue ships only knew their teammates 

position if a collision was possible.  

 The comparison between Proenza’s pursuit team and the observed pursuit team used for 

this dissertation is presented in Table 6-9  Test Case Comparison.  Proenza used a similar 

random evader, but calculated three possible outcomes; win, lose and stalemate.  A stalemate 

was declared when the pursuers were able to get three sides captured and close to an edge, but 

not the fourth.  The table shows the Blue win percentage for Proenza’s team when the Blue team 
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predominantly won.  Otherwise, Red Escape or Stalemate is listed indicating that the Red evader 

usually won.  In the observed team’s implementation, that is declared a loss as the Red evader 

would eventually move to the opposite edge. [Proenza, 1997]  It quickly becomes obvious from 

the comparison that these are very different implementations.   

The results for the various starting configurations are almost opposite; test cases which 

caused Proenza's prototype to favor Red wins or stalemates have very high Blue win ratios in the 

new system.  The two test cases of Proenza with high Blue win ratios have poor showings in the 

new system.  This is probably because the new system had to search for the Red evader position 

initially.  The results of this comparison show that two different algorithmic approaches to the 

same problem can have drastically different win percentages. Therefore, if the COLTS prototype 

has win ratios comparable to the observed team, it can be considered to be properly imitating the 

same algorithm as the observed team.  

Table 6-9  Test Case Comparison 

Proenza Test 

Case # 

Observed Team 

Test  Case # 

Proenza Result 

(blue win %) 

Observed Team 

Result (blue win 

%) 

2 2 Red Escape 88% 

28 18 86% 41% 

30 19 Stalemate 59% 

29 20 92% 72% 

8 21 78% 67% 

10 22 Stalemate 83% 

12 23 Red Escape 94% 

13 24 Stalemate 47% 

27 27 74% 79% 

23 28 Stalemate 97% 

Once the win ratio was chosen as a test criterion, a series of games was run with thirty different 

starting positions for the blue agents.  Each series of games consisted of 1000 games.   These 

games serve as a baseline against which the COLTS prototype can be compared.  For each 

starting position, a set of 10 series was run to determine the average win ratio for that starting 
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position.  So a total of 10000 games were played at each starting position to get the average Blue 

win ratio for the observed team. 

6.4.2 Initial Results 

In the bucket brigade prototype, the contextually-weighted k-nearest-neighbor algorithm 

assumed that k would always equal one meaning only one low-scoring match for any given 

situation within the behavior map.  This assumption yielded good results in the pursuit game, but 

not good enough. Table 6-10 shows the observed team and the initial COLTS team average win 

percentage in a series of 1000 games.  Results show that the win percentages between COLTS 

and the observed team are close, but not close enough to be able to say statistically that they are 

similar.  The COLTS team generally has a lower win ratio than the observed team, but in a few 

cases there were actually test cases that had a much higher win ratio.  The goal is to be able to 

perform a chi-square goodness-of-fit statistical test and have the resulting value show the results 

to be statistically similar within a 95% confidence interval.  The chi-square statistic is computed 

for each test case win ratio and shown in Table 6-10.  The last column of the table indicates 

whether the COLTS team win ratio is statistically similar to the observed team.  Table 6-11 

shows the 2x2 contingency table used to compute the chi-square statistic.   
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Table 6-10 Initial Results with low-score nearest-neighbor algorithm 

Test Case Observed  

Win % 
COLTS 

Win % 
Chi-

square 

Statistic 

Match? 

TC1 72.3 67.0 0.660 TRUE 

TC2 88.3 74.9 12.350 FALSE 

TC3 64.0 61.5 0.129 TRUE 

TC4 58.7 45.7 3.413 TRUE 

TC5 48.2 50.4 0.099 TRUE 

TC6 67.5 59.6 1.350 TRUE 

TC7 68.7 65.6 0.190 TRUE 

TC8 70.1 64.4 0.737 TRUE 

TC9 70.1 64.8 0.637 TRUE 

TC10 69.6 61.8 1.343 TRUE 

TC11 68.9 58.4 2.369 TRUE 

TC12 63.2 54.6 1.546 TRUE 

TC13 15.7 8.9 1.171 TRUE 

TC14 97.5 92.2 2.835 TRUE 

TC15 54.0 44.2 1.937 TRUE 

TC16 79.7 62.3 6.691 FALSE 

TC17 66.7 71.0 0.437 TRUE 

TC18 41.6 14.0 18.976 FALSE 

TC19 60.0 48.7 8.000 FALSE 

TC20 72.7 89.0 8.544 FALSE 

TC21 67.7 64.0 2.564 TRUE 

TC22 83.2 60.8 12.407 FALSE 

TC23 94.6 82.9 6.870 FALSE 

TC24 47.3 57.6 2.124 TRUE 

TC25 17.2 19.6 0.189 TRUE 

TC26 81.2 62.5 8.655 FALSE 

TC27 79.7 62.3 7.361 FALSE 

TC28 98.0 95.7 0.832 TRUE 

TC29 76.8 58.2 7.867 FALSE 

TC30 80.5 61.6 8.693 FALSE 
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Table 6-11 Chi-square 2x2 Contingency Table 

 Observed Game Prototype Game Totals 

Win Percentage a b a+b 

Loss Percentage c d c+d 

Totals a+c b+d a + b + c + d = N 

The chi-square statistic was calculated based on the values in the table using the following 

formula: 

        
                  

                    
    (6-1) 

In order for the two win ratios to be declared statistically similar within a 95% confidence 

interval, the chi-square statistic must be less than 3.841.  This particular statistic is derived from 

a chi-square table indicating 95% confidence interval.  The results are generally good, but over a 

third of the test cases do not pass the chi-square statistical test and only a few come within a 99% 

confidence interval. (This is defined as a chi-square statistic of less than 2.706.) 

  In order to improve these statistics and meet the goal of all 30 test cases passing the chi-

square test within a 95% confidence interval, additional weight adjustments were tested.  

However, these only had the effect of switching which test cases passed the test and did not 

improve the overall pass/fail ratio.  Testing showed that the majority of problems came in the 

GO_TO contexts.  Through additional testing, it became clear that in some cases it was possible 

for more than one situation to match the low-score criteria.  This led to the addition of additional 

run-time logic to the contextually-weighted k-nearest-neighbor algorithm to handle a k value 

greater than one. 

6.4.3 Mismatch Logic 

The reason for the large value of k in the nearest-neighbor algorithm is that in some contexts, the 

actual positions of the ships and submarine are not relevant; it is their relation to each other that 
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affects the score.  Tracing the code with a debugging software made it clear that k was often 

greater than 1.  So mismatch logic was implemented as part of the contextually-weighted nearest 

neighbor algorithm.  

  A running count of situations with the same score is kept.  Should differing actions be 

suggested by the situations with matching score, the actions with the most situations is chosen 

rather than the first one encountered.  The addition of this logic and some additional weight 

tuning resulted in the achievement of passing the chi-square test on all thirty test cases.  Weight 

tuning was performed by using a subset of the test cases with a limited number of test runs. Early 

on it became clear that certain test cases were more difficult to duplicate.  A total of five test 

cases were used.  Test Cases 1, 5, 19, 25 and 26 were the test cases used.  Test Cases 1 and 5 

were from the trained test cases and used as control test cases to make sure weight changes 

didn’t disrupt trained behavior.  The others were chosen because they were the furthest from 

passing the chi-square test with a 95% confidence interval and showed the most sensitivity to 

changing weight vectors.  Other test cases did not show as much variation in win ratios when 

weight vectors were altered.   

This indicates that the situations in those test cases were probably very close to the 

situations defined in the behavior maps so the best match was made unless weight vectors were 

drastically changed.  Because the variations in the weight vectors used for experimentation were 

quite small (typically less than 1.0), they did not impact these well-represented test cases. The 

weights chosen gave the best overall results rather than any one test case. 

Final Results 

Table 6-12 shows the resulting win ratios and the chi-square statistics after the logic to handle k 

values greater than one was added.  In addition to all of the test cases matching the observed  
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Table 6-12 Final Prototype Win Percentages 

Test 

Case 
Observed 

Win % 
COLTS 

Win % 
Chi-square 

statistic Match? 

TC1 72.3 68.9 0.275 TRUE 

TC2 88.3 87.8 0.019 TRUE 

TC3 63.9 62.9 0.024 TRUE 

TC4 58.7 57.3 0.033 TRUE 

TC5 48.2 51.4 0.207 TRUE 

TC6 67.5 66.5 0.023 TRUE 

TC7 68.7 67.9 0.015 TRUE 

TC8 70.1 70.0 0.000 TRUE 

TC9 70.0 69.9 0.000 TRUE 

TC10 69.6 65.8 0.327 TRUE 

TC11 68.9 65.5 0.258 TRUE 

TC12 63.2 60.9 0.117 TRUE 

TC13 15.7 21.2 0.986 TRUE 

TC14 97.5 97.5 0.000 TRUE 

TC15 54.0 52.2 0.068 TRUE 

TC16 79.7 79.0 0.016 TRUE 

TC17 66.7 62.2 0.436 TRUE 

TC18 41.6 44.8 0.340 TRUE 

TC19 60.0 61.1 0.026 TRUE 

TC20 72.7 79.1 1.106 TRUE 

TC21 67.7 67.4 0.000 TRUE 

TC22 83.2 74.1 1.730 TRUE 

TC23 94.6 88.3 2.540 TRUE 

TC24 47.3 46.7 0.007 TRUE 

TC25 17.2 27.9 3.264 TRUE 

TC26 81.2 82.5 0.056 TRUE 

TC27 79.7 79.1 0.011 TRUE 

TC28 98.0 98.0 0.000 TRUE 

TC29 76.8 77.7 0.024 TRUE 

TC30 80.5 79.9 0.012 TRUE 

within a 95% confidence level, two-thirds of the test cases match with a 99% confidence level.  

It is interesting to note that test case 25 that was closest to failing the chi-square test, does so by 

having a higher win ratio than the observed.  During weight testing, it became clear that during 

test cases 25 and 19, the observed team made some diametrically opposing choices given similar 
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situations.  Weights that have test case 25 passing with a win percentage much closer to the 

observed would cause test case 19 to fail.  Finally, a set of weights was found that allowed both 

to pass, but test case 25 still comes very close to failing.  The weights shown in Table 6-6, Table 

6-7, and Table 6-8 reflect the final weights used. 

 In order to test the generalization of the behavior of the prototype, an additional set of test 

runs was made using the same smart evader used to test the observed team.  The training cases 

and prior runs were all done using a totally random evader to represent the Red submarine.  The 

smart evader representing the Red submarine is also random until it is detected by one of the 

ships.  Once detected, the evader will aim directly for the nearest edge.  In the observed game, 

this still resulted in an nearly 0% win percentage for the blue ship so some additional 

randomness was added when the smart evader is heading for the edge.  The prototype was not 

trained with any examples of the observed playing this smarter evader so it is an excellent test of 

generalization to see if it can match the win percentages of the observed team against this new 

opponent.   

As shown in Table 6-13, the results were not quite as good as against the random evader, 

but 28 of the 30 test cases still pass the chi-square goodness-of-fit statistical test within a 95% 

confidence interval.  The two test cases that fail both do so with a significantly higher win 

percentage so in those two test cases, the prototype performed better than the observed.  This was 

not the trend in all test cases.   
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Table 6-13 Smart Evader Test Results 

Test 

Case 
Observed 

Win % 
COLTS 

Win % 
Chi-square 

statistic Match? 

TC1 20.4 18.0 0.183 TRUE 

TC2 59.2 53.6 0.638 TRUE 

TC3 19.3 15.6 0.475 TRUE 

TC4 13.2 13.9 0.019 TRUE 

TC5 20.4 14.4 1.272 TRUE 

TC6 22.6 17.0 1.001 TRUE 

TC7 23.2 19.4 0.429 TRUE 

TC8 17.7 13.8 0.568 TRUE 

TC9 24.3 22.1 0.142 TRUE 

TC10 18.1 15.8 0.189 TRUE 

TC11 16.4 11.8 0.891 TRUE 

TC12 14.8 12.9 0.147 TRUE 

TC13 3.5 4.2 0.062 TRUE 

TC14 75.0 75.0 0.0001 TRUE 

TC15 20.4 18.4 0.133 TRUE 

TC16 37.2 25.3 3.207 TRUE 

TC17 23.3 15.9 1.751 TRUE 

TC18 9.2 6.5 0.567 TRUE 

TC19 11.7 30.2 10.268 FALSE 

TC20 37.1 30.9 0.859 TRUE 

TC21 23.8 19.8 0.465 TRUE 

TC22 32.6 33.6 0.022 TRUE 

TC23 57.4 46.9 2.235 TRUE 

TC24 13.0 24.6 4.416 FALSE 

TC25 7.6 9.1 0.151 TRUE 

TC26 21.7 20.1 0.079 TRUE 

TC27 30.1 26.9 0.254 TRUE 

TC28 77.6 75.0 0.183 TRUE 

TC29 42.0 35.7 0.843 TRUE 

TC30 28.8 23.6 0.694 TRUE 
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6.4.4 Conclusions 

The results of prototype 2 show that behavior maps combined with a contextually-sensitive 

selection algorithm can effectively transfer collaborative behavior from one source to another 

with a team size of 4.  The approach was verified through 30 test cases.  A test case was defined 

by the starting position of the four blue ships comprising the pursuit team.  The comparison of 

the COLTS team to the observed team was done by comparing the win percentage for each test 

case. The win percentage was determined from the results of a test run of 1000 games in each 

test case.  Comparing the win percentages of the observed team to previous implementations in 

literature using different approaches showed that a different implementation would result in a 

different win percentage.  The win percentage of each test case of the prototype was statistically 

compared to the win percentage of the observed team using a chi-square goodness-of-fit 

algorithm.  The goal was to declare the prototype’s win percentage the same as the observed with 

a 95% confidence interval.  A comparison of the results for each test case is shown in Figure 

6-13.  A similar comparison of the results from the smart evader testing is shown in Figure 6-14. 

 The training algorithm created behavior maps from a log of 150 games using 15 different 

test cases. The contextually-weighted k-nearest-neighbor algorithm had its roots in k-nearest 

neighbor algorithms, but evolved into a more sophisticated selection algorithm by utilizing 

statistical techniques reminiscent of Gaussian mixture models.  The initial approach was to use  
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Figure 6-13  Comparison of Results for Random Evader 

 

Figure 6-14 Comparison of Results for Smart Evader 
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Table 6-14 Chi-square Statistic Comparison 

Test 

Case 

First Draft 

Chi-square 

Statistic 

Final Chi-

square 

Statistic Difference 

TC1 0.6600 0.2751 -0.3849 

TC2 12.3500 0.0190 -12.3310 

TC3 0.1290 0.0240 -0.1050 

TC4 3.4130 0.0330 -3.3800 

TC5 0.0986 0.2070 0.1084 

TC6 1.3500 0.0230 -1.3270 

TC7 0.1900 0.0150 -0.1750 

TC8 0.7370 0.00002 -0.7369 

TC9 0.6370 0.00008 -0.6369 

TC10 1.3430 0.3270 -1.0160 

TC11 2.3690 0.2580 -2.1110 

TC12 1.5460 0.1170 -1.4290 

TC13 1.1711 0.9860 -0.1851 

TC14 2.8350 0.0002 -2.8348 

TC15 1.9370 0.0680 -1.8690 

TC16 6.6910 0.0160 -6.6750 

TC17 0.4370 0.4360 -0.0010 

TC18 18.9760 0.3406 -18.6354 

TC19 8.0000 0.0260 -7.9740 

TC20 8.5440 1.1062 -7.4378 

TC21 2.5640 0.0004 -2.5636 

TC22 12.4070 1.7300 -10.6770 

TC23 6.8700 2.5400 -4.3300 

TC24 2.1240 0.0070 -2.1170 

TC25 0.1890 3.2640 3.0750 

TC26 8.6550 0.0560 -8.5990 

TC27 7.3610 0.0110 -7.3500 

TC28 0.8320 0.0004 -0.8316 

TC29 7.8670 0.0240 -7.8430 

TC30 8.6930 0.0120 -8.6810 

 

the statistical techniques during the creation of the behavior maps, but the relatively small 

number of training cases used proved to not need the approach in training. However, its 
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effectiveness alongside the contextually-weighted k-nearest neighbor algorithm becomes obvious 

in a side-by-side comparison of the chi-square statistics shown in Table 6-14.  The table shows 

the chi-square statistic for each test case from the first draft and the final prototype.  The last 

column shows the change in the statistic.  A negative value in this column indicates that the win 

percentage of the prototype moved closer to the observed team’s win percentage indicating that 

the addition of the statistical method to the k-nearest-neighbor algorithm did make a noticeable 

improvement in the performance of the prototype team.   

Overall, this prototype showed that COLTS can effectively transfer both individual and 

collaborative behavior from an observed team to a new prototype team.  Although, an excellent 

example, this prototype did not have particularly onerous the time constraints.  The prototype 

described in Chapter 7 was chosen to stress COLTS with a much larger situation vector, larger 

number of potential situations, and a real-time time constraint. 
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CHAPTER 7 PROTOTYPE 3 - TEAMBOTS SMALL-SIZE ROBOTS 

The final prototype developed for evaluating the effectiveness of COLTS used a more 

sophisticated action team than did the previous examples.  The Teambots software [Balch, et al, 

2000] was developed as a testbed for teams intending to compete in the RoboCup small-size 

robot competition.  TeamBots provides a simulation of the small-size robot, a simulated ball, and 

a simulated soccer pitch.  Researchers can test  potential control systems for the robots within the 

simulation.  The control system has access to the position information of all players and the ball 

as they would in the actual small-size robot competition.  The control system has the ability to 

set the steer heading of the robots in radians, their speed and can also order them to kick at the 

ball.  In addition to the basic simulation, several previously written team control systems are 

available to use as example teams and against which to compare.  In this prototype, an existing 

team control system was chosen as the observed team from which to learn.  This simulation and 

team have several characteristics that make the behavior of the team more difficult to imitate 

than those of the teams used in the previous prototypes.  First, the simulation is continuous, not 

discrete.  While the robot control software is called periodically as in the pursuit team, the 

simulated robots and ball are continuous move continuously between calls to the robot control 

software.  Second, there are considerably more possible situations in this simulation.  There are 

five players on each team plus one ball to monitor making a total number of 11 entities to track.  

Unlike the pursuit-evasion game, the positions are not discrete.  The players can move anywhere 

within the soccer pitch, and the coordinates are floating point numbers rather than integers.  This 

makes for an infinite number of possible positions unless the floating point numbers are 

truncated or rounded.  In addition, the steering output is also a floating point number between –π 
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to π, which gives an infinite number of possible outputs unless the numbers are truncated or 

rounded.  The other outputs are limited to a discrete number of possible outputs. 

7.1 Observer Module 

The observer module for the COLTS TeamBots prototype is described in the following sections.  

It was responsible for gathering data about the TeamBots team chosen for observation and 

formatting it as input to the learning module. 

7.1.1 Observed Team and Simulation Environment 

Fortunately, the TeamBots software has a similar structure to the previous games where the robot 

control system acts as an agent to the main simulation. Figure 7-1 shows a high-level block 

diagram of the TeamBots system.  The SimulationCanvas is the controlling class of the 

simulation.  It is responsible for calling the simulations of the physical robots and the ball as well 

as the robot control agents.  The agents used for each team and type of robot simulation are 

driven by a configuration file input at start-up.   The implementation of the observer module was 

structured similarly to the previous prototypes.  Logging code functionality was added within the 

Simulation Canvas class before and after calls to the robot control software.  A flag was added to 

allow this logging to be turned on or off at run-time.  If the data are not needed for analysis of the 

game, it is desirable to turn the logging off as it does slow down the game and the log file size 

can easily grow to 20 to 30 MB. 
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Figure 7-1 TeamBots Block Diagram 

Positions logged at the end of the previous time-step will not be valid at beginning of the next 

time-step so the logging was done slightly differently from the previous prototypes.  Prior to the 

calls to the robot control system software, all players’ positions and the ball position are logged.  

Upon completion of the calls to the robot control system software, the observed team players’ 

states, desired steering position and desired speed are likewise logged.  This gives a complete 

picture of the positions at the beginning of the time-step, as well as the desired actions 

afterwards. 

 The next step was to choose a team to observe and imitate.  In order to choose a team, a 

tournament among the teams provided with TeamBots was held.  These teams were developed 

by various students throughout the years.  Some are meant to be examples of how to build a 
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robot control systems and others are tests of various strategies.  Two teams were chosen.  

Initially, the AIKHomo team was chosen because of its successful win record in the tournament.  

Table 7-1 shows AIKHomo’s win/lose record in the tournament.  However, attempts to 

contextualize the AIKHomo team proved quite difficult.  The state descriptions given in the log 

were meant to help the implementer debug the code, not give true descriptions of the roles taken.  

Since it was not possible to get usable contexts from the AIKHomo log, it was abandoned as the 

team to implement.   

Table 7-1 AIKHomo Team Tournament Record 

Opponent Op 

Wins 

AIKHomo 

Wins 

Ties Op Total 

Pts 

AIKHomo 

Total Pts 

SchemaDemo 0 10 0 8 47 

CDTeamHetero 0 10 0 3 136 

MattiHetero 4 5 1 24 27 

DaveHeteroG 0 10 0 3 56 

DoogHeteroG 0 10 0 14 55 

FemmeBotsHeteroG 0 7 3 7 38 

JunTeamHeteroG 0 9 1 2 221 

Kechze 0 10 0 3 89 

PermHomoG 0 10 0 3 47 

Totals: 4 81 5 67 716 

 

The SchemaDemo team was chosen next for its observable strategy and relatively few 

observable contexts.  The SchemaDemo team’s strategy was to have four of the five players 

attempting to get behind the ball and push it towards the goal while the fifth player serves as 

goalie.  The contexts are relatively easy to see and determine from the logged data.  The field 

players simply move toward the back of the ball.  The “back” of the ball is the side opposite the 

goal.  If the player is already behind the ball, they are in the GO_TO_BALL context and choose 

a steering heading towards the ball.  If the player is not behind the ball, they are in 

GET_BEHIND_BALL context and attempt to move behind the ball without bumping it in a 
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direction that could score for the opponents.  The goalie has a single GOALIE context where the 

player moves vertically in front of the goal attempting to block the ball.   

Table 7-2  SchemaDemo Team Tournament Record 

Opponent Op 

Wins 

SchemaDemo 

Wins 

Ties Op Total 

Pts 

SchemaDemo 

Total Pts 

AIKHomoG 10 0 0 47 8 

CDTeamHetero 1 7 2 16 37 

MattiHetero 10 0 0 57 7 

DaveHeteroG 5 2 3 23 19 

DoogHeteroG 8 1 1 53 32 

FemmeBotsHeteroG 6 2 2 226 18 

JunTeamHeteroG 0 10 0 4 123 

Kechze 4 5 1 30 36 

PermHomoG 1 6 3 12 20 

Totals: 45 33 12 468 300 

 

SchemaDemo team did not have a particularly good win record in the tournament, but it was 

repeatable. Table 7-2 shows SchemaDemo’s win/lose record against the other tournament team.  

A tournament with 10 games against each team was chosen because it produced repeatable 

results.  Repeatability was demonstrated because a tournament with 100 games showed the same 

numbers multiplied by 10. This shows that the game results were highly repeatable.  The key 

metrics from the tournament is number of goals scored by SchemaDemo and the number of goals 

scored against SchemaDemo.  The win/lose/tie metrics are interesting, but do not give much 

input into true performance of the team because unless the teams are very mismatched games are 

typically very low scoring. One goal can make the difference between a win, a loss or a tie. 

SchemaDemo was chosen for initial implementation. The log file chosen for input into 

the learning algorithm had AIKHomo as West Side team against SchemaDemo as East Side 

team.  A single game was logged for use as observed, training data.  Interestingly, the log of one 

game in TeamBots proved to be larger in size than the log files used in prototypes 1 and 2 
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combined.  A sample of a single time period is shown in Appendix G.  Table 7-3  describes the 

data available in the log at each time-step. 

Table 7-3  Logged Data Types for each Time-step 

Data Element Sub Element Type Range 

Simulation time  Integer 

milliseconds 

 

Player Information at 

start of time-step – 

Available for all 10 

players  

 Complex – 

following 

SubElements 

 

 Side Enumeration East or West 

 Number Integer  0 to 4 

 State Data Descriptive String  

 Position x Double -1.37 to 1.37 

 Position y Double -0.76 to 0.76 

 Heading Double  π to - π 

 Speed Double  0 to 1.0 

Ball Position x  Double -1.37 to 1.37 

Ball Position y  Double -0.76 to 0.76 

Ball Heading  Double  π to - π 

Player Information at 

end of time-step. East 

side only 

   

 Number Integer 0 to 4 

 State Data Descriptive String  

 Heading Double  π to - π 

 Speed Double  0 to 1.0 

 Kicked Boolean True or False 

 

7.1.2 Situation and Action Vector Specification 

Next, the contents of the Situation class and possible Actions were determined. Table 7-4 shows 

the data elements used to form the Situation class.  All of the information is available from or is 

computable from the information in the log file and from the sensors provided to each team 

member at run-time.  Note that not all the information available in the log file was available at 

run-time.  For example, the positions of the ball, teammates, and opponents can be determined at 

run-time.  However, their heading and speeds are not available at run-time.  Therefore, these data 
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were not used as part of the situation vector.  Table 7-5 list the elements of the action vector.  In 

this simulation, the action vector a data structure consisting of three data elements.  These 

elements correspond to the commands given to the robot in each time-step of the simulation. 

Table 7-4  TeamBots Prototype Situation Vector Data Elements 

Element Name Description Data Type 

myPosition x, y coordinates of this team member double, double 

playerNum The player number assigned to this team member integer 

teammates[4] An array containing the x,y coordinates of each team 

member 

Array of 4 double, 

double 

opponents[5] An array containing the x,y coordinates of each opponent 

team member 

Array of 5 double, 

double 

ballPosition The x,y position of the ball double, double 

ballAngle A computed angle from this team member to the ball. double 

isBehindBall A computed true/false indicating whether team member is 

currently behind ball. 

boolean 

 

Table 7-5  Action Class Data Elements 

Element Name Description Data Type 

steerHeading Heading of the robot.  Floating point value between 0 and 2π. 

Angle of 0 is due east. 

double  

speed Speed of the robot.  Floating point value between 0 and 1.0 

where 1.0 is the full speed of the robot and 0 is full stop. 

double 

kick Request for robot to kick. boolean 

 

7.1.3 Contextualization 

Before modifying the Trainer class for the TeamBots log file, identification of contexts in the 

observed team was required.  SchemaDemo was chosen because of the straight-forwardness of 

the observed team’s behavior.  Players 1 to 4 attempt to place themselves in a position behind the 

ball moving towards the opposite goal.  Player 0 stays in the goal box protecting the goal unless 

the ball approaches.  When a ball approaches, player 0 will move away from goal to kick ball 

back away from the protected goal.  Players 1 to 4, which are the offensive players have two 

basic contexts.  
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 If they are already in position behind the goal, they continue to move to the ball at an 

angle that will take both into the opposition goal in order to score.   

 If the ball is in front of the player, they attempt to move into position behind the ball 

without accidentally striking it in the wrong direction.   

This results in two contexts for the offensive player, MOVE_TO_BALL and 

GET_BEHIND_BALL.  Player 0 or the goalie has a single additional context, 

MOVE_TO_BACKFIELD.  These three contexts were used for the observed parsing of the log 

file.    The Goalie will also use the GET_BEHIND_BALL context when the ball is very close to 

the goal.  Figure 7-2 and Figure 7-3  show the contexts initially chosen for the prototype. 

 

Mission:

Field player

Context:

Get Behind Ball

Context:

Go to ball

Begin

 

Figure 7-2  Context for Field Player 
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Mission:

Goalie

Context:

Get Behind Ball

Context:

Move To Backfield

Begin

 

Figure 7-3  Contexts for Goalie 

7.2 Learner Module 

The algorithm of the Trainer class had to be modified slightly because of the continuous nature 

of TeamBots. The continuous movement meant that the context and positions in St-1 were not 

necessarily related in any way to St, as they were in the two previous prototypes.  The observer 

module supported the change by showing initial positions in each time-step followed by resulting 

actions. Figure 7-4 shows the modified training algorithm.  It was actually easier to implement 

than the either or the previous prototypes as the initial S for each time-step is directly associated 

with the actions to take.   For field players, context was determined by the position of the player 

being analyzed versus the position of the ball.  If the ball was between the player and the desired 

goal, the context was MOVE_TO_BALL.  If the ball was between the player and its own goal, 

the context was GET_BEHIND_BALL.  For the goalie, context defaulted to 

MOVE_TO_BACKFIELD unless the ball was between the player and the defended goal.  In that 

case, the context became GET_BEHIND_BALL.   

Unfortunately, the behavior maps produced by the initial run of the Trainer class were so 

large that when used by the run-time agents, the simulation ran painfully slow.  In an attempt to 

alleviate this issue, additional contexts were added.  The new contexts take the two initial 
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contexts of MOVE_TO_BALL and GET_BEHIND_BALL and create two contexts for each 

player number.  The resulting contexts are listed in Figure 7-5.  The behavior maps generated 

with these contexts were used as input to the initial run-time agents.  To determine the context, 

player number was added to the observed criteria. 

 

Figure 7-4 Training Algorithm for TeamBots Prototype 

The observed team required less than 2 ms to process all five players.  The two milliseconds 

actually included both teams and the simulation of the ball and robot hardware.  Even when the 

additional contexts were added, this time was still an average of 54 milliseconds indicating that 

COLTS required nearly 52 ms to run.  This increased execution time is a direct result of the size 

of the behavior maps.  It is also far above the goal of less than 20 milliseconds.   
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Figure 7-5 Final SchemaDemo Contexts 

The Trainer class always prevents exact duplicate situations from being added to the behavior 

maps to prevent excessive comparisons at run-time.  However, because so many of the data 

elements in the Situation class are floating point types, it is highly unlikely that exact duplicates 

exist.  It is much more likely that Situation classes are differentiated by very small decimal 

points.  So the training algorithm was redone to not just eliminate exact duplicates, but to also 

eliminate very similar duplicates.  Similar duplicates are determined by running the k-nearest 

neighbor algorithm with weights of 1.0 for all elements.  The results are compared against a 

constant value called SIMILAR.  If the value returned by the k-nearest neighbor algorithm is less 

than SIMILAR, the two situations are deemed similar and the new similar Situation is not added 

to the behavior map.  Behavior maps were developed for several different values of SIMILAR.   

Action vectors were created by parsing the log file for the actions taken at the end of the 

time-step.  The values read include heading, speed, and whether or not to kick.  Because the 

actions were paired with the observed situation data in the log file, the need to compare to 

situation vectors at adjacent times was eliminated in this prototype. 

7.3 Run-Time Module 

The run-time modules consist of the agent implementation and the contextually-weighted k-

nearest neighbor implementation.  These are described in the following sections. 
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7.3.1 Agent Implementation 

While the basic structure of the COLTS run-time agents from the previous prototypes was an 

excellent starting point, it was necessary to make some changes to the COLTS agents for 

TeamBots.  Because of the continuous vs. discrete nature of TeamBots, it cannot be assumed that 

the context from the previous time-step is still the valid context.  Like the other prototypes, the 

first step in the agent is to build its current Situation vector based on information from sensors.  

A necessary additional step is to determine the current context.  A variety of techniques were 

considered, including using a type of behavior map that returns a context rather than a behavior.  

However, since context is primarily determined by two variables, player number and angle to 

ball, a decision tree was used to determine context.  Although not automated, this is the fastest-

executing way to determine context.  Execution time is a very strong constraint in this simulation 

so automation was sacrificed for speed.   

 

Figure 7-6 TeamBots CCxBR Agent Algorithm 

Finally, the agent determines its appropriate action in its current context using the behavior map 

for that context.  Figure 7-6 shows the algorithm of the decision tree for the COLTS agent used 

to determine context. Figure 7-7 shows a UML class diagram of the COLTS agents designed to 

play as a team in TeamBots.    The class diagram shows a lot of similarities to the previous 

prototypes.  The primary differences are in the names of the contexts instantiated by the 

TeamContext class and of course, the data used in the Situation class representing the state 
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vector. Figure 7-8 shows where this team fits into the TeamBots simulation block diagram.  The 

COLTS run-time agents replace the East Team originally represented by SchemaDemo. 

 

 

 

Figure 7-7  TeamBots Prototype Run-time Agent UML 
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Figure 7-8 TeamBots Block Diagram with COLTS team 

 

7.3.2 Contextually-weighted k-Nearest Neighbor Algorithm 

Once the behavior maps were populated by the training algorithm and the run-time agents were 

in place, the next step was to develop the weights for the contextually weighted k-nearest-

neighbor algorithm.  Although there are a total of ten possible contexts for the agents, the 

contextual weighting is divided into three categories.   
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1. The first category is the goalie category and includes only the context MOVING_0.  The 

behavior of this particular player was different enough to warrant its own context.   

2. The second category is the moving category.  This includes the MOVING_1, 

MOVING_2, MOVING_3 AND MOVING_4 contexts.  The behavior of these players 

when behind the ball is similar enough to warrant the same weights. 

3. The third and final category is the get_behind category.  This includes all the 

GET_BEHIND_# contexts.  Like the moving category, the behavior of all the players 

when trying to get behind the ball is similar enough to warrant identical weights.  

  As with the previous prototypes, the weight vector was determined through trial-and-

error experimentation.  In this case, the experimentation criteria used was a game against the 

AIKHomoG team. This team was chosen as the opponent team because it was the opponent in 

the training data.  The final weights shown in Table 7-6 had the best performance against this 

team in the final prototype. 

Table 7-6  Final Contextually-based Weights 

Data Element Name MOVING_0 

weight 

MOVING 

weight 

GET_BEHIND 

weight 

MY_POSITION_WEIGHT   1.0 1.0 1.0 

TEAMMATE1_WEIGHT 0.0 0.1 0.1 

TEAMMATE2_WEIGHT 0.0 0.1 0.1 

TEAMMATE3_WEIGHT 0.0 0.1 0.1 

TEAMMATE4_WEIGHT 0.0 0.1 0.1 

OPPONENT1_WEIGHT 0.0 0.0 0.0 

OPPONENT2_WEIGHT 0.0 0.0 0.0 

OPPONENT3_WEIGHT 0.0 0.0 0.0 

OPPONENT4_WEIGHT 0.0 0.0 0.0 

OPPONENT5_WEIGHT 0.0 0.0 0.0 

SIDE_WEIGHT 0.0 0.0 0.0 

BALL_WEIGHT 1.0 0.5 1.0 

TEAMSTATE_WEIGHT 0.0 0.0 0.0 

BEHIND_BALL_WEIGHT 0.0 1.0 0.0 

BALL_ANGLE_WEIGHT 2.0 1.0 2.0 

PLAYER_NUM_WEIGHT 1.0 1.0 1.0 
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7.4 Results and Conclusions 

The following sections describe the criteria for evaluating the COLTS TeamBots team and the 

results of the experimentation.  In addition, some changes to the initial team made to improve 

performance and execution time are described. 

7.4.1 Criteria for Evaluation 

In order to evaluate the success of the COLTS team, a tournament was run against the same 

opponents that SchemaDemo played when evaluating which team to observe.  Table 7-2 shows 

SchemaDemo’s performance against the various opponents.  The two most important data 

elements in this evaluation are total points scored by SchemaDemo and total points scored by 

opponents.  The first shows the effectiveness of the transfer of offensive behavior and the second 

the effectiveness of the defensive behavior.  Since this prototype is designed to stress the COLTS 

system, some criteria for partial success was also needed.  To serve as such criteria, two 

additional tournaments were held.  One replaced the COLTS team with a team that simply 

remained in their initial positions.  The second replaced the COLTS team with a team of players 

that moved randomly.  The results of these tournaments are shown in Table 7-7 and Table 7-8.  

The points scored by the non-moving team were actually the result of the opponent team playing 

particularly badly.   The random team saw the opponents score even more points than the non-

moving team.  This is probably based upon the fact that one of the non-moving team members 

was always in goalie position which prevented some goals simply by serving as an obstacle. 

In addition to the performance criteria, the COLTS TeamBots team had a limited time in 

which to execute.  Although the total time between execution of each agent is 50 ms, this time 

allotment must be divided between both teams and the time to run the ball simulation and update 

the GUI.  Fortunately, the current execution of the simulation elements on an Intel Core i7 2.67 
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GHz processor running Windows Vista takes less than 1 ms, but it seemed reasonable to allot 

20% of the available time to the simulation itself for a total of 10 ms so that the simulation can 

run on slower processors.  That leaves 40 ms to divide evenly between the two teams for a total 

of 20ms each.   

Table 7-7  Tournament Results for Non-moving Team 

Opponent Opponent 

Wins 

Non-

Moving 

Wins 

Ties Opponent 

Total 

Points 

Non-Moving 

Total Points 

AIKHomoG 10 0 0 356 0 

CDTeamHetero 10 0 0 165 0 

MattiHetero 10 0 0 197 2 

DaveHeteroG 10 0 0 18 0 

DoogHeteroG 10 0 0 90 0 

FemmeBotsHeteroG 10 0 0 10 0 

JunTeamHeteroG 10 0 0 293 1 

Kechze 10 0 0 10 0 

PermHomoG 9 0 1 10 0 

Totals:    1149 3 

 

Table 7-8  Tournament Results for Random Team 

Opponent Opponent 

Wins 
Random 

Wins 
Ties Opponent 

Total Pts 
Random 

Total Pts 
AIKHomoG 10 0 0 361 0 

CDTeamHetero 10 0 0 234 0 

MattiHetero 10 0 0 405 0 

DaveHeteroG 10 0 0 90 0 

DoogHeteroG 10 0 0 280 0 

FemmeBotsHeteroG 10 0 0 15 0 

JunTeamHeteroG 10 0 0 271 2 

Kechze 10 0 0 525 0 

PermHomoG 10 0 0 125 0 

Totals:    2306 2 
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7.4.2 Initial Results 

The experimental results of the COLTS TeamBots prototype showed some partial success.  

However, it became clear that this approach is not well suited to the TeamBots simulation. The 

initial COLTS team was totally unrecognizable as the observed team.  The first team used 

behavior maps generated with  a SIMILAR value of 0.0.  The results were so bad that it did not 

seem worthwhile to even run a tournament to see if the team performed better than the randomly-

moving or stationary teams. 

7.4.3 Change in Approach 

7.4.3.1 Background 

This initial failure prompted a more in-depth review of Floyd, et al [2008] who successfully used 

a similar method for a single soccer player.  The review made it clear that Floyd, et al had 

limited the number of actions to a set of primitive behaviors.  This limitation is also a significant 

element of Bentivegna’s [2004] research.  Rather than attempting to tell his robotic arm which 

specific motors to turn and how much, Bentivegna created a set of primitive behaviors that were 

translated to specific angles and forces.  Floyd, et al [2008] did the same by creating a set of 

player behaviors such as dash or move towards ball, rather than attempting to learn specific 

angles and speeds for the player.  Since the research by both investigators was the inspiration for 

COLTS learning algorithm and behavior maps, a set of core behaviors was developed that 

reflected the behaviors of the observed SchemaDemo team. 

7.4.3.2 New Primitive Behaviors 

The new primitive COLTS TeamBots behaviors were developed based upon the state 

descriptions given to each player by the developer of the SchemaDemo code.  This description 

was part of the data in the log file.  In total, only three behaviors were needed to emulate the 
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SchemaDemo team.  These were MOVE_TO_BALL, GET_BEHIND_BALL, and 

MOVE_TO_BACKFIELD.  Code was written to implement each of these behaviors.  

 For MOVE_TO_BALL, the player moved toward the ball.  The steer heading 

was provided by a vector class named Vec2 that calculated the angle between the 

player and ball based on their current positions.  If the player was close enough 

the ball, it would kick towards the opposite goal.   

 The GET_BEHIND_BALL behavior chose a steer heading to place the player 

between the ball and their own defended goal.  If the ball was directly on that 

vector, the player would move around the ball. 

 The most complex of the primitive behaviors was MOVE_TO_BACKFIELD.  

This behavior was basically goalie behavior.  The player so instructed would 

move to a point slightly in front of and in the center of the defended goal.  If 

already in the defense position, the player would remain stationary. 

This change required that the behavior maps be retrained to accept an enumeration describing 

one of the three behaviors rather than the Action class developed to hold steer heading and 

speed.  The change was relatively easy and the behavior maps were retrained using the same 

original log data.   

7.4.3.3 Primitive Behavior Results  

The resulting behavior was visually quite similar to the observed SchemaDemo team.  However, 

the processing time for the COLTS prototype was significantly longer than the observed team.  

Table 7-9 show the tournament results for the too-slow COLTS team.  These results show that 

the COLTS team scores significantly more goals than the non-moving and random teams and the 

opposing teams score significantly less goals.  This indicates that the COLTS team did learn 
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some soccer playing skills.  However, Table 7-10 shows the differences between the tournament 

results of the observed team and the COLTS prototype.  Statistical analysis is not needed to show 

that the COLTS prototype did not effectively duplicate the SchemaDemo team.  The COLTS 

prototype did not win any games and while it did better than the non-moving team, the results 

did not approach that of the observed team. 

Table 7-9 Tournament Results for COLTS 

Opponent Op 

Wins 

COLTS 

Wins 

Ties Op 

Total 

COLTS 

Total 

AIKHomoG 10 0 0 159 0 

CDTeamHetero 7 0 3 37 14 

MattiHetero 6 0 4 18 1 

DaveHeteroG 7 0 3 16 3 

DoogHeteroG 10 0 0 147 8 

FemmeBotsHeteroG 9 0 1 43 1 

JunTeamHeteroG 8 0 2 69 32 

Kechze 10 0 0 80 10 

PermHomoG 2 0 8 3 0 

Totals:    572 69 

 

Table 7-10 Tournament Difference between SchemaDemo and COLTS 

Opponent Op 

Wins 

COLTS 

Wins 

Ties Op 

Total 

COLTS 

Total 

AIKHomoG 0 0 0 112 -8 

CDTeamHetero 6 -7 1 21 -23 

MattiHetero -4 0 4 -39 -6 

DaveHeteroG 2 -2 0 -7 -16 

DoogHeteroG 2 -1 -1 94 -24 

FemmeBotsHeteroG 3 -1 -2 24 -9 

JunTeamHeteroG 8 -10 2 65 -91 

Kechze 6 -5 -1 50 -26 

PermHomoG 1 -6 5 -9 -20 

Totals:    311 -223 
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Without additional training data, it is not possible to improve the scoring and defensive playing 

of the COLTS prototype team.  However, it is possible to improve the playing time.  Although 

the algorithm is optimized to run as quickly as possible, a very large behavior map will take 

significant time to compute.  Therefore, once performance was optimized as much as possible 

with the available training data, the various sets of behavior maps developed with different 

values of SIMILAR were tested. 

7.4.4 Execution Time Improvement 

The difference in execution time based on the value of SIMILAR can be seen in Figure 7-9.  

These data clearly show that there are quite similar Situation values in the original behavior 

maps.  The time to execute decreases sharply with a similar value of only 0.5 and continues to 

shrink until the difference between the values of 1.5 and 2.0 is indistinguishable.  This does not, 

however, address whether or not this shrinking of the behavior maps impacts performance. 

 

Figure 7-9  Impact of Training Changes on Execution Time 

The execution time at a SIMILAR value of 0.5 is nearly within the acceptable range at a value of 

27 ms.  The execution times with SIMILAR values at 0.75 and above are clearly within the 

69
59

108

0

20

40

60

80

100

120

0 0.5 0.75

m
ill

is
e

co
n

d
s

SIMILAR Values

Execution Time vs SIMILAR value

Points Scored



168 

 

desired range.  In order to determine if the performance was impacted by the smaller behavior 

maps, additional tournaments were performed with teams trained with the various SIMILAR 

values.  The most indicative results are those against the AIKHomoG team, since that is the team 

trained against.  The prototype trained with a SIMILAR value of 0.75 performed even better 

against AIKHomoG than the prototype trained with SIMILAR value of 0.0 and 0.5.  The 

performance at higher values of SIMILAR began to decline.   

Performance was determined by the net difference in goals scored and goals scored 

against the prototype team.  The observed SchemaDemo team scored a total of 8 goals against 

AIKHomoG and gave up 47 goals.  The too-slow COLTS prototype trained with SIMILAR 

value = 0 scored no goals and gave up 159 goals.  The COLTS prototype trained with SIMILAR 

value = 0.75 scored no goals, but only gave up 143 goals.  The change is small but significant.  

 

Figure 7-10  Performance Changes 

Figure 7-10 shows how the performance against AIKHomo changed with the different values of 

SIMILAR.  The performance is defined as the sums of the difference in points scored and points 

given away.  The better performance at values of SIMILAR at 0.75 and 1.0 is seen in this graph. 
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7.4.5 Final Results 

A value of SIMILAR = 0.75 was chosen as the final value for use.  The final tournament results 

of the prototype trained with SIMILAR = 0.75 is shown in Table 7-11.  Although a SIMILAR 

value of 1.0 performed well with AIKHomoG, values of SIMILAR above 0.75 showed a 

decrease in performance with the other teams.  So, SIMILAR = 0.75 was chosen as the optimal 

value for both execution time and performance. 

Table 7-11  Tournament Results for Prototype with SIMILAR = 0.75 

Opponent Op 

Wins 
COLTS 

Wins 
Ties Op 

Total 
COLTS 

Total 

AIKHomoG 10 0 0 143 0 

CDTeamHetero 10 0 0 79 28 

MattiHetero 9 0 1 24 1 

DaveHeteroG 7 0 3 17 2 

DoogHeteroG 10 0 0 152 6 

FemmeBotsHeteroG 10 0 0 66 2 

JunTeamHeteroG 5 2 3 76 54 

Kechze 9 1 0 126 15 

PermHomoG 6 0 4 9 0 

Totals:    692 108 

 

7.5 Conclusions 

The results of the COLTS TeamBots prototype show that the COLTS learning algorithm and 

run-time behavior function have limitations.   The large number of possible situations and 

actions in the game makes it difficult to create behavior maps of a small enough size to run 

within the time limits of the game.  The execution time is linked to the size of the situation vector 

and the size of the behavior map.  In order to find the best match within the behavior map, each 

situation vector stored in the map is compared to the current situation using the contextually-

weighted k-nearest-neighbor algorithm.  The size of the situation vector determines how many 



170 

 

calculations are done for each entry, and the size of the behavior maps determine how many 

times the algorithm is run.  The results also show that a too small behavior map results in 

suboptimal performance of the prototype team.  It was clear that it is not possible to create a 

large enough behavior map to accurately recreate the behavior of the observed team in this 

domain.  The behavior maps only partially recreated the behavior of the observed team.  The 

only way to get a team with better skills would be to include training data from several games 

against different opponents, as was done in the Pursuit-Evasion prototype.  That training data 

included a total of 150 games with 15 different starting positions.  However, the size of the 

training data for a TeamBots game is significantly larger and it would be unlikely that the size of 

the behavior map would be small enough to allow execution of the contextually-weighted k-

nearest-neighbor algorithm within the allotted execution time. 

 Another issue with the TeamBots prototype was the difficulty in identifying contexts of 

the various teams.  As the tournament shows, a variety of teams were available to test against, 

but very few of them had contexts or even repeatable primitive behaviors that were obvious 

simply by observing the players visually or through the log files.  It is possible that the use of an 

expert during the contextualization would have enabled the development of usable contexts for 

the AIKHomo team which was more sophisticated than SchemaDemo.  SchemaDemo, the team 

finally selected for imitation, was easily contextualized, but that was because of the simplicity of 

the implementation.  Contextualization of this team was almost a break-down into the primitive 

behaviors.  So while there was some success in duplicating the behaviors of the SchemaDemo 

team, the implementation took significantly longer to execute and required a great deal more 

memory than the observed implementation.  So while it is possible to duplicate behavior to some 
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extent using this technique on TeamBots and similar simulations, it simply does not make sense 

to do so.   
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

This chapter gives a brief summary of the research presented in this dissertation, followed by 

conclusions about the work.  The final section offers recommendations for future uses of 

COLTS, and discusses possibilities for future studies. 

8.1 Summary 

This dissertation presented a semi-automated method of learning collaborative behavior via 

observation.  The hypothesis is that the combination of a multi-agent framework designed to 

promote effective teamwork with a proven single-entity learning-by-observation method would 

prove successful in learning effective collaborative behavior.  Before beginning the experiment, 

it was necessary to choose a multi-agent framework and one or more learning-by-observation 

methods to combine into COLTS. 

Psychological studies about the nature of teamwork and what makes teams effective were 

reviewed to lay a solid foundation for this work.  This study showed that most effective teams, 

regardless of type or task, had a shared mental model.  The shared mental model of an effective 

team included information about the goals of the team and the role of each team member.  This 

psychological model is reflected in Joint Intention Theory [Cohen & Levesque, 1991].  JIT is a 

group of definitions and theorems that represent one of the dominant theories on modeling 

collaborative behavior.  One of the main ideas of JIT is that all members of a team must share a 

common view of the goals of the team. So in order to effectively learn collaborative behavior, 

the agent framework used must be capable of accurately representing collaborative behavior by 

implementing a theory such as JIT.  Members of an effective team must also be capable of 

performing and understanding their individual tasks and goals in addition to the commonly 

shared goals.  So an agent framework was needed to effectively provide elements of JIT and be 
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able to accurately model individual behavior as well.  Collaborative Context-based Reasoning 

(CCxBR) was chosen as the paradigm used for the multi-agent framework.  CCxBR has been 

shown to have the ability to successfully implement effective and efficient modeling of 

collaborative behavior. [Barrett, 2007]   It is also an extension of the single-agent paradigm 

Context-based Reasoning. [Gonzalez, et al, 2008]  Context-based Reasoning has been used to 

effectively model and simulate human behavior in a number of applications. 

 Once CCxBR was chosen as the framework for the multi-agent team, it was necessary to 

develop a learning-by-observation technique that is able to scale from a single-entity to a team of 

entities.  Ideally, the technique would scale linearly in terms of memory use and processing time.  

A variety of techniques in learning-by-observation and learning-by-demonstration were 

reviewed.  The ultimate choice for a learning-by-observation method was inspired by case-based 

reasoning techniques [Floyd, et al, 2008] and robotic learning-by-demonstration memory-based 

policies. [Bentivegna, 2004] Behavior maps perform the same function in COLTS as 

Bentivegna’s [2004] memory-based policy and Floyd, et al’s [2008] case-base.   If used as is, 

this technique would result in a single behavior map being developed for each team member.   

However, since CCxBR breaks the problem into contexts, the decision was made to create a 

behavior map for each context.   Because some contexts are shared by multiple agents, the 

number of behavior maps created had the potential to be less than the number of behavior maps 

used by one agent multiplied by the number of team members. 

 In order to test the effectiveness and adaptability of COLTS, three separate prototypes 

were developed.  The first prototype learned the behavior of a simulated bucket brigade.  While 

not a particularly difficult task to simulate because of limited behaviors and few possible 

situations, the bucket brigade provided an excellent test bed for developing an implementation of 
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CCxBR and the learning algorithm in Java.  The COLTS prototype bucket brigade was able to 

successfully duplicate and generalize the behavior of the observed team, including collaborative 

efforts such as handing a bucket from one member to another. 

The second prototype of a pursuit-evasion game actually proved that COLTS is capable of 

effectively imitating the individual and collaborative behavior of a team.  COLTS was able to 

effectively imitate the behavior of the four-man pursuit team in situations matching those trained.  

The prototype statistically matched the win ratio of the 15 trained situations and 15 non-trained 

situations.  Matching was defined as being within the 95% confidence interval when a chi-square 

statistical test was performed between the observed and prototype win ratios.  In addition, the 

prototype was able to generalize the behavior of the team as well in a series of tests against a 

smarter evader.  When the same 30 situations were run against the smarter evader, only 28 of the 

30 were able to pass the chi-square test within the 95% confidence interval. However, this still 

represents an excellent generalization of the behavior learned. 

The third prototype, on the other hand, showed that COLTS does have limits and is not an 

appropriate method for some types of simulations with a very large number of possible situations 

and actions.  The TeamBots simulation of RoboCup’s small-size robot league was used as the 

basis of this prototype.  A previously developed team was used as the observed team.  This 

simulation differed greatly from the ones used in the previous prototypes in a number of ways.  

First, this simulation was continuous.  The movement of the robots and the ball was modeled 

even when the control system was not called 

The five-man teams also represented a much larger set of state data to track in each time-

step as well.  In addition to a larger set of state data, the number of possible values of each piece 

of data was much larger as well.  The time allowed to run each time-step was also significantly 
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smaller than the previous simulations because of the continuous nature of the simulation.  This 

prototype was intended to stress the COLTS algorithm and find the algorithm’s weaknesses.  It 

certainly succeeded in that task.  Some behavior was duplicated, but the COLTS prototype team 

was not able to accurately duplicate the observed team’s behavior or meet the time constraints.  

This does not represent a reason to dismiss COLTS.  Argall, et al [2009] noted in their survey of 

learning by demonstration that continuously modeled systems typically used a different approach 

to learning than discretized systems.   The failure of prototype 3 does indicate that the algorithm 

has limitations in the continuous domain, and additional work is needed to expand it for use on 

such applications.   

8.2 Conclusions 

The experiments showed once again that the CCxBR paradigm is effective as a teamwork 

framework and provided an excellent implementation of CCxBR in the Java language.  This 

framework could quite easily be adapted for use with a different type of behavior function.  The 

behavior maps were the cause of the timing issues of the TeamBots prototype, not the agent 

framework.  However, better contextualization of the observed team could also reduce the 

amount of time needed to process the behavior map as well.  CxBR, the basis of CCxBR, has 

been shown to work well with a variety of different types of behavior functions [Fernlund, 2004] 

[Fernlund, et al, 2009] [Gonzalez, et al, 2002] [Gonzalez, et al, 2008] [Stensrud & Gonzalez, 

2008] so CCxBR should have the same capability.  To date, Barrett [2007] has shown it works 

with hard-coded functions and COLTS has shown it to work with behavior maps. 

 Behavior maps have been shown to be an effective and efficient behavior function in 

discrete time-stepped simulations with a limited number of possible situations such as the bucket 

brigade.  The pursuit-evasion game showed that it can be effectively used when a much larger 
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number of possible situations exist when contextualization is properly used to break the task 

down.   However, TeamBots showed that without appropriate contextualization, an infinite 

number of possible situations will make behavior maps virtually unusable.  

 The main contribution of this dissertation is a novel approach to learning collaborative 

behavior via observation.  In conjunction with CCxBR agents, behavior maps proved an 

effective technique for capturing behavior from one team to another.  Although only simulated 

teams were used as input in this dissertation, the approach could work just as well for learning 

collaborative human behavior, provided that the observer module was modified to capture 

human behavior as well.  In addition, a new, generic implementation of the CCxBR framework is 

provided as part of this approach.  The source code used for each of the prototypes is provided in 

the appendices of this dissertation.  While each prototype is presented separately, inspection of 

the run-time portion reveals a great deal of code reuse from prototype to prototype.  This code 

could quite easily be adapted for another COLTS prototype or used with another type of 

behavior functions. 

8.3 Future Work 

The most obvious need for additional work revealed by this dissertation is the need for an 

effective algorithm to automatically provide contexts both for the individual team members and 

the teams.  Several possible approaches to the problem are worth pursuing.  The first possible 

approach would be the expansion of the work done by Trinh [2009] in automatically determining 

context for a single-entity into teamwork.  The second possible approach would be the expansion 

of work into teamwork pattern recognition. [Luotsinen, et al, 2007] [Sukthankar, et al, 2006]  

There is, of course, always the possibility of a hybrid of the two methods. 
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 In addition to contextualization, the other area done manually in this investigation that 

could be automated would be the determination of weights for the contextually-weighted k-

nearest-neighbor algorithm.  There has been some work into using genetic algorithms to 

automatically determine weights in a k-nearest-neighbor algorithm. [Floyd, et al, 2008] This 

work could be expanded for use into the algorithm used by COLTS providing that a fitness 

function could be developed that would test only for a particular context. 

 Since the learning algorithm of COLTS was unable to effectively reproduce the behavior 

in the TeamBots, another avenue for future work would be to use an on-line learning algorithm 

to improve a behavior map after the initial off-line observation and learning.  A reinforcement 

algorithm able to improve the entries in the behavior map so that more effective behaviors were 

stored could improve the behavior of the team significantly.  This would be comparable to the 

work done with FALCONET [Stein, 2009] where a task was initially learned from observation 

and the performance improved upon using experiential and instruction learning techniques.  This 

type of learning could be used even in cases where behavior was adequately learned to make the 

team even better.  For example, the pursuit-evasion team imitated in prototype 2 was most 

ineffective when the starting positions of the pursuers were far away from the initial position of 

the evader.  A reinforcement algorithm could be used to develop a more efficient search 

algorithm for the pursuit team than the observed team had. 
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APPENDIX A – BUCKET BRIGADE TRAINER CLASS 
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Trainer.java 

package Training; 

// main class for training algorithm for bucket brigade 

import Common.Constants; 

import Common.Situation; 

 

 

import java.io.BufferedReader; 

import java.io.EOFException; 

import java.io.FileReader; 

import java.io.FileOutputStream; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

 

import java.io.ObjectOutputStream; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

import java.util.Vector; 

 

 

public class Trainer implements Constants 

{ 

 private BufferedReader in; 

 private String logName = null; 

 private List<Map<Situation, Actions[]>> maps = new ArrayList<Map<Situation, 

Actions[]>>(); 

 private Vector[] trainingData = new Vector[11]; 

   

 

 public Trainer(String fileName) 

 { 

   

     logName = fileName;  

   try 

  { 

  // open file for reading 

   in= new BufferedReader(new FileReader(logName)); 

  } 

  catch (Exception ex) 

  { 
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   System.out.println("Error opening log file"); 

   ex.printStackTrace(); 

  } 

   

  //create a hash map for each context 

  for (int i=0; i<= 10; i++) 

  { 

   maps.add(new HashMap<Situation, Actions[]>()); 

   trainingData[i] = new Vector(); 

  } 

 

 } 

 

 public void createHashMaps() 

 { 

   

  

  Situation previous = new Situation(); 

  Situation current = new Situation(); 

  

  Actions previousActionTaken = Actions.NONE; 

  Actions actionTaken = Actions.NONE; 

  // process 1 agent at a time - so we'll be iterating through 

  // the file multiple times 

  for (int j=0; j<=numberNodes; j++) 

  { 

   // reset file to beginning 

   try 

   { 

    in.close(); 

    in= new BufferedReader(new FileReader(logName)); 

    // looking for agent j 

    // create two situations - previous and current 

     

     

    // need initial previous context 

    // first line should be sim time and buckets moved 

    String timeLine = in.readLine(); 

    // get sim time from parsing the line 

    String[] splits = timeLine.split("\t"); 

     

    int simTime = Integer.parseInt(splits[1]); 

    

    

    // second line is number buckets at source 

    String numBucketString = in.readLine(); 
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    splits = numBucketString.split("\t"); 

    int bucketsAtSource = Integer.parseInt(splits[1]); 

     

    // third line is number buckets at sink 

    numBucketString = in.readLine(); 

    splits = numBucketString.split("\t"); 

    int bucketsAtSink = Integer.parseInt(splits[1]); 

    previous = new Situation(); 

    // now agents 

    for (int i=0; i<=numberNodes; i++) 

    { 

     String agentLine = in.readLine(); 

      

     // read line if i==j parse 

     if (i==j) 

     { 

      

      AgentInfo info = getSituation(agentLine, i); 

      info.situation.nodeNum =i; 

      previousActionTaken = info.action; 

      // place in current situation 

      previous.agentStates[i] = info.situation.myState; 

      previous.myState = info.situation.myState; 

      previous.messageRecvd = 

info.situation.messageRecvd; 

      previous.messageSent=info.situation.messageSent; 

       

      previous.bucketsAtSink = bucketsAtSink; 

      previous.bucketsAtSource = bucketsAtSource; 

      previous.nodeNum = i; 

      if (i==0) 

      { 

       previous.isSourceNode=true; 

      } else if (i==numberNodes) 

      { 

       previous.isRunnerNode = true; 

      } else if (i== (numberNodes-1)) 

      { 

       previous.isSinkNode = true; 

      } 

      

     } 

     else 

     { 

       

      AgentInfo tempInfo = getSituation(agentLine, i); 
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      // just want agent state if one node ahead or behind 

current node 

      if (i==(j-1)  || i==(j+1))  

      { 

       previous.agentStates[i] = 

tempInfo.situation.agentStates[i]; 

      } 

     } 

    } 

    // done with first entry - train with any possible action 

    Actions[] prevActions = new Actions[1]; 

    prevActions[0] = previousActionTaken; 

    trainHashMap(previous, prevActions); 

     

    // loop until EOF 

    do 

    { 

    // first line should be sim time and buckets moved 

    timeLine = in.readLine(); 

    // get sim time from parsing the line 

    splits = timeLine.split("\t"); 

     

    simTime = Integer.parseInt(splits[1]); 

    

    

    // second line is number buckets at source 

    numBucketString = in.readLine(); 

    splits = numBucketString.split("\t"); 

    int sourceBuckets = Integer.parseInt(splits[1]); 

     

    // third line is number buckets at sink 

    numBucketString = in.readLine(); 

    splits = numBucketString.split("\t"); 

    int sinkBuckets = Integer.parseInt(splits[1]); 

    current = new Situation(); 

    // now agents 

    for (int i=0; i<=numberNodes; i++) 

    { 

     String agentLine = in.readLine(); 

      

     // read line if i==j parse 

     if (i==j) 

     { 

       

      AgentInfo info = getSituation(agentLine, i); 

      info.situation.nodeNum =i; 
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      actionTaken = info.action; 

      // place in current situation 

      current.agentStates[i] = info.situation.myState; 

      current.myState=info.situation.myState; 

      current.nodeNum =i; 

      current.messageRecvd = 

info.situation.messageRecvd; 

      current.messageSent = info.situation.messageSent; 

       

      current.bucketsAtSink = sinkBuckets; 

      current.bucketsAtSource = sourceBuckets; 

      if (i==0) 

      { 

       current.isSourceNode=true; 

      } else if (i==numberNodes) 

      { 

       current.isRunnerNode = true; 

      } else if (i== (numberNodes-1)) 

      { 

       current.isSinkNode = true; 

      } 

     } 

     else 

     { 

      AgentInfo tempInfo = getSituation(agentLine, i); 

      // just want agent state if one node ahead or behind 

current node 

      if (i==(j-1)  || i==(j+1))  

      { 

       current.agentStates[i] = 

tempInfo.situation.agentStates[i]; 

      } 

       

     } 

    } 

     

    // gotten all info from file- process current vs 

    // previous 

    if (previous.agentStates[j] == current.agentStates[j]) 

    { 

     // previous context is the same as this one 

     current.timeInContext = previous.timeInContext+1; 

     //need new situation to blend previous and current 

      

     Situation trainingSituation = new Situation(current); 

     // make sure node+1 is last state and not transition 
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     if (!trainingSituation.isRunnerNode) 

     { 

      trainingSituation.agentStates[j+1] = 

previous.agentStates[j+1]; 

      trainingSituation.messageRecvd = 

previous.messageRecvd; 

     } 

     trainingSituation.bucketsAtSink = previous.bucketsAtSink; 

     Actions[] trainedActions = new Actions[1]; 

     trainedActions[0] = actionTaken; 

     trainHashMap(trainingSituation, trainedActions); 

      

    } 

    else 

    { 

     // new context - add transition to this context to 

     // previous actions and train 

     current.timeInContext = 0; 

     // previous actions include only previousActionTaken 

      

     Actions[] trainedActions = new Actions[2]; 

     trainedActions[0] = actionTaken; 

      

      

     trainedActions[1] = findTransition(current.agentStates[j]); 

        Situation trainingSituation = new Situation(current); 

        trainingSituation.agentStates[j] = previous.agentStates[j]; 

        trainingSituation.timeInContext = previous.timeInContext+1; 

        trainingSituation.myState= previous.myState; 

        if (!trainingSituation.isRunnerNode) 

     { 

      trainingSituation.agentStates[j+1] = 

previous.agentStates[j+1]; 

      trainingSituation.messageRecvd = 

previous.messageRecvd; 

     } 

        trainingSituation.bucketsAtSink = previous.bucketsAtSink; 

     trainHashMap(trainingSituation, trainedActions); 

      

     

    } 

     

    previous = current; 

    previousActionTaken = actionTaken; 
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   } while (true); 

     

   }   // end try 

   catch (EOFException endOfFileException) 

   { 

    // done with this agent =  

    // go on to the next one 

    System.out.println("Finished with an agent-EOF"); 

   } 

   catch (Exception ex) 

   { 

    //ex.printStackTrace(); 

    System.out.println("Finished with an agent"); 

   } 

  }  // end for (j) 

   

  // done with agents 

  // save policies to files 

  savePoliciesToFile(); 

   

   

 } 

  

  

 private void trainHashMap(Situation situation, Actions[] actions) 

 {    

  HashMap<Situation, Actions[]> myMap = null; 

  Vector myVector = null; 

  boolean mismatch = false; 

   

  // get map based on context 

  int index = situation.myState.ordinal(); 

   

   

  myMap = (HashMap<Situation,Actions[]>)maps.get(index); 

  TrainingInfo data = new TrainingInfo(); 

  data.action = actions; 

  data.situation = situation; 

  

  myVector = trainingData[index]; 

  Set set= myMap.keySet () ;  

    

  //obtain an Iterator for Collection 

  

  Iterator itr = set.iterator(); 
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  //iterate through HashMap values iterator 

  boolean found = false; 

  while(itr.hasNext()) 

  {   

    

   Situation latestKey = (Situation)itr.next(); 

   // check to see if this situation exists in map already 

   if (latestKey.equals(situation)) 

   { 

    found = true; 

    System.out.println("Got a matching situation"); 

    // check to see if actions map 

    Actions[] savedActions = (Actions[])myMap.get(situation); 

    // first check for size map 

    if (savedActions.length == actions.length) 

    { 

     for (int i =0; i< actions.length; i++) 

     { 

      if (savedActions[i] != actions[i]) 

      { 

       mismatch = true; 

       break; 

      } 

     } 

    } 

    else 

    { 

     // mismatch in actions 

     mismatch = true; 

    } 

    // we have mismatch or duplicate mark appropriately 

    if (mismatch) 

    { 

     // get entry from myVector and increment count 

     System.out.println("GOT A MISMATCH"); 

      

    } 

   

   } 

  } 

  if (!found) 

  { 

   // this is first time for this situation so just add to map 

   myMap.put(situation, actions); 

  } 
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 } 

  

 private Actions findTransition(States newState) 

 { 

  Actions action = Actions.NONE; 

  switch (newState) 

  { 

  

  case GRABBING: 

   return Actions.TRANS_GRABBING; 

  case DIPPING: 

   return Actions.TRANS_DIPPING; 

  case TURNING_TO_HAND: 

   return Actions.TRANS_TURN_HAND; 

  case HANDING: 

   return Actions.TRANS_HANDING; 

  case TURNING_TO_GRAB: 

   return Actions.TRANS_TURN_GRAB; 

  case DUMPING: 

   return Actions.TRANS_DUMPING; 

  case WAITING: 

   return Actions.TRANS_WAITING; 

  case RETURNING: 

   return Actions.TRANS_RETURNING; 

  case DUMPING_BUCKETS: 

   return Actions.TRANS_BUCKET_DUMP; 

  case RETURNING_TO_SINK: 

   return Actions.TRANS_RETURN_SINK; 

    

  } 

   

  return action; 

 } 

  

 private AgentInfo getSituation(String agentLine, int nodeNum) 

 { 

  AgentInfo newSituation = new AgentInfo(); 

  newSituation.situation = new Situation(); 

  String[] splits = agentLine.split("\t"); 

  // get state 

  States state = convertStringToState(splits[1]); 

   

  // get action taken 

  newSituation.situation.agentStates[nodeNum]= state; 

  

  newSituation.situation.myState = state; 
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  newSituation.action = convertStringToActions(splits[2]); 

   

  // get message Sent 

  newSituation.situation.messageSent = convertStringToBoolean(splits[3]); 

  if (newSituation.situation.messageSent) 

  { 

   newSituation.action = Actions.TAKE_BUCKET; 

  } 

   

  // get message received 

  newSituation.situation.messageRecvd = convertStringToBoolean(splits[4]); 

   

   

   

   

   

  return newSituation; 

 } 

    

  

  

 // Method to convert logged state string to actual state 

    private States convertStringToState(String state) 

    { 

     States newState = null; 

        

     if (state.equals("GRABBING")) 

     { 

      return States.GRABBING; 

     } 

     else if (state.equals("DIPPING")) 

  { 

      return States.DIPPING; 

  } 

     else if (state.equals("TURNING_TO_HAND")) 

     { 

      return States.TURNING_TO_HAND; 

     } 

     else if (state.equals("HANDING")) 

     { 

      return States.HANDING; 

     } 

     else if (state.equals("TURNING_TO_GRAB")) 

     { 

      return States.TURNING_TO_GRAB; 
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     } 

     else if (state.equals("DUMPING")) 

     { 

      return States.DUMPING; 

     } 

     else if (state.equals("WAITING")) 

     { 

      return States.WAITING; 

     } 

     else if (state.equals("RETURNING")) 

     { 

      return States.RETURNING; 

     } 

     else if (state.equals("DUMPING_BUCKETS")) 

     { 

      return States.DUMPING_BUCKETS; 

     } 

     else if (state.equals("RETURNING_TO_SINK")) 

     { 

      return States.RETURNING_TO_SINK; 

     } 

     else 

     { 

      return States.UNKNOWN; 

     } 

    } 

     

    // Method to convert logged action string to action 

    private Actions convertStringToActions(String actionString) 

    { 

     

     if (actionString.equals("DUMP")) 

     { 

      return Actions.DUMP; 

     } else if (actionString.equals("DIP")) 

     { 

      return Actions.DIP; 

     } else if (actionString.equals("TAKE_BUCKETS")) 

     { 

      return Actions.TAKE_BUCKETS; 

     } else if (actionString.equals("RETURN_BUCKETS")) 

     { 

      return Actions.RETURN_BUCKETS; 

     } else if (actionString.equals("TRANS_GRABBING")) 

     { 

      return Actions.TRANS_GRABBING; 
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     } else if (actionString.equals("TRANS_DIPPING")) 

     { 

      return Actions.TRANS_DIPPING; 

     } else if (actionString.equals("TRANS_TURN_HAND")) 

     { 

      return Actions.TRANS_TURN_HAND; 

     } else if (actionString.equals("TRANS_HANDING")) 

     { 

      return Actions.TRANS_HANDING; 

     } else if (actionString.equals("TRANS_TURN_GRAB")) 

     { 

      return Actions.TRANS_TURN_GRAB; 

     } else if (actionString.equals("TRANS_DUMPING")) 

     { 

      return Actions.TRANS_DUMPING; 

     } else if (actionString.equals("TRANS_WAITING")) 

     { 

      return Actions.TRANS_WAITING; 

     } else if (actionString.equals("TRANS_RETURNING")) 

     { 

      return Actions.TRANS_RETURNING; 

     } else if (actionString.equals("TRANS_BUCKET_DUMP")) 

     { 

      return Actions.TRANS_BUCKET_DUMP; 

     } else if (actionString.equals("TRANS_RETURN_SINK")) 

     { 

      return Actions.TRANS_RETURN_SINK; 

     } else 

     { 

      return Actions.NONE; 

     }    

    } 

  

     

    // method to convert string to boolean 

    boolean convertStringToBoolean(String boolString) 

    { 

     if (boolString.equals("false")) 

     { 

      return false; 

     } 

     else 

     { 

      return true; 

     } 

    } 
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    private class AgentInfo 

    { 

     public Situation situation; 

     public Actions action; 

    } 

     

    private class TrainingInfo 

    { 

     public Situation situation; 

     public Actions[] action = new Actions[2]; 

     int count = 0; 

    } 

     

     

    private void savePoliciesToFile() 

    { 

     for (int k=0; k< States.UNKNOWN.ordinal(); k++) 

     { 

      ObjectOutputStream output = null; 

      String fileName = "default.map"; 

      // get policy hashmap to save  

      HashMap<Situation, Actions[]> myMap = null; 

      

      // get map based on context 

      myMap = (HashMap<Situation,Actions[]>)maps.get(k); 

      // get name of file to save to 

      String temp = stateStrings[k]; 

      fileName = temp+".map"; 

       

      // open file for writing 

      try // open file 

           { 

             output = new ObjectOutputStream( 

                new FileOutputStream( fileName ) ); 

              

             // write to file 

             output.writeObject( myMap ); 

              

             // close file 

             output.close(); 

           } // end try 

         

      catch (IOException ioException) 

           { 

           ioException.printStackTrace(); 
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              System.err.println( "Error opening file." ); 

           } // end catch   

       

      // open file for writing 

      try // open file 

           { 

        String txtFileName = temp + ".txt"; 

             PrintWriter out = new PrintWriter( 

                new FileWriter( txtFileName ) ); 

              

             Set keySet = myMap.keySet(); 

             Iterator iter = keySet.iterator(); 

             while (iter.hasNext()) 

             { 

              Situation sit = (Situation)iter.next(); 

              sit.print(out); 

              Actions[] actions = myMap.get(sit); 

              for (int l=0; l<actions.length; l++) 

              { 

               out.println("Action["+ l+ "] = " + actions[l].toString()); 

              } 

             } 

              

             

             // close file 

             out.close(); 

           } // end try 

         

      catch (IOException ioException) 

           { 

           ioException.printStackTrace(); 

              System.err.println( "Error opening file." ); 

           } // end catch   

     } // end for k 

    } 

     

 /** 

  * @param args 

  */ 

 public static void main(String[] args)  

 { 

  // get log file name with training data 

  // from arguments or constant 

  String logFileName = "bucketBrigade.log"; 

  // create trainer class 

  Trainer myTrainer = new Trainer(logFileName); 
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  myTrainer.createHashMaps(); 

   

  // print names of created hashmap files 

   

 

 } 

 

} 
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Situation.java 

package Common; 

 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.io.Serializable; 

 

 

// Class describing the current world state of an agent 

 

//Class describing the current world state of an agent 

 

public class Situation implements Constants, Serializable 

{ 

 public int timeInContext; 

 public boolean messageSent; 

 public boolean messageRecvd; 

 public int bucketsAtSource; 

 public int bucketsAtSink; 

 public States[] agentStates; 

 public boolean isSinkNode; 

 public boolean isSourceNode; 

 public boolean isRunnerNode; 

 public States myState; 

 public int nodeNum; 

  

  

  

 // default constructor 

 public Situation() 

 { 

  agentStates = new States[Constants.numberNodes +1]; 

  for (int i=0; i<= Constants.numberNodes; i++) 

  { 

   agentStates[i]= States.UNKNOWN; 

   myState = States.UNKNOWN; 

   timeInContext = 0; 

   messageSent = false; 

   messageRecvd = false; 

  } 

 } 

  

 // copy constructor 

 public Situation(Situation copy) 
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 { 

  agentStates= new States[Constants.numberNodes+1]; 

  for (int i=0; i<=Constants.numberNodes; i++) 

  { 

   agentStates[i] = copy.agentStates[i]; 

  } 

  myState = copy.myState; 

  timeInContext = copy.timeInContext; 

  messageSent = copy.messageSent; 

  messageRecvd = copy.messageRecvd; 

  bucketsAtSource = copy.bucketsAtSource; 

  bucketsAtSink = copy.bucketsAtSink; 

  isSinkNode = copy.isSinkNode; 

  isSourceNode = copy.isSourceNode; 

  isRunnerNode = copy.isRunnerNode; 

  nodeNum = copy.nodeNum; 

 } 

 

  

 public boolean equals(Situation newSituation) 

 { 

  // determine if newSituation is equal to this one 

  boolean result = true; 

  if (timeInContext != newSituation.timeInContext || 

   messageSent != newSituation.messageSent    || 

   messageRecvd != newSituation.messageRecvd  || 

   bucketsAtSource != newSituation.bucketsAtSource || 

   bucketsAtSink != newSituation.bucketsAtSink || 

   isSinkNode != newSituation.isSinkNode         || 

   isSourceNode != newSituation.isSourceNode  || 

   isRunnerNode != newSituation.isRunnerNode || 

   myState != newSituation.myState  || 

   nodeNum != newSituation.nodeNum) 

  { 

   result = false; 

  } 

  else  if (agentStates.length ==newSituation.agentStates.length) 

   // check agent States 

  { 

   for (int i=0; i<agentStates.length; i++) 

   { 

    if (agentStates[i]!= newSituation.agentStates[i]) 

    { 

     result = false; 

     break; 

    } 
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   } 

  } 

  else // agent states length don't match 

  { 

   result = false; 

  } 

   

   

  return result; 

 } 

  

 public int nearestNeighborScore(Situation compareTo) 

 { 

  int score = 0; 

  if (this.equals(compareTo)) 

  { 

   return score; 

  } 

  // start with myState - if myState does not match 

  // give a very high score 

  if (this.myState != compareTo.myState) 

  { 

   score+=300; 

  } 

   

  // type of agent also very important - high score 

  // for mismatch 

  if (this.isRunnerNode != compareTo.isRunnerNode) 

  { 

   score+=100; 

  } 

   

  if (this.isSinkNode != compareTo.isSinkNode) 

  { 

   score+=100; 

  } 

   

  if (this.isSourceNode != compareTo.isSourceNode) 

  { 

   score+=100; 

  } 

   

  //  

  // now compare neighboring node states 

  if (!compareTo.isSourceNode && !this.isSourceNode 
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    && !this.isRunnerNode) 

  { 

   if (this.agentStates[this.nodeNum-1] != 

    compareTo.agentStates[compareTo.nodeNum-1]) 

   { 

     

    score+=100; 

   } 

  } 

   

  if (!compareTo.isSinkNode && !this.isSinkNode 

    && !this.isRunnerNode) 

  { 

   if (this.agentStates[this.nodeNum+1] != 

    compareTo.agentStates[compareTo.nodeNum+1] 

       && !this.isRunnerNode) 

   { 

     

    //score+=50; 

   } 

  } 

   

  if (this.isRunnerNode) 

  { 

   if (this.bucketsAtSink < compareTo.bucketsAtSink) 

   { 

    score+=200; 

   } 

   else 

   { 

    score+=Math.abs(compareTo.bucketsAtSink-this.bucketsAtSink); 

   } 

  } 

   

  if (this.isSourceNode) 

  { 

   // number of buckets at source is important too 

   score+=Math.abs(compareTo.bucketsAtSource-this.bucketsAtSource); 

  } 

   

  // now remaining situation 

  // messageRecvd 

  if (this.messageRecvd != compareTo.messageRecvd) 

  { 

   score+=300; 

  } 
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  // timeinContext 

  if (this.timeInContext < compareTo.timeInContext) 

  { 

   score+=100; 

  } 

  else  

  { 

   score+=(Math.abs(this.timeInContext-compareTo.timeInContext)*10); 

  } 

   

  return score; 

 } 

  

 public int contextuallyWeightedNearestNeighbor(Situation compareTo, States context) 

 { 

  int score = 0; 

   

  if (this.equals(compareTo)) 

  { 

   return score; 

  } 

  WeightClass wts = getWeights(context); 

  int[] weights = wts.weights; 

   

  // start with myState - if myState does not match 

  // give a very high score - all contexts 

  if (this.myState != compareTo.myState) 

  { 

   score+=300; 

  } 

   

  // type of agent also very important - high score 

  // for mismatch 

  if (this.isRunnerNode != compareTo.isRunnerNode) 

  { 

   score+=(100 * weights[0]); 

  } 

   

  if (this.isSinkNode != compareTo.isSinkNode) 

  { 

   score+=(100 * weights[1]); 

  } 
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  if (this.isSourceNode != compareTo.isSourceNode) 

  { 

   score+=(100 * weights[2]); 

  } 

   

  //  

  // now compare neighboring node states 

  if (!compareTo.isSourceNode && !this.isSourceNode) 

     

  { 

   if (this.agentStates[this.nodeNum-1] != 

    compareTo.agentStates[compareTo.nodeNum-1]) 

   { 

     

    score+=(100 * weights[3]); 

   } 

  } 

   

  if ( !this.isRunnerNode && !compareTo.isRunnerNode) 

  { 

   if (this.agentStates[this.nodeNum+1] != 

    compareTo.agentStates[compareTo.nodeNum+1] 

       && !this.isRunnerNode) 

   { 

     

    score+=(50 * weights[4]); 

   } 

  } 

   

   

  score+=(10 * Math.abs(compareTo.bucketsAtSink-this.bucketsAtSink)* 

weights[5]) ; 

  

   

   

   

  // number of buckets at source is important too 

  score+=(Math.abs(compareTo.bucketsAtSource-this.bucketsAtSource) * 

weights[6]); 

   

   

  // now remaining situation 

  // messageRecvd 

  if (this.messageRecvd != compareTo.messageRecvd) 

  { 

   score+=(300 * weights[7]); 
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  } 

   

  

   

  // timeinContext 

  if (this.timeInContext < compareTo.timeInContext) 

  { 

   score+=(100 * weights[8]); 

  } 

  else  

  { 

   score+=((Math.abs(this.timeInContext-compareTo.timeInContext)*10) * 

weights[9]); 

  } 

   

  return score; 

 } 

  

 public void print(PrintWriter out) throws IOException 

 { 

  // write structure to file 

  out.println("*********************"); 

   

  out.println("MyState: " + myState.toString()); 

  out.println("Time in Context:" + timeInContext ); 

  out.println("MessageRecvd: " + messageRecvd); 

  out.println("Message Sent: " + messageSent); 

  out.println("Buckets At Source: " + bucketsAtSource); 

  out.println("Buckets At Sink: "  + bucketsAtSink); 

  out.println("Is source: " + isSourceNode); 

  out.println("Is Sink : " + isSinkNode) ; 

  out.println("Is Runner: " + isRunnerNode); 

  out.println("nodeNum : " + nodeNum); 

  for (int i=0; i<= Constants.numberNodes; i++) 

  { 

   out.println("AgentState["+ i+"]= " + agentStates[i].toString()); 

  } 

   

   

   

 } 

  

 private WeightClass getWeights(States context) 

 { 

  int[] weights = new int[10]; 

  for (int i=0; i< weights.length; i++) 
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  { 

   weights[i]=0; 

  } 

   

  // weights[0] - isRunnerNode 

  // for all contexts - weight=1 

  weights[0] = 1; 

   

  //weights[1] - isSinkNOde 

  weights[1] =1; 

  // weights[2] - isSourceNode 

  weights[2] = 1; 

  // weights[3] - neighbor -1 

  if (context == States.GRABBING) 

  { 

   weights[3] = 1; 

  } 

  // weights[4] - neighbor +1 

  if (context == States.HANDING) 

  { 

   weights[4]=1; 

  } 

   

  // weights[6] - bucketsAtSource 

  if (context == States.DIPPING) 

  { 

   weights[6] =0; 

  } 

   

  // weights[5] - bucketsAtSink 

  if (context == States.WAITING) 

  { 

   weights[5] =1; 

  } 

   

  // weights[7] - messageRecvd 

  if (context == States.HANDING) 

  { 

   weights[7] = 1; 

  } 

  // weights[8] - timeInContext < compareTo 

  // weights[9] - differencei in time of context 

  if (context == States.RETURNING || context == States.TURNING_TO_HAND || 

   context == States.TURNING_TO_GRAB || context == 

States.RETURNING_TO_SINK || 

   context == States.WAITING) 
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  { 

   weights[8] = 1; 

   weights[9] =1; 

  } 

  WeightClass wts = new WeightClass(); 

  wts.weights= weights; 

  return wts; 

 } 

 

 private class WeightClass 

 { 

  int[] weights; 

 } 

} 
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Constants.java 

package Common; 

// Bucket Brigade simulation- Cynthia Johnson 

 

public interface Constants 

{ 

    public enum States  {GRABBING, DIPPING, TURNING_TO_HAND, HANDING, 

TURNING_TO_GRAB, DUMPING, WAITING, RETURNING, 

        DUMPING_BUCKETS, RETURNING_TO_SINK, UNKNOWN}; 

    public enum Actions {NONE, DUMP, DIP, TAKE_BUCKET, TAKE_BUCKETS, 

RETURN_BUCKETS, TRANS_GRABBING, TRANS_DIPPING, TRANS_TURN_HAND,  

       TRANS_HANDING, TRANS_TURN_GRAB, TRANS_DUMPING, TRANS_WAITING, 

TRANS_RETURNING, TRANS_BUCKET_DUMP, TRANS_RETURN_SINK}; 

    public enum MessageTypes { TAKE_BUCKET}; 

    public final int HAND_TURN_TIME = 1; 

    public  final int GRAB_TURN_TIME = 1; 

    public final int DIP_TIME =1; 

    public final int RUNNING_TIME = 3; 

    public final int BUCKETS_TO_RUN = 5; 

    public final int numberNodes =6;  // includes source and sink 

    public String[] stateStrings=  {"grabbing","dipping", 

"turningToHand","handing","turningToGrab", 

     

 "dumping","waiting","returning","dumpingBuckets","returningToSink", 

"unknown"}; 

       

} 
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APPENDIX B – BUCKET BRIGADE RUN-TIME AGENT CODE 
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Agent.java 
 

 

import Common.Situation; 

 

 

public class Agent implements Common.Constants 

{  

  

 protected boolean messageRecvd = false; 

 protected boolean messageSent = false; 

 protected Context context; 

 protected int contextStartTime=0; 

 protected TeamContext teamContext; 

 protected Situation currentSituation; 

 protected int nodeNum; 

 protected boolean isSinkNode = false; 

 protected boolean isSourceNode = false; 

 protected boolean isRunnerNode = false; 

  

  

 public Agent(int nodeNumber, States startingContext) 

 { 

  //get TeamContext 

  nodeNum = nodeNumber; 

  teamContext = TeamContext.getInstance(); 

  context = teamContext.translateNameToContext(startingContext); 

  if (nodeNum == 0) 

  { 

   isSourceNode = true; 

  } 

  else if (nodeNum == numberNodes) 

  { 

   isRunnerNode = true; 

  } 

  else if (nodeNum == (numberNodes-1)) 

  { 

   isSinkNode = true; 

  } 

 } 

  

    public void step(int simTime) 

    { 

     messageSent = false; 

     // get situation setup 

     currentSituation = teamContext.getAgentInfo(nodeNum); 

     // add information from local agent 

     currentSituation.messageRecvd = messageRecvd; 

     currentSituation.messageSent = messageSent; 

     currentSituation.isRunnerNode = isRunnerNode; 

     currentSituation.isSinkNode = isSinkNode; 
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     currentSituation.isSourceNode = isSourceNode; 

     currentSituation.timeInContext = simTime-contextStartTime; 

      

     //currentSituation.timeInContext = simTime-contextStartTime; 

      

     // now call current context to determine action 

     context.step(this, simTime, currentSituation); 

     // clear any messages processed this go around 

     messageRecvd = false; 

     SimEngine.getInstance().messageRecvd[nodeNum] =false; 

    } 

     

    public void receiveMessage(MessageTypes type, int simTime) 

    { 

     //System.out.println("Received message- node number" + nodeNum); 

     messageRecvd = true; 

    } 

     

    // methods for context to set situation data 

    void setContextStartTime(int time) 

    { 

     contextStartTime = time; 

    } 

     

    void setMessageSent() 

    { 

     messageSent = true; 

    } 

     

    void setNewContext(States newContext) 

    { 

     context = teamContext.translateNameToContext(newContext); 

     teamContext.setNewContext(newContext,nodeNum); 

     setContextStartTime(SimEngine.getInstance().getSimTime()); 

    } 

     

    void sendMessage() 

    {    

      

     if (nodeNum-1 >=0) 

     { 

      System.out.println("Sent message: Node Num: "+ nodeNum); 

      SimEngine.getInstance().sendMessage(nodeNum-1, MessageTypes.TAKE_BUCKET, 

nodeNum); 

      messageSent = true; 

     

     } 

    } 
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} 
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Context.java 

import java.io.EOFException; 

import java.io.FileInputStream; 

import java.io.IOException; 

import java.io.ObjectInputStream; 

import java.util.Collection; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.Set; 

 

 

import Common.Constants; 

import Common.Situation; 

 

 

public  class Context implements Common.Constants 

{ 

 protected String name; 

 protected HashMap<Situation, Constants.Actions[]>   policy; 

 protected int nodeNum; 

  

 public Context(String contextName) 

 { 

  name= contextName; 

  initializePolicy(name+".map"); 

 } 

  

  

 public void step(Agent owningAgent,int simTime, Situation currentSituation) 

 { 

  nodeNum=currentSituation.nodeNum; 

  // check Hashmap for current situation 

   

   // find nearest neighbor  

    

   /* 

   #get Collection of keys contained in HashMap using 

   #  Collection values() method of HashMap class 

   # */ 

  

    Set set= policy.keySet () ;  

    

   //obtain an Iterator for Collection 

  

   Iterator itr = set.iterator(); 

 

   //iterate through HashMap values iterator 

   Actions[] actions = null; 

            int lowScore = 1000; 

            Situation lowScorer = null; 

            int count = 0; 
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            if (currentSituation.myState == States.WAITING && currentSituation.bucketsAtSink >=3) 

            { 

             System.out.println("Waiting"); 

            } 

          

   while(itr.hasNext()) 

   { 

    Situation mySituation = (Situation)itr.next(); 

    //int score = currentSituation.nearestNeighborScore(mySituation); 

    if (mySituation.bucketsAtSink > 3) 

    { 

     int i = 2; 

    } 

    

    int score = 

currentSituation.contextuallyWeightedNearestNeighbor(mySituation, currentSituation.myState); 

    

    if (score < lowScore) 

    { 

     lowScore = score; 

     lowScorer= mySituation; 

     actions = (Actions[])policy.get(lowScorer); 

    } 

    count ++; 

   } 

    

   // set anything necessary in calling Agent 

   for (int i=0; i<actions.length;i++) 

   { 

    Actions action = actions[i]; 

     

    performAction(action, simTime, owningAgent); 

   } 

    

   if (lowScorer.messageSent) 

   { 

    //System.out.println("low scorer sent message"); 

    owningAgent.sendMessage(); 

     

   } 

  } 

  

 

  

 private void performAction(Actions action, int simTime, Agent owningAgent) 

 { 

  switch (action) 

  { 

  case DUMP: 

   // dump water into sink 

   SimEngine.getInstance().dumpBucket(owningAgent.nodeNum); 
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   break; 

    

  case DIP: 

   // take water and bucket from source 

   SimEngine.getInstance().takeBucketFromSource(owningAgent.nodeNum); 

   break; 

    

  case TAKE_BUCKET: 

   // send message to node-1 that we are reliving them of  

   // bucket 

   SimEngine.getInstance().sendMessage(nodeNum-1, 

MessageTypes.TAKE_BUCKET, nodeNum); 

   break; 

    

  case TAKE_BUCKETS: 

   // runner takes five buckets from sink to return 

   // to source 

   SimEngine.getInstance().takeBucketsAtSink(5, owningAgent.nodeNum); 

   break; 

    

  case RETURN_BUCKETS: 

   // runner returns the five buckets to the source 

   SimEngine.getInstance().addBucketsAtSource(5, owningAgent.nodeNum); 

   break; 

    

  case TRANS_GRABBING: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.GRABBING); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_DIPPING: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.DIPPING); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_TURN_HAND: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.TURNING_TO_HAND); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_HANDING: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.HANDING); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_TURN_GRAB: 

   // transition context to grabbing 
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   owningAgent.setNewContext(States.TURNING_TO_GRAB); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_DUMPING: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.DUMPING); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_WAITING:  

   // transition context to grabbing 

   owningAgent.setNewContext(States.WAITING); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_RETURNING: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.RETURNING); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_BUCKET_DUMP: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.DUMPING_BUCKETS); 

   owningAgent.setContextStartTime(simTime); 

   break; 

    

  case TRANS_RETURN_SINK: 

   // transition context to grabbing 

   owningAgent.setNewContext(States.RETURNING_TO_SINK); 

   owningAgent.setContextStartTime(simTime); 

   break; 

     default: 

        // do nothing 

        // break; 

  } 

 } 

  

  

  

 private void initializePolicy(String fileName) 

 { 

  ObjectInputStream input = null; 

  try // open file 

       { 

          input = new ObjectInputStream( 

             new FileInputStream( fileName ) ); 

       } // end try 

       catch ( IOException ioException ) 

       { 
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          System.err.println( "Error opening file." ); 

       } // end catch 

   

    // read in single HashMap of policy generated by 

       // learning algorithm 

       try // input the values from the file 

       {  

          Object tempPolicy = input.readObject(); 

          if (tempPolicy instanceof HashMap<?,?>) 

          { 

           policy = (HashMap<Situation, Constants.Actions[]>)tempPolicy; 

          } 

            

           

       } // end try 

       catch ( EOFException endOfFileException ) 

       { 

        System.out.println("end of file reached- nothing read"); 

       } // end catch 

       catch ( ClassNotFoundException classNotFoundException ) 

       { 

        classNotFoundException.printStackTrace(); 

          System.err.println( "Unable to create object." ); 

       } // end catch 

       catch ( IOException ioException ) 

       { 

        ioException.printStackTrace(); 

          System.err.println( "Error during reading from file." ); 

       } // end catch 

   

 } 

} 
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TeamContext.java 
import Common.Constants; 

import Common.Situation; 

 

// team context for CCXBR framework 

// author: Cynthia Johnson 

public class TeamContext implements Common.Constants 

{ 

 private static boolean initialized = false; 

 private static TeamContext instance = null; 

 private SimEngine simEngine; 

  

 // initialize all the contexts in this game 

 private Context grabbing= new 

Context(stateStrings[States.GRABBING.ordinal()]); 

 private Context dipping = new 

Context(stateStrings[States.DIPPING.ordinal()]); 

 private Context turningToHand = new 

Context(stateStrings[States.TURNING_TO_HAND.ordinal()]); 

 private Context handing = new 

Context(stateStrings[States.HANDING.ordinal()]); 

 private Context turningToGrab = new 

Context(stateStrings[States.TURNING_TO_GRAB.ordinal()]); 

 private Context dumping = new 

Context(stateStrings[States.DUMPING.ordinal()]); 

 private Context waiting = new 

Context(stateStrings[States.WAITING.ordinal()]); 

 private Context returning = new 

Context(stateStrings[States.RETURNING.ordinal()]); 

 private Context dumpingBuckets = new 

Context(stateStrings[States.DUMPING_BUCKETS.ordinal()]); 

 private Context returningToSink = new 

Context(stateStrings[States.RETURNING_TO_SINK.ordinal()]); 

  

  

 private TeamContext() 

 { 

  // get a link to sim engine to build situations 

  // for various agents 

  simEngine = SimEngine.getInstance(); 

 } 

 public static TeamContext getInstance() 

 { 

  // method to allow agents to get instance of team context 

  if (!initialized) 

  { 

   instance = new TeamContext(); 

   initialized = true; 

  } 

   

  return instance; 

 } 

  

 public Situation getAgentInfo(int node) 

 { 

  // returns the situation for the agent at  

  // node numbered node. 
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  Situation situation = new Situation(); 

  // fill information in the situation 

  // note that agents only actually known context 

  // of nodes to either side of them 

  simEngine=SimEngine.getInstance(); 

  situation.bucketsAtSink=simEngine.getBucketsAtSink(); 

  situation.bucketsAtSource = simEngine.getBucketsAtSource(); 

  if ((node -1) >= 0) 

  { 

   situation.agentStates[node-1] = 

simEngine.getAgentState(node-1);  

  } 

   

  if ((node +1) <= Constants.numberNodes) 

  { 

  

 situation.agentStates[node+1]=simEngine.getAgentState(node+1); 

  } 

   

     situation.agentStates[node] = simEngine.getAgentState(node); 

     situation.myState = situation.agentStates[node]; 

     situation.nodeNum = node; 

   

  return situation; 

 } 

  

 Context translateNameToContext(States contextName) 

 { 

  switch (contextName) 

  { 

  case GRABBING: 

   return grabbing; 

    

  case DIPPING: 

   return dipping; 

    

  case TURNING_TO_HAND: 

   return turningToHand; 

    

  case HANDING: 

   return handing; 

    

  case TURNING_TO_GRAB: 

   return turningToGrab; 

    

  case DUMPING: 

   return dumping; 

    

  case WAITING: 

   return waiting; 

    

  case RETURNING: 

   return returning; 

    

  case DUMPING_BUCKETS: 

   return dumpingBuckets; 
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  case RETURNING_TO_SINK: 

   return returningToSink; 

    

  default: 

   return null; 

  } 

 } 

  

 public void setNewContext(States newContext, int nodeNum) 

 { 

  SimEngine.getInstance().setNodeState(nodeNum, newContext); 

 } 

  

  

} 
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APPENDIX C- PURSUIT GAME TRAINING CODE 
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Trainer.java 

package Training; 

// main class for training algorithm for bucket brigade 

import Common.Constants; 

import Common.Situation; 

import Common.Position; 

 

 

import java.io.BufferedReader; 

import java.io.EOFException; 

import java.io.FileReader; 

import java.io.FileOutputStream; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

 

import java.io.ObjectOutputStream; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

import java.util.Vector; 

 

 

public class Trainer implements Constants 

{ 

 private BufferedReader in; 

 private String logName = null; 

 private List<Map<Situation, Actions[]>> maps = new ArrayList<Map<Situation, Actions[]>>(); 

 private Vector[] trainingData = new Vector[14]; 

    private final int TRANS_GO_TO_DISTANCE = 5; 

   

 

 public Trainer(String fileName) 

 { 

   

     logName = fileName;  

   try 

  { 

  // open file for reading 

   in= new BufferedReader(new FileReader(logName)); 

  } 

  catch (Exception ex) 

  { 

   System.out.println("Error opening log file"); 

   ex.printStackTrace(); 

  } 

   

  //create a hash map for each context 



218 

 

  for (int i=0; i<= 13; i++) 

  { 

   maps.add(new HashMap<Situation, Actions[]>()); 

   trainingData[i] = new Vector(); 

  } 

 

 } 

 

 public void createHashMaps() 

 { 

   

  

  Situation previous = new Situation(); 

  Situation current = new Situation(); 

  

  int previousSimTime =0; 

  int currentSimTime=0; 

   

   

  // process 1 agent at a time - so we'll be iterating through 

  // the file multiple times 

  for (int j=0; j<=4; j++) 

  { 

   // reset file to beginning 

   try 

   { 

     

    in.close(); 

    in= new BufferedReader(new FileReader(logName)); 

    // looking for agent j 

    // create two situations - previous and current 

     

    previous = new Situation(); 

    // need initial previous context 

    // first line should be sim time and buckets moved 

    String timeLine = in.readLine(); 

    // get sim time from parsing the line 

    String[] splits = timeLine.split("\t"); 

     

    int simTime = Integer.parseInt(splits[1]); 

       

    previousSimTime = simTime; 

    // second line is blue1 position 

    String blue1String = in.readLine(); 

    splits = blue1String.split("\t"); 

    Position blue1Position = new Position(); 

    blue1Position.row = Integer.parseInt(splits[1]); 

    blue1Position.column = Integer.parseInt(splits[2]); 

    previous.blue1Position= blue1Position; 

    // Knows red position 

    blue1String = in.readLine(); 
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    splits = blue1String.split("\t"); 

    Boolean blue1KnowsRed = Boolean.parseBoolean(splits[1]); 

    previous.redPositionKnown=blue1KnowsRed.booleanValue(); 

     

     

    // blue2 

    String blue2String = in.readLine(); 

    splits = blue2String.split("\t"); 

    Position blue2Position = new Position(); 

    blue2Position.row = Integer.parseInt(splits[1]); 

    blue2Position.column = Integer.parseInt(splits[2]); 

    previous.blue2Position= blue2Position; 

    // Knows red position 

    blue2String = in.readLine(); 

    splits = blue2String.split("\t"); 

    Boolean blue2KnowsRed = Boolean.parseBoolean(splits[1]); 

    if (previous.redPositionKnown == false ) 

    { 

     previous.redPositionKnown=blue2KnowsRed.booleanValue(); 

    } 

     

    // blue3 

    String blue3String = in.readLine(); 

    splits = blue3String.split("\t"); 

    Position blue3Position = new Position(); 

    blue3Position.row = Integer.parseInt(splits[1]); 

    blue3Position.column = Integer.parseInt(splits[2]); 

    previous.blue3Position= blue3Position; 

    // Knows red position 

    blue3String = in.readLine(); 

    splits = blue3String.split("\t"); 

    Boolean blue3KnowsRed = Boolean.parseBoolean(splits[1]); 

    if (previous.redPositionKnown == false ) 

    { 

     previous.redPositionKnown=blue3KnowsRed.booleanValue(); 

    } 

     

    // blue4 

    String blue4String = in.readLine(); 

    splits = blue4String.split("\t"); 

    Position blue4Position = new Position(); 

    blue4Position.row = Integer.parseInt(splits[1]); 

    blue4Position.column = Integer.parseInt(splits[2]); 

    previous.blue4Position= blue4Position; 

    // Knows red position 

    blue4String = in.readLine(); 

    splits = blue3String.split("\t"); 

    Boolean blue4KnowsRed = Boolean.parseBoolean(splits[1]); 

    if (previous.redPositionKnown == false ) 

    { 

     previous.redPositionKnown=blue4KnowsRed.booleanValue(); 
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    } 

     

    // red 

    String redString = in.readLine(); 

    splits = redString.split("\t"); 

    Position redPosition = new Position(); 

    redPosition.row = Integer.parseInt(splits[1]); 

    redPosition.column = Integer.parseInt(splits[2]); 

    previous.redPosition= redPosition; 

     

    if (j==0) 

    { 

     // we are blue1 

     previous.myPosition=previous.blue1Position; 

     previous.myType = PlayerType.BLUE1; 

     // starting context is search top left - only set here 

     previous.myState = States.SEARCH_TOP_LEFT; 

    } 

    else if (j==1) 

    { 

     // we are blue2 

     previous.myPosition=previous.blue2Position; 

     previous.myType = PlayerType.BLUE2; 

     // starting context is search top right - only set here 

     previous.myState = States.SEARCH_TOP_RIGHT; 

    } 

    else if (j==2) 

    { 

     // we are blue3 

     previous.myPosition=previous.blue3Position; 

     previous.myType = PlayerType.BLUE3; 

     // starting context is search top right - only set here 

     previous.myState = States.SEARCH_BOT_LEFT; 

    } 

    else if (j==3) 

    { 

     // we are blue4 

     previous.myPosition=previous.blue4Position; 

     previous.myType = PlayerType.BLUE4; 

     // starting context is search top right - only set here 

     previous.myState = States.SEARCH_BOT_RIGHT; 

    } 

     

    // loop until EOF 

    do 

    { 

      

    //  create current situation 

     current = new Situation(); 

     // need initial previous context 

     // first line should be sim time and buckets moved 
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     timeLine = in.readLine(); 

     // get sim time from parsing the line 

     splits = timeLine.split("\t"); 

      

     simTime = Integer.parseInt(splits[1]); 

        

     currentSimTime = simTime; 

     // second line is blue1 position 

     blue1String = in.readLine(); 

     splits = blue1String.split("\t"); 

     blue1Position = new Position(); 

     blue1Position.row = Integer.parseInt(splits[1]); 

     blue1Position.column = Integer.parseInt(splits[2]); 

     current.blue1Position= blue1Position; 

     // Knows red position 

     blue1String = in.readLine(); 

     splits = blue1String.split("\t"); 

     blue1KnowsRed = Boolean.parseBoolean(splits[1]); 

     current.redPositionKnown=blue1KnowsRed.booleanValue(); 

      

      

     // blue2 

     blue2String = in.readLine(); 

     splits = blue2String.split("\t"); 

     blue2Position = new Position(); 

     blue2Position.row = Integer.parseInt(splits[1]); 

     blue2Position.column = Integer.parseInt(splits[2]); 

     current.blue2Position= blue2Position; 

     // Knows red position 

     blue2String = in.readLine(); 

     splits = blue2String.split("\t"); 

     blue2KnowsRed = Boolean.parseBoolean(splits[1]); 

     if (current.redPositionKnown == false ) 

     { 

     

 current.redPositionKnown=blue2KnowsRed.booleanValue(); 

     } 

      

     // blue3 

     blue3String = in.readLine(); 

     splits = blue3String.split("\t"); 

     blue3Position = new Position(); 

     blue3Position.row = Integer.parseInt(splits[1]); 

     blue3Position.column = Integer.parseInt(splits[2]); 

     current.blue3Position= blue3Position; 

     // Knows red position 

     blue3String = in.readLine(); 

     splits = blue3String.split("\t"); 

     blue3KnowsRed = Boolean.parseBoolean(splits[1]); 

     if (current.redPositionKnown == false ) 

     { 
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 current.redPositionKnown=blue3KnowsRed.booleanValue(); 

     } 

      

     // blue4 

     blue4String = in.readLine(); 

     splits = blue4String.split("\t"); 

     blue4Position = new Position(); 

     blue4Position.row = Integer.parseInt(splits[1]); 

     blue4Position.column = Integer.parseInt(splits[2]); 

     current.blue4Position= blue4Position; 

     // Knows red position 

     blue4String = in.readLine(); 

     splits = blue3String.split("\t"); 

     blue4KnowsRed = Boolean.parseBoolean(splits[1]); 

     if (current.redPositionKnown == false ) 

     { 

     

 current.redPositionKnown=blue4KnowsRed.booleanValue(); 

     } 

      

     // red 

     redString = in.readLine(); 

     splits = redString.split("\t"); 

     redPosition = new Position(); 

     redPosition.row = Integer.parseInt(splits[1]); 

     redPosition.column = Integer.parseInt(splits[2]); 

     current.redPosition= redPosition; 

      

     if (j==0) 

     { 

      // we are blue1 

      current.myPosition=current.blue1Position; 

      current.myType = PlayerType.BLUE1; 

      if (blue1KnowsRed.booleanValue()) 

      { 

       // calculate distance between blue and red 

       int distance =  Math.abs(current.myPosition.row 

- current.redPosition.row) 

          + Math.abs(current.myPosition.column - 

current.redPosition.column); 

       if (distance > TRANS_GO_TO_DISTANCE) 

       { 

        current.myState = 

States.INTERCEPT_TOP; 

       } 

       else 

       { 

        current.myState = States.GO_TO_TOP; 

       } 
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      } 

      else 

       current.myState = States.SEARCH_TOP_LEFT; 

     } 

     else if (j==1) 

     { 

      // we are blue2 

      current.myPosition=current.blue2Position; 

      current.myType = PlayerType.BLUE2; 

      if (blue2KnowsRed.booleanValue()) 

      { 

       int distance =  Math.abs(current.myPosition.row 

- current.redPosition.row) 

          + Math.abs(current.myPosition.column - 

current.redPosition.column); 

       if (distance > TRANS_GO_TO_DISTANCE) 

       { 

        current.myState = 

States.INTERCEPT_RIGHT; 

       } 

       else 

       { 

        current.myState = 

States.GO_TO_RIGHT; 

       } 

      } 

      else 

       current.myState = 

States.SEARCH_TOP_RIGHT; 

     } 

     else if (j==2) 

     { 

      // we are blue3 

      current.myPosition=current.blue3Position; 

      current.myType = PlayerType.BLUE3; 

      if (blue3KnowsRed.booleanValue()) 

      { 

       int distance =  Math.abs(current.myPosition.row 

- current.redPosition.row) 

          + Math.abs(current.myPosition.column - 

current.redPosition.column); 

       if (distance > TRANS_GO_TO_DISTANCE) 

       { 

        current.myState = 

States.INTERCEPT_LEFT; 

       } 

       else 

       { 

        current.myState = 

States.GO_TO_LEFT; 

       } 
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      } 

      else 

      { 

       current.myState = 

States.SEARCH_BOT_LEFT; 

       if (current.myPosition.row ==0) 

       { 

        System.out.println("Blue 3 upper 

found"); 

       } 

         

      } 

     } 

     else if (j==3) 

     { 

      // we are blue4 

      current.myPosition=current.blue4Position; 

      current.myType = PlayerType.BLUE4; 

      if (blue4KnowsRed.booleanValue()) 

      { 

       int distance =  Math.abs(current.myPosition.row 

- current.redPosition.row) 

          + Math.abs(current.myPosition.column - 

current.redPosition.column); 

       if (distance > TRANS_GO_TO_DISTANCE) 

       { 

        current.myState = 

States.INTERCEPT_BOTTOM; 

       } 

       else 

       { 

        current.myState = 

States.GO_TO_BOTTOM; 

       } 

      } 

      else 

       current.myState = 

States.SEARCH_BOT_RIGHT; 

     } 

     

     

    // gotten all info from file- process current vs 

    // previous 

    // calculate what move was made by agent we are currently 

    // training for 

    Actions[] trainedActions = new Actions[3]; 

    for (int i=0; i<3;i++) 

    { 

     trainedActions[i] = Actions.NONE; 

    } 

    if (j==0)  // compare blue 1 
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    { 

      

       trainedActions[0] = calculateMove(previous.blue1Position, 

current.blue1Position); 

    } 

    else if (j==1)  // compare blue 2 

    { 

      trainedActions[0] = calculateMove(previous.blue2Position, 

current.blue2Position); 

    } 

    else if (j==2)  // compare blue 3 

    { 

      trainedActions[0] = calculateMove(previous.blue3Position, 

current.blue3Position); 

    } 

    else if (j==3)  // compare blue 4 

    { 

      trainedActions[0] = calculateMove(previous.blue4Position, 

current.blue4Position); 

    } 

     

    // add on context switches and message sent 

    

      

    if (previous.myState != current.myState ) 

    { 

     

     // new context - add transition to this context to 

     // movement action and check for message sent 

       

     trainedActions[1] = findTransition(previous.myState, 

current.myState); 

      

     

    

     // check to see if message sent 

     if (previous.redPositionKnown != current.redPositionKnown && 

       current.redPositionKnown) 

     { 

      trainedActions[2] = 

Actions.NOTIFY_RED_POSITION; 

     } 

      

     

    } 

    // do not train transition from game to game 

    if (previousSimTime < currentSimTime) 

    { 

     Situation trainingSituation = new Situation(previous); 

      

     // red moves before any blue so old blue goes with new red 
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        trainingSituation.redPositionKnown = current.redPositionKnown; 

        trainingSituation.redPosition = current.redPosition; 

        if (trainingSituation != null) 

        { 

         trainHashMap(trainingSituation, trainedActions); 

        } 

        else  

        { 

         System.out.println("Trained situation = null"); 

        } 

    } 

    previous = current; 

    previousSimTime = currentSimTime; 

   

     

      

   } while (true); 

     

   }   // end try 

   catch (EOFException endOfFileException) 

   { 

    // done with this agent =  

    // go on to the next one 

    System.out.println("Finished with an agent-EOF"); 

   } 

   catch (Exception ex) 

   { 

    //ex.printStackTrace(); 

    System.out.println("Finished with an agent"); 

   } 

  }  // end for (j) 

   

  // done with agents 

  // save policies to files 

  savePoliciesToFile(); 

   

   

 } 

  

  

 private void trainHashMap(Situation situation, Actions[] actions) 

 {    

  HashMap<Situation, Actions[]> myMap = null; 

  Vector myVector = null; 

  boolean mismatch = false; 

   

  // get map based on context 

  int index = situation.myState.ordinal(); 

   

   

  myMap = (HashMap<Situation,Actions[]>)maps.get(index); 
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  TrainingInfo data = new TrainingInfo(); 

  data.action = actions; 

  data.situation = situation; 

  

  myVector = trainingData[index]; 

  Set set= myMap.keySet () ;  

    

  //obtain an Iterator for Collection 

  

  Iterator itr = set.iterator(); 

 

  //iterate through HashMap values iterator 

  boolean found = false; 

   while(itr.hasNext()) 

  {   

    

   Situation latestKey = (Situation)itr.next(); 

   // check to see if this situation exists in map already 

   if (latestKey.equals(situation)) 

   { 

    found = true; 

    //System.out.println("Got a matching situation"); 

    // check to see if actions map 

    Actions[] savedActions = (Actions[])myMap.get(latestKey); 

    // first check for size map 

    if (savedActions == null) 

    { 

     System.out.println("Got null saved actions"); 

    } 

    else if (actions == null) 

    { 

     System.out.println("actions = null"); 

      

    } 

    else if (savedActions.length == actions.length) 

    { 

     for (int i =0; i< actions.length; i++) 

     { 

      if (savedActions[i] != actions[i]) 

      { 

       mismatch = true; 

       System.out.println("Mismatch!"); 

       break; 

      } 

     } 

    } 

    else 

    { 

     // mismatch in actions 

     mismatch = true; 

     System.out.println("Got a mismatched situation"); 
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    } 

    // we have mismatch or duplicate mark appropriately 

    if (mismatch) 

    { 

     // get entry from myVector and increment count 

     System.out.println("GOT A MISMATCH"); 

      

    } 

   

   } 

  } 

  if (!found) 

  { 

   // this is first time for this situation so just add to map 

   myMap.put(situation, actions); 

  } 

   

 } 

  

 private Actions findTransition(States previous, States current) 

 { 

  Actions action = Actions.NONE; 

  switch (current) 

  { 

      

  case SEARCH_TOP_LEFT: 

   return Actions.TRANS_SEARCH_TOP_LEFT; 

  case SEARCH_TOP_RIGHT: 

   return Actions.TRANS_SEARCH_TOP_RIGHT; 

  case SEARCH_BOT_LEFT: 

   return Actions.TRANS_SEARCH_BOT_LEFT; 

  case SEARCH_BOT_RIGHT: 

   return Actions.TRANS_SEARCH_BOT_RIGHT; 

  case GO_TO_TOP: 

   return Actions.TRANS_GO_TO_TOP; 

  case GO_TO_RIGHT: 

   return Actions.TRANS_GO_TO_RIGHT; 

  case GO_TO_LEFT: 

   return Actions.TRANS_GO_TO_LEFT; 

  case GO_TO_BOTTOM: 

   return Actions.TRANS_GO_TO_BOTTOM; 

  case INTERCEPT_RIGHT: 

   return Actions.TRANS_INTERCEPT_RIGHT; 

  case INTERCEPT_LEFT: 

   return Actions.TRANS_INTERCEPT_LEFT; 

  case INTERCEPT_TOP: 

   return Actions.TRANS_INTERCEPT_TOP; 

  case INTERCEPT_BOTTOM: 

   return Actions.TRANS_INTERCEPT_BOTTOM; 

    

  } 
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  return action; 

 } 

  

  

  

  

 // Method to convert logged state string to actual state 

    private States convertStringToState(String state) 

    { 

     States newState = null; 

      

          

     if (state.equals("SEARCH_TOP_LEFT")) 

     { 

      return States.SEARCH_TOP_LEFT; 

     } 

     else if (state.equals("SEARCH_TOP_RIGHT")) 

  { 

      return States.SEARCH_TOP_RIGHT; 

  } 

     else if (state.equals("SEARCH_BOT_LEFT")) 

     { 

      return States.SEARCH_BOT_LEFT; 

     } 

     else if (state.equals("SEARCH_BOT_RIGHT")) 

     { 

      return States.SEARCH_BOT_RIGHT; 

     } 

     else if (state.equals("GO_TO_TOP")) 

     { 

      return States.GO_TO_TOP; 

     } 

     else if (state.equals("GO_TO_RIGHT")) 

     { 

      return States.GO_TO_RIGHT; 

     } 

     else if (state.equals("GO_TO_LEFT")) 

     { 

      return States.GO_TO_LEFT; 

     } 

     else if (state.equals("GO_TO_BOTTOM")) 

     { 

      return States.GO_TO_BOTTOM; 

     } 

     else 

     { 

      return States.UNKNOWN; 

     } 

    } 
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    // Method to convert logged action string to action 

    private Actions convertStringToActions(String actionString) 

    { 

     

     if (actionString.equals("UP")) 

     { 

      return Actions.UP; 

     } else if (actionString.equals("DOWN")) 

     { 

      return Actions.DOWN; 

     } else if (actionString.equals("LEFT")) 

     { 

      return Actions.LEFT; 

     } else if (actionString.equals("RIGHT")) 

     { 

      return Actions.RIGHT; 

     } else  

     { 

      return Actions.NONE; 

     } 

      

      

    } 

  

     

    // method to convert string to boolean 

    boolean convertStringToBoolean(String boolString) 

    { 

     if (boolString.equals("false")) 

     { 

      return false; 

     } 

     else 

     { 

      return true; 

     } 

    } 

     

    private Actions calculateMove(Position previous, Position current) 

    { 

     Actions returnAction = Actions.NONE; 

      

     if (previous.row == current.row) 

     { 

      // check column 

      if (previous.column < current.column) 

      { 

       returnAction = Actions.RIGHT; 

      } 

      else if (previous.column > current.column) 

      { 
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       returnAction = Actions.LEFT; 

      } 

     } else if (previous.row < current.row) 

     { 

      returnAction = Actions.DOWN; 

     } 

     else if (previous.row > current.row) 

     { 

      returnAction = Actions.UP; 

     } 

      

      

     return returnAction; 

    } 

     

    private class AgentInfo 

    { 

     public Situation situation; 

     public Actions action; 

    } 

     

    private class TrainingInfo 

    { 

     public Situation situation; 

     public Actions[] action = new Actions[3]; 

     int count = 0; 

    } 

     

     

    private void savePoliciesToFile() 

    { 

     for (int k=0; k< States.UNKNOWN.ordinal(); k++) 

     { 

      ObjectOutputStream output = null; 

      String fileName = "default.map"; 

      // get policy hashmap to save  

      HashMap<Situation, Actions[]> myMap = null; 

      

      // get map based on context 

      myMap = (HashMap<Situation,Actions[]>)maps.get(k); 

      // get name of file to save to 

      String temp = stateStrings[k]; 

      fileName = temp+".map"; 

       

      // open file for writing 

      try // open file 

           { 

             output = new ObjectOutputStream( 

                new FileOutputStream( fileName ) ); 

              

             // write to file 



232 

 

             output.writeObject( myMap ); 

              

             // close file 

             output.close(); 

           } // end try 

         

      catch (IOException ioException) 

           { 

           ioException.printStackTrace(); 

              System.err.println( "Error opening file." ); 

           } // end catch   

       

      // open file for writing 

      try // open file 

           { 

        String txtFileName = temp + ".txt"; 

             PrintWriter out = new PrintWriter( 

                new FileWriter( txtFileName ) ); 

              

             Set keySet = myMap.keySet(); 

             Iterator iter = keySet.iterator(); 

             while (iter.hasNext()) 

             { 

              Situation sit = (Situation)iter.next(); 

              sit.print(out); 

              Actions[] actions = myMap.get(sit); 

              for (int l=0; l<actions.length; l++) 

              { 

               out.println("Action["+ l+ "] = " + actions[l].toString()); 

              } 

             } 

              

             

             // close file 

             out.close(); 

           } // end try 

         

      catch (IOException ioException) 

           { 

           ioException.printStackTrace(); 

              System.err.println( "Error opening file." ); 

           } // end catch   

     } // end for k 

    } 

     

 /** 

  * @param args 

  */ 

 public static void main(String[] args)  

 { 

  // get log file name with training data 



233 

 

  // from arguments or constant 

  String logFileName = "pursuitGame.log.train"; 

  // create trainer class 

  Trainer myTrainer = new Trainer(logFileName); 

   

  myTrainer.createHashMaps(); 

   

   

   

 

 } 

 

} 
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Situation.java 

package Common; 

 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.io.Serializable; 

 

 

// Class describing the current world state of an agent 

 

//Class describing the current world state of an agent 

 

public class Situation implements Constants, Serializable 

{ 

 public States myState; 

 public PlayerType myType; 

 public Position myPosition; 

 public Position blue1Position; 

 public Position blue2Position; 

 public Position blue3Position; 

 public Position blue4Position; 

 public boolean redPositionKnown; 

 public Position redPosition; 

 public TeamStates teamState; 

  

 private final int MY_POSITION_WEIGHT =0; 

 private final int BLUE1_POSITION_WEIGHT = 2; 

 private final int BLUE2_POSITION_WEIGHT =3; 

 private final int BLUE3_POSITION_WEIGHT = 4; 

 private final int BLUE4_POSITION_WEIGHT =5; 

 private final int RED_POSITION_KNOWN_WEIGHT = 6; 

 private final int RED_POSITION_WEIGHT =7; 

 private final int SLOPE_TO_RED_WEIGHT =8; 

 private final int DISTANCE_TO_RED_WEIGHT =9; 

 private final int SLOPE_TO_BLUE1_WEIGHT =10; 

 private final int SLOPE_TO_BLUE2_WEIGHT =11; 

 private final int SLOPE_TO_BLUE3_WEIGHT =12; 

 private final int SLOPE_TO_BLUE4_WEIGHT =13; 

 private final int DISTANCE_TO_BLUE1_WEIGHT = 14; 

 private final int DISTANCE_TO_BLUE2_WEIGHT = 15; 

 private final int DISTANCE_TO_BLUE3_WEIGHT = 16; 

 private final int DISTANCE_TO_BLUE4_WEIGHT = 17; 

  

  

 // default constructor 

 public Situation() 

 { 

  redPositionKnown = false; 

 } 
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 // copy constructor 

 public Situation(Situation copy) 

 { 

  myType = copy.myType; 

  myPosition = copy.myPosition; 

  blue1Position = copy.blue1Position; 

  blue2Position = copy.blue2Position; 

  blue3Position = copy.blue3Position; 

  blue4Position = copy.blue4Position; 

  redPositionKnown = copy.redPositionKnown; 

  redPosition= copy.redPosition; 

  myState = copy.myState; 

  teamState = copy.teamState; 

 } 

 

  

 public boolean equals(Situation newSituation) 

 { 

  // determine if newSituation is equal to this one 

  boolean result = false; 

  if (myPosition.equals(newSituation.myPosition)  && 

      blue1Position.equals(newSituation.blue1Position)   && 

      blue2Position.equals(newSituation.blue2Position)  && 

      blue3Position.equals(newSituation.blue3Position)  && 

      blue4Position.equals(newSituation.blue4Position)  && 

      redPositionKnown == newSituation.redPositionKnown && 

      myState == newSituation.myState && 

      teamState == newSituation.teamState) 

  { 

   if (redPosition != null && redPosition.equals(newSituation.redPosition) 

     || (redPosition==null &&  newSituation.redPosition== null)) 

   { 

    result = true; 

   } 

  } 

   

   

  return result; 

 } 

  

  

  

 public int contextuallyWeightedNearestNeighbor(Situation compareTo, States context) 

 { 

  double score = 0; 

   

  if (this.equals(compareTo)) 

  { 

   return (int)score; 

  } 

  WeightClass wts = getWeights(context); 
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  double[] weights =wts.weights; 

   

  // start with myState - if myState does not match 

  // give a very high score - all contexts  

  // shouldn't happen unless context is wrong 

  if (this.myState != compareTo.myState) 

  { 

   score+=300; 

  } 

   

  //my position 

  int temp = myPosition(this).difference(myPosition(compareTo)); 

  score+= (temp*weights[MY_POSITION_WEIGHT]); 

   

   

  if (this.redPositionKnown != compareTo.redPositionKnown) 

  { 

   score= score + (int)(weights[RED_POSITION_KNOWN_WEIGHT]); 

  } 

   

  // blue1 position 

  temp = this.blue1Position.difference(compareTo.blue1Position); 

  score+= (temp*weights[BLUE1_POSITION_WEIGHT]); 

  // blue2 slope 

  double t1 = getSlope(this.blue1Position, this.myPosition); 

  double t2 = getSlope(compareTo.blue1Position, compareTo.myPosition); 

  score= score +(Math.abs(t1-t2)*weights[SLOPE_TO_BLUE1_WEIGHT]); 

  // compare distance between myPosition and blue1Position 

  double myDistance = Math.abs(myPosition.row-blue1Position.row) + 

      Math.abs(myPosition.column-blue1Position.column); 

  double compareDistance = Math.abs(compareTo.myPosition.row - 

    compareTo.blue1Position.row) + Math.abs( 

    compareTo.myPosition.column - compareTo.blue1Position.column); 

  double difference = Math.abs(myDistance-compareDistance); 

  score = score + (Math.abs(difference)*weights[DISTANCE_TO_BLUE1_WEIGHT]); 

   

   

  // blue2 position 

  temp = this.blue2Position.difference(compareTo.blue2Position); 

  score+= (temp*weights[BLUE2_POSITION_WEIGHT]); 

  t1 = getSlope(this.blue2Position, this.myPosition); 

  t2 = getSlope(compareTo.blue2Position, compareTo.myPosition); 

  score= score + (Math.abs(t1-t2)*weights[SLOPE_TO_BLUE1_WEIGHT]); 

   

  // compare distance between myPosition and blue2Position 

  myDistance = Math.abs(myPosition.row-blue2Position.row) + 

      Math.abs(myPosition.column-blue2Position.column); 

  compareDistance = Math.abs(compareTo.myPosition.row - 

    compareTo.blue2Position.row) + Math.abs( 

    compareTo.myPosition.column - compareTo.blue2Position.column); 



237 

 

  difference = Math.abs(myDistance-compareDistance); 

  score = score + (Math.abs(difference)*weights[DISTANCE_TO_BLUE2_WEIGHT]); 

   

   

  // blue3 position 

  temp = this.blue3Position.difference(compareTo.blue3Position); 

  score+= (temp*weights[BLUE3_POSITION_WEIGHT]); 

  t1 = getSlope(this.blue3Position, this.myPosition); 

  t2 = getSlope(compareTo.blue3Position, compareTo.myPosition); 

  score=score + (Math.abs(t1-t2)*weights[SLOPE_TO_BLUE3_WEIGHT]); 

   

  // compare distance between myPosition and blue3Position 

  myDistance = Math.abs(myPosition.row-blue3Position.row) + 

      Math.abs(myPosition.column-blue3Position.column); 

  compareDistance = Math.abs(compareTo.myPosition.row - 

    compareTo.blue3Position.row) + Math.abs( 

    compareTo.myPosition.column - compareTo.blue3Position.column); 

  difference = Math.abs(myDistance-compareDistance); 

  score = score + (Math.abs(difference)*weights[DISTANCE_TO_BLUE3_WEIGHT]); 

   

   

  // blue3 position 

  temp = this.blue4Position.difference(compareTo.blue4Position); 

  score+= (temp*weights[BLUE4_POSITION_WEIGHT]); 

  t1 = getSlope(this.blue4Position, this.myPosition); 

  t2 = getSlope(compareTo.blue4Position, compareTo.myPosition); 

  score= score + (Math.abs(t1-t2)*weights[SLOPE_TO_BLUE4_WEIGHT]); 

   

  // compare distance between myPosition and blue4Position 

  myDistance = Math.abs(myPosition.row-blue4Position.row) + 

      Math.abs(myPosition.column-blue4Position.column); 

  compareDistance = Math.abs(compareTo.myPosition.row - 

    compareTo.blue4Position.row) + Math.abs( 

    compareTo.myPosition.column - compareTo.blue4Position.column); 

  difference = Math.abs(myDistance-compareDistance); 

  score = score + (Math.abs(difference)*weights[DISTANCE_TO_BLUE4_WEIGHT]); 

   

   

  // red position 

  if (this.redPositionKnown && compareTo.redPositionKnown) 

  { 

   temp = this.redPosition.difference(compareTo.redPosition); 

   score+= (temp*weights[RED_POSITION_WEIGHT]); 

    

   // this  change in row/change in column with sign 

   double thisSlope = getSlope(this.myPosition, this.redPosition); 

    

   // compare delta row between myPosition and RedPosition 

   double compareToSlope = getSlope(compareTo.myPosition, 

compareTo.redPosition); 
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     difference = Math.abs(thisSlope - compareToSlope); 

   if (difference > Math.PI) 

   { 

   // difference = difference - Math.PI; 

   } 

   score+=(weights[SLOPE_TO_RED_WEIGHT] * difference); 

   // compare delta column between myPosition and RedPosition 

   

    

   // compare distance between myPosition and RedPosition 

   myDistance = Math.abs(myPosition.row-redPosition.row) + 

       Math.abs(myPosition.column- redPosition.column); 

    compareDistance = Math.abs(compareTo.myPosition.row - 

     compareTo.redPosition.row) + Math.abs( 

     compareTo.myPosition.column - 

compareTo.redPosition.column); 

   difference = Math.abs(myDistance-compareDistance); 

   score+=(weights[DISTANCE_TO_RED_WEIGHT] * difference); 

    

  } 

   

   

   

   

  return (int)score; 

 } 

  

 public void print(PrintWriter out) throws IOException 

 { 

  // write structure to file 

  out.println("*********************"); 

   

  out.println("MyState: " + myState.toString()); 

  out.println("MyType: " + myType.toString()); 

  out.println("Blue1 Position:  " + blue1Position.row + "," + blue1Position.column); 

  out.println("Blue2 Position:  " +  blue2Position.row + "," + blue2Position.column); 

  out.println("Blue3 Position:  " +  blue3Position.row + "," + blue3Position.column); 

  out.println("Blue4 Position:  " +  blue4Position.row + "," + blue4Position.column); 

  out.println("Red Position:   " + redPosition.row + "," + redPosition.column); 

  out.println("Red Position Known:  " + redPositionKnown); 

   

   

   

 } 

  

 private Position myPosition(Situation sit) 

 { 

  switch (sit.myType) 

  { 

  case BLUE1: 

   return sit.blue1Position; 
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  case BLUE2: 

   return sit.blue2Position; 

  case BLUE3: 

   return sit.blue3Position; 

  case BLUE4: 

   return sit.blue4Position; 

  default: 

   return null; 

  } 

 } 

  

  

 private WeightClass getWeights(States context) 

 { 

  double[] weights = new double[20]; 

  for (int i=0; i< weights.length; i++) 

  { 

   weights[i]=0; 

  } 

   

  // weights[0] - myType 

   

  //weights[1] - blue 1 position 

  if (context == States.SEARCH_TOP_LEFT  

   ) 

  { 

   weights[BLUE1_POSITION_WEIGHT] =1; 

  } 

  else  

  { 

   weights[BLUE1_POSITION_WEIGHT] =0.25; 

  } 

  // weights[2] - blue 2 position 

  if (context == States.SEARCH_TOP_RIGHT   

    ) 

  { 

   weights[BLUE2_POSITION_WEIGHT] =1; 

  } 

  else 

  { 

   weights[BLUE2_POSITION_WEIGHT] = 0.25; 

  } 

  // weights[3] - blue 3 position 

   

  if (context == States.SEARCH_BOT_LEFT  

    ) 

  { 

   weights[BLUE3_POSITION_WEIGHT] =1; 

  } 

  else 

  { 
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   weights[BLUE3_POSITION_WEIGHT] = 0.25; 

  } 

   

  // weights[4] - blue 4 position 

   

  if (context == States.SEARCH_BOT_RIGHT ) 

  { 

   weights[BLUE4_POSITION_WEIGHT] =1; 

  } 

  else 

  { 

   weights[BLUE4_POSITION_WEIGHT] = 0.25; 

  } 

   

   

   

   

  weights[RED_POSITION_KNOWN_WEIGHT] =100; 

   

   

  // weights[5] - redPosition 

   

   

   

  // weights[7] - slope to red 

  if (context == States.GO_TO_BOTTOM || context == States.GO_TO_LEFT 

   || context == States.GO_TO_RIGHT || context == States.GO_TO_TOP) 

  { 

   weights[SLOPE_TO_RED_WEIGHT] = 3  ; 

   weights[DISTANCE_TO_RED_WEIGHT]=1; 

   weights[RED_POSITION_WEIGHT] =0; 

   weights[MY_POSITION_WEIGHT] = 0; 

   weights[BLUE1_POSITION_WEIGHT]= 0; 

   weights[BLUE2_POSITION_WEIGHT] = 0; 

   weights[BLUE3_POSITION_WEIGHT] = 0; 

   weights[BLUE4_POSITION_WEIGHT] = 0; 

   weights[SLOPE_TO_BLUE1_WEIGHT] =1.5; 

   weights[SLOPE_TO_BLUE2_WEIGHT] =1.5; 

   weights[SLOPE_TO_BLUE3_WEIGHT] =1.5; 

   weights[SLOPE_TO_BLUE4_WEIGHT ] =1.5; 

   weights[DISTANCE_TO_BLUE1_WEIGHT] = 0.2; 

   weights[DISTANCE_TO_BLUE2_WEIGHT] = 0.2; 

   weights[DISTANCE_TO_BLUE3_WEIGHT] = 0.2; 

   weights[DISTANCE_TO_BLUE4_WEIGHT] = 0.2; 

    

  } 

  else if (context == States.INTERCEPT_BOTTOM || context == 

States.INTERCEPT_LEFT 

   || context == States.INTERCEPT_RIGHT || context == 

States.INTERCEPT_TOP) 

  { 
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   weights[SLOPE_TO_RED_WEIGHT] = 3; 

   weights[DISTANCE_TO_RED_WEIGHT]=1; 

   weights[RED_POSITION_WEIGHT] =0; 

   weights[MY_POSITION_WEIGHT] = 0; 

   weights[BLUE1_POSITION_WEIGHT]= 0; 

   weights[BLUE2_POSITION_WEIGHT] = 0; 

   weights[BLUE3_POSITION_WEIGHT] = 0; 

   weights[BLUE4_POSITION_WEIGHT] = 0; 

   weights[SLOPE_TO_BLUE1_WEIGHT] =0; 

   weights[SLOPE_TO_BLUE2_WEIGHT] =0; 

   weights[SLOPE_TO_BLUE3_WEIGHT] =0; 

   weights[SLOPE_TO_BLUE4_WEIGHT ] =0; 

  } 

  else 

  { 

   weights[SLOPE_TO_RED_WEIGHT] =0; 

   weights[DISTANCE_TO_RED_WEIGHT]=0; 

   weights[RED_POSITION_WEIGHT] =0; 

   weights[MY_POSITION_WEIGHT] = 2; 

   weights[SLOPE_TO_BLUE1_WEIGHT] =0; 

   weights[SLOPE_TO_BLUE2_WEIGHT] =0; 

   weights[SLOPE_TO_BLUE3_WEIGHT] =0; 

   weights[SLOPE_TO_BLUE4_WEIGHT ] =0; 

  } 

   

   

  

   

   

   

  WeightClass wts = new WeightClass(); 

  wts.weights= weights; 

  return wts; 

 

 } 

 

 // name is deceptive- returns angle from -pi to pi 

 private double getSlope(Position position1, Position position2) 

 { 

  double slope = 0; 

  double temp = (double)(position1.column - position2.column); 

  double temp2 = (double)(position1.row - position2.row); 

  slope = Math.atan2(temp2, temp ); 

  return slope; 

 } 

  

 private class WeightClass 

 { 

  double[] weights; 

   

 } 
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} 
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Constants.java 
package Common; 

// Pursuit game simulation- Cynthia Johnson 

 

public interface Constants 

{ 

    public enum PlayerType  {BLUE1, BLUE2, BLUE3, BLUE4, RED}; 

    public int NUM_BLUE_PLAYERS = 4; 

    public enum Actions {UP, DOWN, RIGHT, LEFT, NONE, NOTIFY_RED_POSITION, 

     TRANS_SEARCH_TOP_LEFT, TRANS_SEARCH_TOP_RIGHT, TRANS_SEARCH_BOT_RIGHT, 

     TRANS_SEARCH_BOT_LEFT, TRANS_GO_TO_TOP, TRANS_GO_TO_RIGHT, 

TRANS_GO_TO_LEFT, 

     TRANS_GO_TO_BOTTOM, TRANS_INTERCEPT_TOP, TRANS_INTERCEPT_BOTTOM, 

TRANS_INTERCEPT_RIGHT, 

     TRANS_INTERCEPT_LEFT}; 

    public int EDGE_HIGH = 29; 

    public int EDGE_LOW = 0; 

    public enum States  {SEARCH_TOP_LEFT, SEARCH_TOP_RIGHT, SEARCH_BOT_LEFT, 

     SEARCH_BOT_RIGHT, GO_TO_TOP, GO_TO_RIGHT, GO_TO_LEFT, GO_TO_BOTTOM,  

     INTERCEPT_TOP, INTERCEPT_BOTTOM, INTERCEPT_RIGHT, 

INTERCEPT_LEFT,UNKNOWN}; 

 public String[] stateStrings=  {"search_top_left","search_top_right", 

"search_bot_left","search_bot_right","go_to_top", 

          "go_to_right","go_to_left","go_to_bottom", "intercept_top", 

          "intercept_bottom", "intecept_right", 

"intercept_left","unknown"}; 

     

 public enum TeamStates {SEARCHING, BOXING}; 

} 
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Position.java 
package Common; 

import java.io.Serializable; 

 

public class Position  implements Serializable 

{ 

    public int row; 

    public int column; 

     

    public Position() 

    { 

        row =0; 

        column = 0; 

    } 

     

    public Position(Position copyPosition) 

    { 

        row = copyPosition.row; 

        column = copyPosition.column; 

    } 

     

    public boolean equals(Position newPosition) 

    { 

        boolean returnValue = false; 

        if (newPosition == null) 

        { 

         return false; 

        } 

        if (row == newPosition.row && column == newPosition.column) 

        { 

            returnValue = true; 

        } 

        return returnValue; 

    } 

     

    public int difference(Position otherPosition) 

    { 

     int difference = 0; 

      

     // get absolute value of difference in row 

     difference += Math.abs(row-otherPosition.row); 

        // add on absolute value of column difference 

     difference += Math.abs(column- otherPosition.column); 

      

     return difference; 

    } 

     

    

} 
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APPENDIX D – PURSUIT GAME RUN-TIME AGENT CODE 
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Agent.java 

 

 

import Common.Situation; 

import Common.Position; 

 

 

 

public class Agent extends Player implements Common.Constants 

{  

  

  

 protected Context context; 

 protected TeamContext teamContext; 

 protected Situation currentSituation; 

  

 protected PlayerType myType; 

 protected boolean redPositionKnown; 

 protected Position redPosition; 

  

  

  

 public Agent(PlayerType type, States startingContext, Position myPos) 

 { 

  super(myPos.row, myPos.column); 

  //get TeamContext 

  myType = type; 

  teamContext = TeamContext.getInstance(); 

  context = teamContext.translateNameToContext(startingContext); 

  redPositionKnown = false; 

 } 

  

    public void move() 

    { 

     // get my context from teamContext 

      

     // get situation setup 

     currentSituation = teamContext.getAgentInfo(myType); 

     currentSituation.myPosition = position; 

     context = teamContext.translateNameToContext(currentSituation.myState); 

      SensorResult result = PursuitGame.getInstance() 

       .sensorSweep(position); 

          

         if (result != null) 

         { 

    // System.out.println(myType.toString() +" Detected red"); 

             redPositionKnown = true; 

             redPosition = result.position; 

             sendMessage(); 
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         } 

        PursuitGame.getInstance().setRedKnown(myType, redPositionKnown); 

     currentSituation.redPositionKnown = redPositionKnown; 

     currentSituation.redPosition = redPosition; 

     // now call current context to determine action 

     context.step(this,  currentSituation); 

     // clear any messages processed this go around 

      

     //redPositionKnown = false; 

    } 

     

    public void receiveMessage(Message message) 

    { 

    // System.out.println("Received message-" + myType.toString()); 

     

     if (message.player == PlayerType.RED) 

     { 

      redPositionKnown = true; 

      redPosition= message.position; 

     

     } 

    }    

   

     

    

     

    void setNewContext(States newContext) 

    { 

     context = teamContext.translateNameToContext(newContext); 

     teamContext.setNewContext(newContext,myType); 

     

    } 

     

    public void sendMessage() 

    {    

     if (redPositionKnown) 

     { 

      PursuitGame.getInstance().sendMessage(PlayerType.RED, 

        redPosition); 

     } 

     

    } 

      

    public Position getCurrentPosition() 

    { 

     return position; 

    } 

     

    public void setCurrentPosition(Position newPosition) 

    { 
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      position = newPosition;  

    } 

     

    public PlayerType getType() 

    { 

     return myType; 

    } 

     

} 
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Context.java 

import java.io.EOFException; 

import java.io.FileInputStream; 

import java.io.IOException; 

import java.io.ObjectInputStream; 

import java.util.Collection; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.Set; 

import java.util.Random; 

import java.util.Vector; 

 

 

import Common.Constants; 

import Common.Situation; 

import Common.Position; 

import Common.Constants.States; 

 

 

public  class Context implements Common.Constants 

{ 

 protected String name; 

 protected HashMap<Situation, Constants.Actions[]>   policy; 

  

  

 public Context(String contextName) 

 { 

  name= contextName; 

  initializePolicy(name+".map"); 

 } 

  

  

 public void step(Agent owningAgent, Situation currentSituation) 

 { 

   

  // check Hashmap for current situation 

   

   // find nearest neighbor  

    

   /* 

   #get Collection of keys contained in HashMap using 

   #  Collection values() method of HashMap class 

   # */ 

  

  /* if (this.name.equals(stateStrings[States.SEARCH_BOT_LEFT.ordinal()])) 

   { 

   System.out.println("In go to left"); 

   }*/ 

    Set set= policy.keySet () ;  

    

   //obtain an Iterator for Collection 
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   Iterator itr = set.iterator(); 

 

   //iterate through HashMap values iterator 

   Actions[] actions = null; 

            double lowScore = 1000; 

            Situation lowScorer = null; 

           

            int lowScorerCount = 0; 

            int count = 0; 

           

         Vector potentialActions = new Vector(); 

         int matchCount = 0; 

         int misMatchCount = 0; 

   while(itr.hasNext()) 

   { 

    Situation mySituation = (Situation)itr.next(); 

     

    

    double score = 

currentSituation.contextuallyWeightedNearestNeighbor(mySituation, currentSituation.myState); 

       if (score == lowScore) 

       { 

         

        Actions[] actionCheck = (Actions[])policy.get(mySituation); 

        if (!actionsSame(actionCheck, actions)) 

        { 

         boolean inVector = false; 

            for (int l=0; l< potentialActions.size();l++) 

            { 

              ActionCount entry = (ActionCount)potentialActions.get(l); 

              if (actionsSame(actionCheck, entry.actions)) 

              { 

               potentialActions.remove(entry); 

               entry.count ++; 

               potentialActions.add(entry); 

               inVector = true; 

               break; 

              } 

            } 

            if (!inVector) 

            { 

             ActionCount entry = new ActionCount(); 

             entry.actions = actionCheck; 

             entry.count = 1; 

             potentialActions.add(entry); 

            } 

         misMatchCount ++; 

          

        } 

        else 
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        { 

         matchCount ++; 

        } 

         

       } 

    if (score < lowScore) 

    { 

     lowScore = score; 

      

     lowScorer= mySituation; 

     actions = (Actions[])policy.get(lowScorer); 

     lowScorerCount = count; 

     matchCount = 0; 

     misMatchCount =0; 

     potentialActions = new Vector(); 

     

    } 

    count ++; 

   } 

   int compareCount =matchCount; 

   Actions[] chosenActions  = actions; 

   if (misMatchCount > 0 && matchCount < misMatchCount) 

   { 

     

    // find most prominant action 

    for (int l=0; l<potentialActions.size();l++) 

    { 

     ActionCount entry = (ActionCount)potentialActions.get(l); 

     if (entry.count >compareCount) 

     { 

      chosenActions = entry.actions; 

      compareCount = entry.count; 

    //  System.out.println("Replaced actions"); 

     } 

    } 

   } 

    

   // set anything necessary in calling Agent 

   boolean performed = false; 

   boolean badAction = false; 

   if (chosenActions != null) 

   { 

    for (int i=0; i<chosenActions.length;i++) 

    { 

      

     Actions action = chosenActions[i]; 

      

     performed = performAction(action,  owningAgent); 

     if (!performed) 

     { 

      badAction = true; 
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     // System.out.println("Bad Action for " + 

owningAgent.myType.toString()); 

      break; 

     } 

       

    } 

   } 

  

  } 

  

 

  

 private boolean performAction(Actions action,  Agent owningAgent) 

 { 

  boolean actionPerformed = true; 

  // get current Agent position 

     Position position = new Position(); 

     position.row = owningAgent.getCurrentPosition().row; 

     position.column = owningAgent.getCurrentPosition().column; 

  switch (action) 

  { 

  case UP: 

   // move Agent up 

   position.row--; 

    

   break; 

    

  case DOWN: 

   // move agent down 

   position.row++; 

   break; 

    

  case LEFT: 

   // move agent left 

   position.column--; 

   break; 

    

  case RIGHT: 

   // move agent right 

   position.column++; 

   break; 

    

  case NOTIFY_RED_POSITION: 

   owningAgent.sendMessage(); 

   break; 

  case TRANS_SEARCH_TOP_LEFT: 

   TeamContext.getInstance().setNewContext(States.SEARCH_TOP_LEFT,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_SEARCH_TOP_RIGHT: 
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   TeamContext.getInstance().setNewContext(States.SEARCH_TOP_RIGHT,  

     owningAgent.getType()); 

   break; 

  case TRANS_SEARCH_BOT_RIGHT: 

   TeamContext.getInstance().setNewContext(States.SEARCH_BOT_RIGHT,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_SEARCH_BOT_LEFT: 

   TeamContext.getInstance().setNewContext(States.SEARCH_BOT_LEFT,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_GO_TO_TOP: 

   TeamContext.getInstance().setNewContext(States.GO_TO_TOP,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_GO_TO_RIGHT: 

   TeamContext.getInstance().setNewContext(States.GO_TO_RIGHT,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_GO_TO_LEFT: 

   TeamContext.getInstance().setNewContext(States.GO_TO_LEFT,  

     owningAgent.getType()); 

   break; 

   

  case TRANS_GO_TO_BOTTOM : 

   TeamContext.getInstance().setNewContext(States.GO_TO_BOTTOM,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_INTERCEPT_TOP : 

   TeamContext.getInstance().setNewContext(States.INTERCEPT_TOP,  

     owningAgent.getType()); 

   break; 

   

  case TRANS_INTERCEPT_BOTTOM : 

   TeamContext.getInstance().setNewContext(States.INTERCEPT_BOTTOM,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_INTERCEPT_LEFT : 

   TeamContext.getInstance().setNewContext(States.INTERCEPT_LEFT,  

     owningAgent.getType()); 

   break; 

    

  case TRANS_INTERCEPT_RIGHT : 

   TeamContext.getInstance().setNewContext(States.INTERCEPT_RIGHT,  

     owningAgent.getType()); 
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   break; 

    

  

     default: 

        // do nothing 

       break; 

  } 

  boolean happens=PursuitGame.getInstance().moveTo(owningAgent.getType() 

    , position); 

  if (happens) 

  { 

   owningAgent.setCurrentPosition(position); 

  } 

  else if (action == Actions.UP || action == Actions.DOWN || 

    action == Actions.LEFT || action == Actions.RIGHT) 

  { 

   actionPerformed = false; 

  } 

  return actionPerformed; 

   

 } 

  

  

  

 private void initializePolicy(String fileName) 

 { 

  ObjectInputStream input = null; 

  try // open file 

       { 

          input = new ObjectInputStream( 

             new FileInputStream( fileName ) ); 

       } // end try 

       catch ( IOException ioException ) 

       { 

          System.err.println( "Error opening file." ); 

       } // end catch 

   

    // read in single HashMap of policy generated by 

       // learning algorithm 

       try // input the values from the file 

       {  

          Object tempPolicy = input.readObject(); 

          if (tempPolicy instanceof HashMap<?,?>) 

          { 

           policy = (HashMap<Situation, Constants.Actions[]>)tempPolicy; 

          } 

            

           

       } // end try 

       catch ( EOFException endOfFileException ) 

       { 
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        System.out.println("end of file reached- nothing read"); 

       } // end catch 

       catch ( ClassNotFoundException classNotFoundException ) 

       { 

        classNotFoundException.printStackTrace(); 

          System.err.println( "Unable to create object." ); 

       } // end catch 

       catch ( IOException ioException ) 

       { 

        ioException.printStackTrace(); 

          System.err.println( "Error during reading from file." ); 

       } // end catch 

   

 } 

  

 //method to check if actions are equal 

 private boolean actionsSame(Actions[] compareTo, Actions[] compareAgainst) 

 { 

  boolean same = false; 

  if (compareTo!= null && compareAgainst != null) 

  { 

   if (compareTo.length == compareAgainst.length) 

   { 

    same = true; 

    for (int i=0;i<compareTo.length;i++) 

    { 

     if (compareTo[i]!=compareAgainst[i]){ 

      same = false; 

     } 

    } 

   } 

  } 

   

  return same;   

 } 

  

 private class ActionCount 

 { 

  public Actions[] actions = null; 

  public int count = 0; 

 } 

}  
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TeamContext.java 

import Common.Constants; 

import Common.Situation; 

import Common.Position; 

 

// team context for CCXBR framework 

// author: Cynthia Johnson 

public class TeamContext implements Constants 

{ 

 private static boolean initialized = false; 

 private static TeamContext instance = null; 

  

 

 // initialize all the contexts in this game 

 private Context searchTopLeft= new 

Context(stateStrings[States.SEARCH_TOP_LEFT.ordinal()]); 

 private Context searchTopRight = new 

Context(stateStrings[States.SEARCH_TOP_RIGHT.ordinal()]); 

 private Context searchBotLeft = new 

Context(stateStrings[States.SEARCH_BOT_LEFT.ordinal()]); 

 private Context searchBotRight= new 

Context(stateStrings[States.SEARCH_BOT_RIGHT.ordinal()]); 

 private Context goToTop = new Context(stateStrings[States.GO_TO_TOP.ordinal()]); 

 private Context goToRight = new Context(stateStrings[States.GO_TO_RIGHT.ordinal()]); 

 private Context goToLeft = new Context(stateStrings[States.GO_TO_LEFT.ordinal()]); 

 private Context goToBottom = new Context(stateStrings[States.GO_TO_BOTTOM.ordinal()]); 

 private Context interceptTop = new Context(stateStrings[States.INTERCEPT_TOP.ordinal()]); 

 private Context interceptBottom = new 

Context(stateStrings[States.INTERCEPT_BOTTOM.ordinal()]); 

 private Context interceptRight = new 

Context(stateStrings[States.INTERCEPT_RIGHT.ordinal()]); 

 private Context interceptLeft = new Context(stateStrings[States.INTERCEPT_LEFT.ordinal()]); 

 private TeamStates teamContext = TeamStates.SEARCHING; 

 States blues[] = new States[4]; 

  

 private TeamContext() 

 { 

  blues[PlayerType.BLUE1.ordinal()] = States.SEARCH_TOP_LEFT; 

  blues[PlayerType.BLUE2.ordinal()] = States.SEARCH_TOP_RIGHT; 

  blues[PlayerType.BLUE3.ordinal()] = States.SEARCH_BOT_LEFT; 

  blues[PlayerType.BLUE4.ordinal()] = States.SEARCH_BOT_RIGHT; 

   

 } 

  

 public static TeamContext getInstance() 

 { 

  // method to allow agents to get instance of team context 

  if (!initialized) 

  { 

   instance = new TeamContext(); 

   initialized = true; 
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  } 

   

  return instance; 

 } 

  

 public void destroy() 

 { 

  instance = null; 

  initialized = false; 

 } 

  

 public Situation getAgentInfo(PlayerType type) 

 { 

  // returns the situation for the agent at  

  // node numbered node. 

  Situation situation = new Situation(); 

  // fill information in the situation 

  situation.myType = type; 

  situation.myState = blues[type.ordinal()]; 

  // they know all blue and red only if known 

     situation.blue1Position = PursuitGame.getInstance(). 

      getPosition(PlayerType.BLUE1); 

     situation.blue2Position = PursuitGame.getInstance(). 

      getPosition(PlayerType.BLUE2); 

     situation.blue3Position = PursuitGame.getInstance(). 

      getPosition(PlayerType.BLUE3); 

     situation.blue4Position = PursuitGame.getInstance(). 

      getPosition(PlayerType.BLUE4); 

     situation.redPosition = PursuitGame.getInstance(). 

      getPosition(PlayerType.RED); 

      

   

  return situation; 

 } 

  

 Context translateNameToContext(States contextName) 

 { 

   

  switch (contextName) 

  { 

  case SEARCH_TOP_LEFT: 

   return searchTopLeft; 

    

  case SEARCH_TOP_RIGHT: 

   return searchTopRight; 

    

  case SEARCH_BOT_LEFT: 

   return searchBotLeft; 

    

  case SEARCH_BOT_RIGHT: 

   return searchBotRight; 
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  case GO_TO_TOP: 

   return goToTop; 

    

  case GO_TO_RIGHT: 

   return goToRight; 

    

  case GO_TO_LEFT: 

   return goToLeft; 

    

  case GO_TO_BOTTOM: 

   return goToBottom; 

    

  case INTERCEPT_TOP:   

   return interceptTop; 

    

  case INTERCEPT_BOTTOM: 

   return interceptBottom; 

    

  case  INTERCEPT_RIGHT: 

   return interceptRight; 

    

  case INTERCEPT_LEFT: 

   return interceptLeft; 

   

  default: 

   return null; 

  } 

 } 

  

 public States getContext(int index) 

 { 

  return blues[index]; 

 } 

  

 public void setNewContext(States newContext, PlayerType type) 

 { 

 // System.out.println("Switching context "+ type.toString()+" to " + 

 //   newContext.toString()); 

  // set context of that player 

  switch (type) 

  { 

  case BLUE1: 

   blues[0]=newContext; 

   break; 

  case BLUE2: 

   blues[1] = newContext; 

   break; 

  case BLUE3: 

   blues[2] = newContext; 

   break; 
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  case BLUE4: 

   blues[3] = newContext; 

   break; 

  } 

   

 } 

  

  

} 
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APPENDIX E - TEAMBOTS TRAINER CLASS CODE 
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Trainer.java 

package Training; 

// main class for training algorithm for bucket brigade 

import Common.Constants; 

import Common.Situation; 

import Common.Position; 

import Common.PlayerInfo; 

 

 

import java.io.BufferedReader; 

import java.io.EOFException; 

import java.io.FileReader; 

import java.io.FileOutputStream; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

 

import java.io.ObjectOutputStream; 

import java.util.ArrayList; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.List; 

import java.util.Map; 

import java.util.Set; 

import java.util.Vector; 

 

import EDU.gatech.cc.is.util.Vec2; 

 

public class Trainer implements Constants 

{ 

 private BufferedReader in; 

 private String logName = null; 

 private List<Map<Situation, Constants.ACTION_PRIMITIVE>> maps = new 

ArrayList<Map<Situation, Constants.ACTION_PRIMITIVE>>(); 

 private Vector[] trainingData = new Vector[14]; 

    private final int TRANS_GO_TO_DISTANCE = 5; 

 

    private Vec2 opponentGoal = new Vec2(-1.37,0); 

    private Vec2 goal = new Vec2(1.37,0); 

 

 public Trainer(String fileName) 

 { 

 

     logName = fileName; 

   try 
  { 

  // open file for reading 

   in= new BufferedReader(new FileReader(logName)); 

  } 

  catch (Exception ex) 

  { 
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   System.out.println("Error opening log file"); 

   ex.printStackTrace(); 

  } 

 

  //create a hash map for each context 

  for (int i=0; i< Constants.States.END_CONTEXT.ordinal(); i++) 

  { 

   maps.add(new HashMap<Situation, Constants.ACTION_PRIMITIVE>()); 

   trainingData[i] = new Vector(); 

  } 

 

 } 

 

 public void createHashMaps() 

 { 

 

 

 

  Situation current = new Situation(); 

 

 

  int currentSimTime=0; 

 

 

  // process 1 agent at a time - so we'll be iterating through 

  // the file multiple times 

  for (int j=0; j<=5; j++) 

  { 

   // reset file to beginning 

   try 
   { 

     in.close(); 

     in= new BufferedReader(new FileReader(logName)); 

    do 
    { 

 

 

     // looking for agent j 

     // create current Situation 

     current = new Situation(); 

 

 

     // first line should be sim time 

     String timeLine = in.readLine(); 

     // get sim time from parsing the first line 

     String[] splits = timeLine.split("\t"); 

 

     int simTime = Integer.parseInt(splits[1]); 

// System.out.println("Processed a simTime " + simTime+ " for agent " + j); 

     // we are building situation for west player j 

     // other west players go into teammates 
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     // east players go into opponents 

     int teammateCount = 0; 

     int opponentCount = 0; 

     // process all players - ten total for both sides 

     for (int i=0; i< 10; i++) 

     { 

      int playerNum = 0; 

      boolean isWestSide = false; 

      Position position = new Position(); 

      String description = new String(""); 

      // first line = side Player Number: tab playerNum 

      String line = in.readLine(); 

      splits = line.split("\t"); 

      // this creates two strings- the first has side info- the 

second player Num 

      playerNum = Integer.parseInt(splits[1]); 

      isWestSide = splits[0].contains("West"); 

 

      // next line contains description 

      // not used - read and throw away 

      line = in.readLine(); 

 

      // next line = x, y position info 

      line = in.readLine(); 

      splits = line.split("\t"); 

      position.x = Double.parseDouble(splits[1]); 

      position.y = Double.parseDouble(splits[2]); 

 

      // next line = heading 

      line = in.readLine(); 

      splits = line.split("\t"); 

      position.t = Double.parseDouble(splits[1]); 

 

      // next line = speed 

      line = in.readLine(); 

      splits = line.split("\t"); 

      double speed = Double.parseDouble(splits[1]); 

      // ignore this- speed not used in determining next move 

      

 

      // end of player - place appropriately in situation 

      if (!isWestSide && playerNum == j) 

      { 

       current.myNum = playerNum; 

       current.myPosition = position; 

      } 

      else if (!isWestSide) 

      { 

       PlayerInfo info = new PlayerInfo(); 

       

       info.position = position; 
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       info.playerNum = playerNum; 

       current.teammates[teammateCount] = info; 

       teammateCount++; 

      } 

      else // is opponent 

      { 

       PlayerInfo info = new PlayerInfo(); 

       info.position = position; 

       info.playerNum = playerNum; 

       current.opponents[opponentCount] = info; 

       opponentCount++; 

      } 

 

     }  // end parse of player Info 

      

     // adjust teammates and opponent to be angle and 

     // distance rather than actual postiion 

     for (int i=0; i<4; i++) 

     { 

      current.teammates[i].position.sub(current.myPosition); 

     } 

     for (int i=0; i<5; i++) 

     { 

      current.opponents[i].position.sub(current.myPosition); 

     } 

     // Next is ball position 

     Position ballPosition = new Position(); 

     String line = in.readLine(); 

     splits = line.split("\t"); 

     if (splits.length >2 ) 

     { 

 

      ballPosition.x = Double.parseDouble(splits[1]); 

      ballPosition.y = Double.parseDouble(splits[2]); 

      current.ballPosition = ballPosition; 

     } 

     if (ballPosition.x >= 0.0) 

     { 

      current.teamState = Constants.TeamStates.DEFENSE; 

     } 

     else 
     { 

      current.teamState = Constants.TeamStates.OFFENSE; 

     } 

     // next is ball velocity 

     Position ballVelocity = new Position(); 

     line = in.readLine(); 

     splits = line.split("\t"); 

     if (splits.length > 1) 

     { 
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      ballPosition.t = Double.parseDouble(splits[1]);; 

      // ball velocity not used to determine next move 

      //current.ballVelocity = ballVelocity; 

     } 

     // next line is score 

     // read and ignore 

     line = in.readLine(); 

 

     // next line is After:  read and ignore 

     line = in.readLine(); 

 

     // now get appropriate actions with this scenario from file 

     Constants.ACTION_PRIMITIVE currentActions = 

Constants.ACTION_PRIMITIVE.NONE; 

     String contextDescription = new String(); 

     // we have five players to parse - we only want playerNum =j, 

     // but we have to parse all of them to get currentActions 

 

     for (int i=0; i< 5; i++) 

     { 

 

      int playerNum = 0; 

 

 

      String description = new String(""); 

      // first line = side Player Number: tab playerNum 

         line = in.readLine(); 

      splits = line.split("\t"); 

      // this creates two strings- the first has side info- the 

second player Num 

      playerNum = Integer.parseInt(splits[1]); 

 

 

      // next line contains description 

      // used to help with out context designation 

      description = in.readLine(); 

 

      // next line = heading info 

      double heading = 0.0; 

      line = in.readLine(); 

      splits = line.split("\t"); 

      heading = Double.parseDouble(splits[1]); 

 

      // next line = speed 

      double speed = 0.0; 

      line = in.readLine(); 

      splits = line.split("\t"); 

      speed = Double.parseDouble(splits[1]); 

 

      // next line = kicked true or false 

      boolean kicked = false; 
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      line = in.readLine(); 

      splits = line.split("\t"); 

      kicked = Boolean.parseBoolean(splits[1]); 

 

      if (playerNum == j) 

      { 

       // this is our action info 

      // currentActions.speed = speed; 

      // currentActions.kick = kicked; 

      // currentActions.heading = heading; 

       //contextDescription = description; 

       if (description.equals("move to ball")) 

       { 

        currentActions = 

ACTION_PRIMITIVE.MOVE_TO_BALL; 

       } 

       else if (description.equals("get behind ball")) 

       { 

        currentActions = 

ACTION_PRIMITIVE.GET_BEHIND_BALL; 

         

       } 

       else if (description.equals("move to backfield")) 

       { 

        currentActions = 

ACTION_PRIMITIVE.MOVE_TO_BACKFIELD; 

       } 

       else 
       { 

        System.out.println("Unknonw action= " 

+ description); 

       } 

      } 

     } 

 

     // this version only does east side 

     current.side = 1; 

     // determine if closest to ball 

     double distance = 

current.myPosition.differenceXY(current.ballPosition); 

     //current.closestToBall = false; 

     // check teammates to see if one of them is closer 

 

     for (int i=0; i<4;i++) 

     { 

      double temp = 

current.teammates[i].position.differenceXY(current.ballPosition); 

       

     } 

     boolean ballOnOurSide = false; 

     if (current.ballPosition.x < 0) 
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      ballOnOurSide = true; 

 

 

      

     

      

     // calculate ball angle 

      

     double temp = (double)(current.ballPosition.x - 

current.myPosition.x); 

     double temp2 = (double)(current.ballPosition.y - 

current.myPosition.y); 

     current.ballAngle = Math.atan2(temp2, temp ); 

     

     // end parse of one simtime 

     // default context based on player number 

     Constants.States context = Constants.States.MOVING_0 ; 

     // is player behind ball - use x position to determine 

     if (current.ballPosition.x < current.myPosition.x) 

     { 

      current.isBehindBall = true; 

     } 

      

      

      

     // determine context based on context Description 

     // default to to_ball context 

     Constants.States myContext = Constants.States.MOVING_0; 

     // determine context 

     

      

     if (current.isBehindBall  ) 

     { 

      switch (current.myNum) 

      { 

      case 0: 

       myContext = Constants.States.MOVING_0; 

       break; 

      case 1: 

       myContext = Constants.States.MOVING_1; 

       break; 

      case 2: 

       myContext = Constants.States.MOVING_2; 

        

       break; 

      case 3: 

       myContext = Constants.States.MOVING_3; 

       break; 

      case 4: 

       myContext = Constants.States.MOVING_4; 

       break; 
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      } 

     } 

     else if (!current.isBehindBall  ) 

     { 

      switch (current.myNum) 

      { 

      case 0: 

       myContext = 

Constants.States.GET_BEHIND_0; 

       break; 

      case 1: 

       myContext = 

Constants.States.GET_BEHIND_1; 

       break; 

      case 2: 

       myContext = 

Constants.States.GET_BEHIND_2; 

       break; 

      case 3: 

       myContext = 

Constants.States.GET_BEHIND_3; 

       break; 

      case 4: 

       myContext = 

Constants.States.GET_BEHIND_4; 

       break; 

      } 

     } 

     current.myState = myContext; 

     context = myContext; 

 

     // save to behavior map 

     trainHashMap(current, context,  currentActions); 

 

     // loop until EOF 

    } while (true); 

 

   }   // end try 

   catch (EOFException endOfFileException) 

   { 

    // done with this agent = 

    // go on to the next one 

    System.out.println("Finished with an agent-EOF"); 

   } 

   catch (Exception ex) 

   { 

    //ex.printStackTrace(); 

    System.out.println("Finished with an agent"); 

   } 

  }  // end for (j) 
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  // done with agents 

  // save policies to files 

  savePoliciesToFile(); 

 

 

 } 

 

 

 private void trainHashMap(Situation situation, Constants.States context, 

Constants.ACTION_PRIMITIVE actions) 

 { 

  HashMap<Situation, Constants.ACTION_PRIMITIVE> myMap = null; 

  

  boolean mismatch = false; 

 

  try 
  { 

 

   // sort arrays in Situation 

   situation.sortArrays(); 

  } 

  catch (Exception ex) 

  { 

   //Unable to sort 

   ex.printStackTrace(); 

  } 

 

  // get map based on context 

  int index = context.ordinal(); 

 

 

  myMap = (HashMap<Situation,Constants.ACTION_PRIMITIVE>)maps.get(index); 

 

  Set set= myMap.keySet () ; 

 

  //obtain an Iterator for Collection 

 

  Iterator itr = set.iterator(); 

 

  //iterate through HashMap values iterator 

  boolean found = false; 

   while(itr.hasNext()) 

  { 

 

   Situation latestKey = (Situation)itr.next(); 

   // check to see if this situation exists in map already 

   //if (latestKey.isSimilar(situation)) 

   if (latestKey.equals(situation)) 

   { 

    found = true; 

    //System.out.println("Got a matching situation"); 
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    // check to see if actions map 

    Constants.ACTION_PRIMITIVE savedActions = 

(Constants.ACTION_PRIMITIVE)myMap.get(latestKey); 

    // first check for size map 

    if (savedActions == null) 

    { 

     System.out.println("Got null saved actions"); 

    } 

    else if (actions == null) 

    { 

     System.out.println("actions = null"); 

 

    } 

    else if (!(savedActions == actions) ) 

    { 

     // different actions- save a separate entity unless equal 

     if (latestKey.equals(situation)) 

     { 

 

      // mismatch in actions 

      mismatch = true; 

      System.out.println("Got a mismatched situation"); 

     } 

     else if (savedActions==actions) 

     { 

      found = true; 

      System.out.println("Saved entering one"); 

     } 

     else 
     { 

      found = false; 

     } 

    } 

    // we have mismatch or duplicate mark appropriately 

    if (mismatch) 

    { 

     // get entry from myVector and increment count 

     System.out.println("GOT A MISMATCH"); 

 

    } 

 

   } 

 

  } 

  if (!found) 

  { 

   // this is first time for this situation so just add to map 

   myMap.put(situation, actions); 

  } 

 

 } 
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    // method to convert string to boolean 

    boolean convertStringToBoolean(String boolString) 

    { 

     if (boolString.equals("false")) 

     { 

      return false; 

     } 

     else 
     { 

      return true; 

     } 

    } 

 

 

 

 

 

    private void savePoliciesToFile() 

    { 

     for (int k=0; k< Constants.States.END_CONTEXT.ordinal(); k++) 

     { 

      ObjectOutputStream output = null; 

      String fileName = "default.map"; 

      // get policy hashmap to save 

      HashMap<Situation, Constants.ACTION_PRIMITIVE> myMap = null; 

 

      // get map based on context 

      myMap = (HashMap<Situation, Constants.ACTION_PRIMITIVE>)maps.get(k); 

      // get name of file to save to 

      String temp = stateStrings[k]; 

      fileName = temp+".map"; 

 

      // open file for writing 

      try // open file 

           { 

             output = new ObjectOutputStream( 

                new FileOutputStream( fileName ) ); 

 

             // write to file 

             output.writeObject( myMap ); 

 

             // close file 

             output.close(); 

           } // end try 

 

      catch (IOException ioException) 
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           { 

           ioException.printStackTrace(); 

              System.err.println( "Error opening file." ); 

           } // end catch 

 

      // open file for writing 

      try // open file 

           { 

        String txtFileName = temp + ".txt"; 

             PrintWriter out = new PrintWriter( 

                new FileWriter( txtFileName ) ); 

 

             Set keySet = myMap.keySet(); 

             Iterator iter = keySet.iterator(); 

             while (iter.hasNext()) 

             { 

              Situation sit = (Situation)iter.next(); 

              sit.print(out); 

              Constants.ACTION_PRIMITIVE actions = myMap.get(sit); 

              out.println("Action =" + actions.toString()); 

             // out.println("Heading = " + actions.heading); 

             // out.println("Speed = " + actions.speed); 

             // out.println("Kick = " + actions.kick); 

 

 

             } 

 

 

             // close file 

             out.close(); 

           } // end try 

 

      catch (IOException ioException) 

           { 

           ioException.printStackTrace(); 

              System.err.println( "Error opening file." ); 

           } // end catch 

     } // end for k 

    } 

 

 /** 

  * @param args 

  */ 

 public static void main(String[] args) 

 { 

  // get log file name with training data 

  // from arguments or constant 

  String logFileName = "TeamBotsTrain.log"; 

  // create trainer class 

  Trainer myTrainer = new Trainer(logFileName); 
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  myTrainer.createHashMaps(); 

 

 

 

 

 } 

 

} 
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Situation.java 

package Common; 

 

import EDU.gatech.cc.is.util.Vec2; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.io.Serializable; 

import java.util.Arrays; 

import java.util.Comparator; 

 

 

// Class describing the current world state of an agent 

 

//Class describing the current world state of an agent 

 

public class Situation implements Constants, Serializable 

{ 

 

    public int  myNum; 

    public Constants.States myState; 

 public Position myPosition = new Position(); 

 public PlayerInfo teammates[] = new PlayerInfo[4]; 

 public PlayerInfo opponents[] = new PlayerInfo[5]; 

 public Position ballPosition = new Position(); 

 public double ballAngle ; 

 

 

 public boolean isBehindBall; 

 public int side;   // = -1 if west and 1 if east 

 public Constants.TeamStates teamState; 

 // set up constants for various weights 

 final int MY_POSITION_WEIGHT =  0; 

 final int TEAMMATE1_WEIGHT =  1; 

 final int TEAMMATE2_WEIGHT =  2; 

 final int TEAMMATE3_WEIGHT =  3; 

 final int TEAMMATE4_WEIGHT = 4; 

 final int OPPONENT1_WEIGHT = 5; 

 final int OPPONENT2_WEIGHT = 6; 

 final int OPPONENT3_WEIGHT = 7; 

 final int OPPONENT4_WEIGHT =  8; 

 final int OPPONENT5_WEIGHT = 9; 

 final int BALL_WEIGHT =   10; 

 final int SIDE_WEIGHT =   11; 

 final int TEAMSTATE_WEIGHT =    12; 

    final int BEHIND_BALL_WEIGHT = 13; 

    final int BALL_ANGLE_WEIGHT =   14; 

 final int PLAYER_NUM_WEIGHT  = 15; 

 final double SIMILAR =   0.50; 
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 // default constructor 

 public Situation() 

 { 

  

  isBehindBall = false; 

  for (int i=0; i< 4; i++) 

  { 

   teammates[i] = new PlayerInfo(); 

   opponents[i] = new PlayerInfo(); 

 

 

  } 

  opponents[4] = new PlayerInfo(); 

  teamState = Constants.TeamStates.DEFENSE; 

   

 } 

 

 // copy constructor 

 public Situation(Situation copy) 

 { 

 

      myNum = copy.myNum; 

   myPosition = copy.myPosition; 

   for (int i =0 ; i < 4; i++) 

   { 

    teammates[i] = copy.teammates[i]; 

   } 

     for (int i=0; i<5; i++) 

     { 

      opponents[i] = copy.opponents[i]; 

     } 

 

   ballPosition = copy.ballPosition; 

    

   isBehindBall = copy.isBehindBall; 

   teamState = copy.teamState; 

 

 } 

 

 

 public boolean equals(Situation copy) 

 { 

  // determine if newSituation is equal to this one 

  boolean result = false; 

  if ( 

      myNum == copy.myNum && 

   myPosition == copy.myPosition && 

   teammates[0] == copy.teammates[0] && 

   teammates[1] == copy.teammates[1] && 

   teammates[2] == copy.teammates[2] && 

   teammates[3] == copy.teammates[3] && 
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      opponents[0] == copy.opponents[0] && 

      opponents[1] == copy.opponents[1] && 

      opponents[2] == copy.opponents[2] && 

      opponents[3] == copy.opponents[3] && 

      opponents[4] == copy.opponents[4] && 

  ballPosition == copy.ballPosition && 

  isBehindBall == copy.isBehindBall  && 

  teamState    == copy.teamState  ) 

  { 

   result = true; 

  } 

 

  return result; 

 } 

 

 

 

 public double contextuallyWeightedNearestNeighbor(Situation compareTo, States context) 

 { 

  WeightClass weightClass = getWeights(context); 

  double weights[] = weightClass.weights; 

  double score = 0; 

 

  // make sure positions are appropriately sorted for teammates and opponents 

  this.sortArrays(); 

  compareTo.sortArrays(); 

 

  // my position difference 

  score = myPosition.differenceXY(compareTo.myPosition) * 

   weights[MY_POSITION_WEIGHT]; 

 

  // teammate differences 

  score+= teammates[0].overallDifference(compareTo.teammates[0]) * 

    weights[TEAMMATE1_WEIGHT]; 

 

   score+= teammates[1].overallDifference(compareTo.teammates[1]) * 

    weights[TEAMMATE2_WEIGHT]; 

 

   score+= teammates[2].overallDifference(compareTo.teammates[2]) * 

    weights[TEAMMATE3_WEIGHT]; 

 

   score+= teammates[3].overallDifference(compareTo.teammates[3]) * 

    weights[TEAMMATE4_WEIGHT]; 

 

   

    

   // opponent differences 

   score+= opponents[0].overallDifference(compareTo.opponents[0]) * 

    weights[OPPONENT1_WEIGHT]; 

 

   score+= opponents[1].overallDifference(compareTo.opponents[1]) * 
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    weights[OPPONENT2_WEIGHT]; 

 

   score+= opponents[2].overallDifference(compareTo.opponents[2]) * 

    weights[OPPONENT3_WEIGHT]; 

 

   score+= opponents[3].overallDifference(compareTo.opponents[3]) * 

    weights[OPPONENT4_WEIGHT]; 

 

   score+= opponents[4].overallDifference(compareTo.opponents[4]) * 

    weights[OPPONENT5_WEIGHT]; 

 

  // ball position 

  score += ballPosition.overallDifference(compareTo.ballPosition) * 

   weights[BALL_WEIGHT]; 

 

  score += Math.abs(ballAngle - compareTo.ballAngle) * 

   weights[BALL_ANGLE_WEIGHT]; 

 

  

 

   // side different 

   score+= Math.abs(side - compareTo.side) * 

    weights[SIDE_WEIGHT]; 

 

   // team context difference 

   score += Math.abs(teamState.ordinal() - compareTo.teamState.ordinal()) * 

    weights[TEAMSTATE_WEIGHT]; 

    

   if (myNum != compareTo.myNum) 

   { 

    score +=weights[PLAYER_NUM_WEIGHT]; 

   } 

   if (isBehindBall != compareTo.isBehindBall) 

   { 

    score +=weights[BEHIND_BALL_WEIGHT]; 

   } 

 

  return (double)score; 

 } 

 

 public boolean isSimilar(Situation other) 

 { 

  double score = contextuallyWeightedNearestNeighbor(other, States.END_CONTEXT); 

  // call nearest neighbor with context to return all ones 

  if ( score < SIMILAR) 

  { 

  // System.out.println("Score is " + score); 

   return true; 

  } 

  return false; 

 } 
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 public void sortArrays() 

 { 

  // sort teammates and opponents using Position as comparator 

  Arrays.sort(teammates, (Comparator)opponents[0]); 

  Arrays.sort(opponents, (Comparator)teammates[0]); 

 } 

 

 

 public void print(PrintWriter out) throws IOException 

 { 

  // write structure to file 

  out.println("*********************"); 

 

 

 

  out.println("MyNum: " + myNum); 

      // TBD print position information 

      out.println("My Position: " + myPosition.x +"," + myPosition.y); 

      out.println("Ball Position: " + ballPosition.x + "," + ballPosition.y); 

      out.println("My heading: " + myPosition.t); 

      out.println("Ball heading " + ballPosition.t); 

      out.println("Ball Angle " + ballAngle); 

      out.println("Is Behind Ball " + isBehindBall); 

 

 

 } 

 

 

 

 

 private WeightClass getWeights(States context) 

 { 

  double[] weights = new double[25]; 

  for (int i=0; i< weights.length; i++) 

  { 

   weights[i]=0; 

  } 

 

  if (context == Constants.States.MOVING_0) 

  { 

   weights[MY_POSITION_WEIGHT] = 1.0 ; 

   weights[TEAMMATE1_WEIGHT] = 0.0; 

    weights[TEAMMATE2_WEIGHT] = 0.0; 

    weights[TEAMMATE3_WEIGHT] = 0.0; 

    weights[TEAMMATE4_WEIGHT] =0.0; 

    weights[OPPONENT1_WEIGHT] =0.0; 

    weights[OPPONENT2_WEIGHT] =00.0; 

   weights[OPPONENT3_WEIGHT] = 0.0; 

    weights[OPPONENT4_WEIGHT] =0.0; 

    weights[OPPONENT5_WEIGHT] =0.0; 
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    weights[BALL_WEIGHT] =1.0; 

    weights[SIDE_WEIGHT] =0.0; 

    weights[TEAMSTATE_WEIGHT]= 0.0; 

    weights[BEHIND_BALL_WEIGHT] = 0.0; 

    weights[BALL_ANGLE_WEIGHT] = 2; 

    weights[PLAYER_NUM_WEIGHT] = 1.0; 

  } 

  else if(context == Constants.States.MOVING_1  || 

    context == Constants.States.MOVING_3 || 

    context == Constants.States.MOVING_2 ||     

    context == Constants.States.MOVING_4) 

  { 

   weights[MY_POSITION_WEIGHT] = 1.0 ; 

   weights[TEAMMATE1_WEIGHT] = 0.1; 

    weights[TEAMMATE2_WEIGHT] = 0.1; 

    weights[TEAMMATE3_WEIGHT] = 0.1; 

    weights[TEAMMATE4_WEIGHT] =0.1; 

    weights[OPPONENT1_WEIGHT] =0.0; 

    weights[OPPONENT2_WEIGHT] =00.0; 

   weights[OPPONENT3_WEIGHT] = 0.0; 

    weights[OPPONENT4_WEIGHT] =0.0; 

    weights[OPPONENT5_WEIGHT] =0.0; 

     

    weights[BALL_WEIGHT] =0.5; 

    weights[SIDE_WEIGHT] =0.0; 

    weights[TEAMSTATE_WEIGHT]= 0.0; 

    weights[PLAYER_NUM_WEIGHT] = 1.0; 

    weights[BEHIND_BALL_WEIGHT] = 1.0; 

    weights[BALL_ANGLE_WEIGHT] = 1.0; 

  } 

  else if (context == Constants.States.GET_BEHIND_0 || 

     context == Constants.States.GET_BEHIND_1 || 

     context == Constants.States.GET_BEHIND_2 || 

     context == Constants.States.GET_BEHIND_3 || 

     context == Constants.States.GET_BEHIND_4) 

  { 

   weights[MY_POSITION_WEIGHT] =1.0; 

   weights[TEAMMATE1_WEIGHT] = 0.1; 

    weights[TEAMMATE2_WEIGHT] = 0.1; 

    weights[TEAMMATE3_WEIGHT] = 00.1; 

    weights[TEAMMATE4_WEIGHT] =0.1; 

    weights[OPPONENT1_WEIGHT] =0.0; 

    weights[OPPONENT2_WEIGHT] =0.0; 

   weights[OPPONENT3_WEIGHT] = 0.0; 

    weights[OPPONENT4_WEIGHT] =0.0; 

    weights[OPPONENT5_WEIGHT] =0.0; 

    weights[BALL_WEIGHT] =1.0; 

    

    weights[SIDE_WEIGHT] =0; 

    weights[TEAMSTATE_WEIGHT]= 0.0; 

    weights[PLAYER_NUM_WEIGHT] = 1.0; 
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    weights[BEHIND_BALL_WEIGHT] = 0; 

    weights[BALL_ANGLE_WEIGHT] = 2.0; 

  }  

  else 

  { 

   weights[MY_POSITION_WEIGHT] = 1.0; 

   weights[TEAMMATE1_WEIGHT] = 1.0; 

    weights[TEAMMATE2_WEIGHT] = 1.0; 

    weights[TEAMMATE3_WEIGHT] = 1.0; 

    weights[TEAMMATE4_WEIGHT] =1.0; 

    weights[OPPONENT1_WEIGHT] =1.0; 

    weights[OPPONENT2_WEIGHT] =1.0; 

   weights[OPPONENT3_WEIGHT] = 1.0; 

    weights[OPPONENT4_WEIGHT] =1.0; 

    weights[OPPONENT5_WEIGHT] =1.0; 

    weights[BALL_WEIGHT] =1.0; 

   

    weights[SIDE_WEIGHT] =1.0; 

    weights[TEAMSTATE_WEIGHT]= 1.0; 

    

    weights[PLAYER_NUM_WEIGHT] = 1.0; 

    weights[BEHIND_BALL_WEIGHT] = 1.0; 

    weights[BALL_ANGLE_WEIGHT] = 1.0; 

  } 

 

 

  WeightClass returnValue = new WeightClass(); 

  returnValue.weights= weights; 

  return returnValue; 

 } 

 

  

  

 

 private class WeightClass 

 { 

  double[] weights; 

 

 } 

} 
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Constants.java 

package Common; 

// TeamBot simulation- Cynthia Johnson 

 

public interface Constants 

{ 

 

    public enum States  {CLOSEST, MOVING_0, MOVING_1, MOVING_2,  

     MOVING_3, MOVING_4, GET_BEHIND_0, GET_BEHIND_1,  

     GET_BEHIND_2, GET_BEHIND_3,GET_BEHIND_4, END_CONTEXT}; 

 public String[] stateStrings=  { "CLOSEST", "MOVING_0", 

   "MOVING_1","MOVING_2", "MOVING_3", "MOVING_4",  

   "GET_BEHIND_0", "GET_BEHIND_1", "GET_BEHIND_2",  

   "GET_BEHIND_3","GET_BEHIND_4"}; 

 public enum ACTION_PRIMITIVE  {GET_BEHIND_BALL, MOVE_TO_BALL, 

  MOVE_TO_BACKFIELD, NONE 

   

 }; 

 public String[] primitiveStrings = {"get behind ball",  

   "move to ball", "move to backfield" 

 }; 

  

 public enum TeamStates {OFFENSE, DEFENSE}; 

} 
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PlayerInfo.java 

package Common; 

/** 

 * @(#)PlayerInfo.java 

 * 

 * 

 * @author 

 * @version 1.00 2010/11/12 

 */ 

 import java.io.Serializable; 

 import java.util.Comparator; 

 

// Data structure class for player info in teammates and opponents 

public class PlayerInfo implements Serializable, Comparator 

{ 

 public int playerNum = -1; 

 public Position position = new Position(); 

 

 public int compare(Object o1, Object o2) 

 { 

  PlayerInfo player1 = (PlayerInfo)o1; 

  PlayerInfo player2 = (PlayerInfo)o2; 

  return player1.position.compare(player1.position, player2.position); 

 } 

 

 public double overallDifference(PlayerInfo other) 

 { 

  return (position.differenceHeading(other.position) + 

    position.differenceDistance(other.position)); 

 } 

} 
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Position.java 

package Common; 

 

import java.io.PrintWriter; 

import java.io.Serializable; 

import java.util.Comparator; 

import EDU.gatech.cc.is.util.Vec2; 

 

public class Position extends Vec2 implements Serializable, Comparator 

{ 

  

   

     

 

    private final double TWO_PI = Math.PI * 2; 

     

    public Position() 

    { 

        x =0.0; 

        y = 0.0; 

        

    } 

 

    public Position(Position copyPosition) 

    { 

        x = copyPosition.x; 

        y = copyPosition.y; 

        r = copyPosition.r; 

        t = copyPosition.t; 

         

    } 

     

    public Position(Vec2 copyPos) 

    { 

     x=copyPos.x; 

     y=copyPos.y; 

     r = copyPos.r; 

     t = copyPos.t; 

      

    } 

     

    public Position(double initX, double initY) 

    { 

     x = initX; 

     y=initY; 

      

    } 

 

    public boolean equals(Position newPosition) 

    { 

        boolean returnValue = false; 
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        if (newPosition == null) 

        { 

         return false; 

        } 

        if (x == newPosition.x && y == newPosition.y && 

         r == newPosition.r && t == newPosition.t) 

        { 

            returnValue = true; 

        } 

        return returnValue; 

    } 

     

    public boolean withinXMargin(Position compare) 

    { 

     boolean result = false; 

     if (Math.abs(x-compare.x) <= 0.2) 

      result = true; 

      

     return result; 

    } 

     

    public double distance(Position otherPosition) 

    { 

     // pythagorean theorem 

     double result =0; 

     result = Math.abs(x-otherPosition.x) * Math.abs(x-otherPosition.x); 

     result+= Math.abs(y-otherPosition.y) * Math.abs(y-otherPosition.y); 

     result = Math.sqrt(result); 

      

     return result; 

    } 

     

    public boolean withinMargin(Position compare) 

    { 

     boolean result = false; 

     if (distance(compare) <= 0.2) 

      result = true; 

      

     return result; 

    } 

 

    public double differenceXY(Position otherPosition) 

    { 

     double difference = 0; 

 

     // get absolute value of difference in row 

     difference = distance(otherPosition); 

 

 

     return difference; 

    } 
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    public double differenceHeading(Position otherPosition) 

    { 

     double difference = Math.abs(t- otherPosition.t); 

      

     return difference; 

    } 

 

    public double differenceDistance(Position otherPosition) 

    { 

     double difference = Math.abs(r-otherPosition.r); 

 

     

     return difference; 

    } 

 

    public double overallDifference(Position otherPosition) 

    { 

     double result = differenceHeading(otherPosition); 

     result+=distance(otherPosition); 

     return result; 

    } 

 

 public int compare(Object o1, Object o2) 

 { 

  Position one = (Position)o1; 

  Position two = (Position)o2; 

  if (one.equals(two)) 

  { 

   return 0; 

  } 

  if (one.x > two.x) 

  { 

   return 1; 

  } 

  else if (one.x < two.x) 

  { 

   return -1; 

  } 

  else if (one.y > two.y) 

  { 

   return 1; 

  } 

  else if (one.y < two.y) 

  { 

   return -1; 

  } 

  else if (one.r > two.r) 

  { 

   return 1; 

  } 
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  else if (one.r < two.r) 

  { 

   return -1; 

 

  } 

  else if (one.t > two.t) 

  { 

   return -1; 

  } 

  else 

   return 1; 

 } 

  

 public void toLog() 

 { 

  System.out.println("Position:\t" + x + "," +y); 

  System.out.println("Heading:\t" + t); 

   

 } 

}  
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APPENDIX F – TEAMBOTS RUN-TIME AGENT CODE 
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CCxBRPlayer.java 

/** 

 * @(#)CCxBRPlayer.java 

 * 

 * 

 * @author 

 * @version 1.00 2010/11/13 

 */ 

import EDU.gatech.cc.is.util.Vec2; 

import EDU.gatech.cc.is.abstractrobot.*; 

import  Common.*; 

 

 

public class CCxBRPlayer extends ControlSystemSS 

{ 

 private TeamContext tContext; 

 private long curr_time;  //What time is it? 

 

 private Vec2 ball; 

 

  

 private Vec2 center;   // the center of the field 

 private Vec2[] teammates;  //Where are my teammates? 

 private Vec2[] opponents;  //Where are my opponents? 

 private int  side; 

 public String   displayString; 

  

    public Situation current; 

 /** 

 Configure the control system.This method is 

 called once at initialization time. You can use it 

 to do whatever you like. 

 */ 

 public void Configure() 

 { 

  // create team context 

  tContext = TeamContext.getInstance(); 

  // get side - should be east =1 

  curr_time = abstract_robot.getTime(); 

  if( abstract_robot.getOurGoal(curr_time).x < 0) 

   side = -1; 

  else 

   side = 1; 

 } 

 

 

 /** 

 Called every timestep to allow the control system to 

 run. 

 */ 

 public int TakeStep() 



289 

 

 { 

  // Build current situation 

  current = new Situation(); 

  // get the current time for timestamps 

   

  curr_time = abstract_robot.getTime(); 

 

  boolean ballOnOurSide = false; 

 

  /*--- Get some sensor data ---*/ 

 

  // get vector to the ball and to the center of the field 

  ball = abstract_robot.getBall(curr_time); 

  center = abstract_robot.getPosition(curr_time); 

  current.myPosition.x = center.x; 

  current.myPosition.y = center.y; 

  current.myPosition.t = abstract_robot.getSteerHeading(curr_time); 

//System.out.println("My position = " + center.x + "," + center.y); 

 

   

  // transform to actual ball position 

  // put ball into situation 

  Vec2 actualBall = new Vec2(ball); 

  actualBall.add(center); 

  current.ballPosition.x = actualBall.x ; 

  current.ballPosition.y = actualBall.y; 

  current.ballPosition.t = ball.t; 

  // calculate ball angle 

   

  double temp = (double)(current.ballPosition.x - current.myPosition.x); 

  double temp2 = (double)(current.ballPosition.y - current.myPosition.y); 

  current.ballAngle = Math.atan2(temp2, temp ); 

     

 

        if (current.ballPosition.x < current.myPosition.x) 

        { 

         current.isBehindBall = true; 

        } 

        else 

        { 

         current.isBehindBall = false; 

        } 

    

  // get a list of the positions of our teammates 

  teammates = abstract_robot.getTeammates(curr_time); 

 // System.out.println("Teammatest length = " + teammates.length); 

  // place teammates into situation 

  for (int i=0; i<teammates.length;i++) 

  { 

   Vec2 teamPosition = new Vec2(teammates[i]); 
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   current.teammates[i].position = new Position(teamPosition); 

  } 

 

  /* get a list of the positions of the opponents */ 

  opponents = abstract_robot.getOpponents(curr_time); 

 // System.out.println("Opponents length = " + opponents.length); 

  for (int i=0; i<opponents.length;i++) 

  { 

   Vec2 teamPosition = new Vec2(opponents[i]); 

    

    

   current.opponents[i].position = new Position(teamPosition); 

  } 

  current.sortArrays(); 

 

  current.myNum = abstract_robot.getPlayerNumber(curr_time); 

  current.side = side; 

  

  Constants.States myContext = Constants.States.MOVING_0; 

  // determine context 

  

  if (current.isBehindBall  ) 

  { 

   switch (current.myNum) 

   { 

   case 0: 

    myContext = Constants.States.MOVING_0; 

    break; 

   case 1: 

    myContext = Constants.States.MOVING_1; 

    break; 

   case 2: 

    myContext = Constants.States.MOVING_2; 

    break; 

   case 3: 

    myContext = Constants.States.MOVING_3; 

    break; 

   case 4: 

    myContext = Constants.States.MOVING_4; 

    break; 

   } 

  } 

  else if (!current.isBehindBall ) 

  { 

   switch (current.myNum) 

   { 

   case 0: 

    myContext = Constants.States.GET_BEHIND_1; 

    break; 

   case 1: 

    myContext = Constants.States.GET_BEHIND_1; 
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    break; 

   case 2: 

    myContext = Constants.States.GET_BEHIND_2; 

    break; 

   case 3: 

    myContext = Constants.States.GET_BEHIND_3; 

    break; 

   case 4: 

    myContext = Constants.States.GET_BEHIND_4; 

    break; 

   } 

  } 

  current.myState = myContext; 

  // call context and perform appropriate action 

  Context context = tContext.translateNameToContext(myContext); 

  //abstract_robot.setDisplayString(current.myNum + " " +myContext.toString()); 

  displayString = current.myNum + " " +myContext.toString(); 

   

  current.sortArrays(); 

   

   

  context.step(this, current); 

 

  return 1; 

 } 

 

  

  

} 
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TeamContext.java 
import Common.Constants; 

import Common.Situation; 

import Common.Position; 

 

// team context for CCXBR framework 

// author: Cynthia Johnson 

public class TeamContext implements Constants 

{ 

 private static boolean initialized = false; 

 private static TeamContext instance = null; 

 

 

 // initialize all the contexts in this game 

 private Context closest= new 

Context(stateStrings[States.CLOSEST.ordinal()]); 

 private Context moving0 = new 

Context(stateStrings[States.MOVING_0.ordinal()]); 

 private Context moving1 = new 

Context(stateStrings[States.MOVING_1.ordinal()]); 

 private Context moving2 = new 

Context(stateStrings[States.MOVING_2.ordinal()]); 

 private Context moving3 = new 

Context(stateStrings[States.MOVING_3.ordinal()]); 

 private Context moving4 = new 

Context(stateStrings[States.MOVING_4.ordinal()]); 

 private Context getBehind0 = new 

Context(stateStrings[States.GET_BEHIND_0.ordinal()]); 

 private Context getBehind1 = new 

Context(stateStrings[States.GET_BEHIND_1.ordinal()]); 

 private Context getBehind2 = new 

Context(stateStrings[States.GET_BEHIND_2.ordinal()]); 

 private Context getBehind3 = new 

Context(stateStrings[States.GET_BEHIND_3.ordinal()]); 

 private Context getBehind4 = new 

Context(stateStrings[States.GET_BEHIND_4.ordinal()]); 

 

 

 private TeamStates teamContext = TeamStates.DEFENSE; 

 States blues[] = new States[4]; 

 

 private TeamContext() 

 { 

 

 

 } 

 

 public static TeamContext getInstance() 

 { 

  // method to allow agents to get instance of team context 

  if (!initialized) 

  { 

   instance = new TeamContext(); 

   initialized = true; 

  } 

 

  return instance; 
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 } 

 

 public void destroy() 

 { 

  instance = null; 

  initialized = false; 

 } 

 

 

 

 Context translateNameToContext(States contextName) 

 { 

 

  switch (contextName) 

  { 

  case CLOSEST: 

   return closest; 

 

  case GET_BEHIND_0: 

   return getBehind0; 

    

  case GET_BEHIND_1: 

   return getBehind1; 

    

  case GET_BEHIND_2: 

   return getBehind2; 

    

  case GET_BEHIND_3: 

   return getBehind3; 

    

  case GET_BEHIND_4: 

   return getBehind4; 

 

  case MOVING_0: 

   return moving0; 

    

  case MOVING_1: 

   return moving1; 

    

  case MOVING_2: 

   return moving2; 

    

  case MOVING_3: 

   return moving3; 

    

  case MOVING_4: 

   return moving4;  

    

   

 

   

  } 

  return moving1; 

 } 
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} 
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Context.java 

import java.io.EOFException; 

import java.io.FileInputStream; 

import java.io.IOException; 

import java.io.ObjectInputStream; 

import java.util.Collection; 

import java.util.HashMap; 

import java.util.Iterator; 

import java.util.Set; 

import java.util.Random; 

import java.util.Vector; 

 

import Common.*; 

import EDU.gatech.cc.is.util.Units; 

import EDU.gatech.cc.is.util.Vec2; 

import EDU.gatech.cc.is.abstractrobot.*; 

 

public  class Context implements Common.Constants 

{ 

 protected String name; 

 protected HashMap<Situation, Constants.ACTION_PRIMITIVE>   policy; 

 

 

 public Context(String contextName) 

 { 

  name= contextName; 

  initializePolicy(name+".map"); 

 } 

 

 

 public void step(CCxBRPlayer owningAgent, Situation currentSituation) 

 { 

 

  // check Hashmap for current situation 

 

   // find nearest neighbor 

 

   /* 

   #get Collection of keys contained in HashMap using 

   #  Collection values() method of HashMap class 

   # */ 

 

  /* if (this.name.equals(stateStrings[States.SEARCH_BOT_LEFT.ordinal()])) 

   { 

   System.out.println("In go to left"); 

   }*/ 

    Set set= policy.keySet () ; 

 

   //obtain an Iterator for Collection 

 

   Iterator itr = set.iterator(); 
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   //iterate through HashMap values iterator 

   Constants.ACTION_PRIMITIVE actions = null; 

            double lowScore = 1000; 

            Situation lowScorer = null; 

 

            int lowScorerCount = 0; 

            int count = 0; 

 

         Vector potentialActions = new Vector(); 

         int matchCount = 0; 

         int misMatchCount = 0; 

   while(itr.hasNext()) 

   { 

    Situation mySituation = (Situation)itr.next(); 

 

 

    double score = 

currentSituation.contextuallyWeightedNearestNeighbor(mySituation, currentSituation.myState); 

 

       if (score == lowScore) 

       { 

 

        Constants.ACTION_PRIMITIVE actionCheck = 

(Constants.ACTION_PRIMITIVE)policy.get(mySituation); 

        if (!(actionCheck ==actions)) 

        { 

         boolean inVector = false; 

            for (int l=0; l< potentialActions.size();l++) 

            { 

              ActionCount entry = (ActionCount)potentialActions.get(l); 

              if ((actionCheck == entry.actions)) 

              { 

               potentialActions.remove(entry); 

               entry.count ++; 

               potentialActions.add(entry); 

               inVector = true; 

               break; 

              } 

            } 

            if (!inVector) 

            { 

             ActionCount entry = new ActionCount(); 

             entry.actions = actionCheck; 

             entry.count = 1; 

             potentialActions.add(entry); 

            } 

         misMatchCount ++; 

 

        } 

        else 
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        { 

         matchCount ++; 

        } 

 

       } 

    if (score < lowScore) 

    { 

     lowScore = score; 

 

     lowScorer= mySituation; 

     actions = 

(Constants.ACTION_PRIMITIVE)policy.get(lowScorer); 

     lowScorerCount = count; 

     matchCount = 0; 

     misMatchCount =0; 

     potentialActions = new Vector(); 

 

    } 

    count ++; 

   } 

   int compareCount =matchCount; 

   Constants.ACTION_PRIMITIVE chosenActions  = actions; 

   if (misMatchCount > 0 && matchCount < misMatchCount) 

   { 

 

    // find most prominant action 

    for (int l=0; l<potentialActions.size();l++) 

    { 

     ActionCount entry = (ActionCount)potentialActions.get(l); 

     if (entry.count >compareCount) 

     { 

      chosenActions = entry.actions; 

      compareCount = entry.count; 

    //  System.out.println("Replaced actions"); 

     } 

    } 

   } 

 

   // set anything necessary in calling Agent 

   boolean performed = false; 

   boolean badAction = false; 

   if (chosenActions != null) 

   { 

 

 

    Constants.ACTION_PRIMITIVE action = chosenActions; 

 

    performed = performAction(action,  owningAgent); 

    if (!performed) 

    { 

     badAction = true; 
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    // System.out.println("Bad Action for " + 

owningAgent.myType.toString()); 

 

    } 

 

 

   } 

 

  } 

 

 

 

 private boolean performAction(Constants.ACTION_PRIMITIVE action,  CCxBRPlayer 

owningAgent) 

 { 

  boolean actionPerformed = true; 

  SocSmallSim abstractRobot =owningAgent.getAbstractRobot(); 

  long currTime = abstractRobot.getTime(); 

  // Apply action to abstractRobot 

  abstractRobot.setDisplayString(owningAgent.displayString + " "+ action.toString()); 

  

  if (action == ACTION_PRIMITIVE.GET_BEHIND_BALL) 

  { 

   // move to spot slightly above and beyond ball 

   Vec2 ball = abstractRobot.getBall(currTime); 

 

            // get vector to halfway between ball and goal 

    

   Vec2 ourGoal = abstractRobot.getOurGoal(currTime); 

   // see if ball between us and goal 

   double tempdir = -Units.BestTurnRad(ourGoal.t, 

     ball.t); 

   if (Math.abs(tempdir) < (Math.PI/2) ) 

   { 

    // yes  

    // swirl around ball 

    if (tempdir < 0) 

     ball.sett(ball.t - Math.PI/2); 

    else 

     ball.sett(ball.t + Math.PI/2); 

   } 

   abstractRobot.setSteerHeading(currTime, ball.t); 

   abstractRobot.setSpeed(currTime, 1.0); 

    

  } 

  else if (action == ACTION_PRIMITIVE.MOVE_TO_BACKFIELD) 

  { 

   Vec2 ourGoal = abstractRobot.getOurGoal(currTime); 

   // are we within 0.2 of goal 

   if (ourGoal.r < 0.2) 

   { 
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    // yes = stop 

    abstractRobot.setSpeed(currTime,0); 

     

   } 

   else if (ourGoal.r > 0.3) 

   { 

    // move toward goal full speed if more than 

    // 0.3 away 

    abstractRobot.setSteerHeading(currTime,ourGoal.t); 

    abstractRobot.setSpeed(currTime, 1.0); 

     

   } 

   else // somewhere inbetween 

   { 

    abstractRobot.setSteerHeading(currTime,ourGoal.t); 

    // choose slow speed toward goal 

    double speed =  (ourGoal.r - 0.2)/0.1; 

    abstractRobot.setSpeed(currTime, speed); 

   } 

  } 

  else if (action == ACTION_PRIMITIVE.MOVE_TO_BALL) 

  { 

   Vec2 ball = abstractRobot.getBall(currTime); 

   if (!abstractRobot.canKick(currTime)) 

   { 

    // not close enough to kick 

    abstractRobot.setSteerHeading(currTime, ball.t); 

    abstractRobot.setSpeed(currTime, 1.0); 

   } 

   else 

   { 

    //close enough to kick 

    // point towrd opposite goal and kick 

    Vec2 goal = abstractRobot.getOpponentsGoal(currTime); 

    abstractRobot.setSteerHeading(currTime, goal.t); 

    abstractRobot.kick(currTime); 

    abstractRobot.setSpeed(currTime, 0.5); 

    

   } 

   

  } 

   

    return actionPerformed; 

 

 } 

 

 

 

 private void initializePolicy(String fileName) 

 { 

  ObjectInputStream input = null; 
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  try // open file 

       { 

          input = new ObjectInputStream( 

             new FileInputStream( fileName ) ); 

       } // end try 

       catch ( IOException ioException ) 

       { 

          System.err.println( "Error opening file." ); 

       } // end catch 

 

    // read in single HashMap of policy generated by 

       // learning algorithm 

       try // input the values from the file 

       { 

          Object tempPolicy = input.readObject(); 

          if (tempPolicy instanceof HashMap<?,?>) 

          { 

           policy = (HashMap<Situation, Constants.ACTION_PRIMITIVE>)tempPolicy; 

          } 

 

 

       } // end try 

       catch ( EOFException endOfFileException ) 

       { 

        System.out.println("end of file reached- nothing read"); 

       } // end catch 

       catch ( ClassNotFoundException classNotFoundException ) 

       { 

        classNotFoundException.printStackTrace(); 

          System.err.println( "Unable to create object." ); 

       } // end catch 

       catch ( IOException ioException ) 

       { 

        ioException.printStackTrace(); 

          System.err.println( "Error during reading from file." ); 

       } // end catch 

 

 } 

 

 //method to check if actions are equal 

 private boolean actionsSame(Action compareTo, Action compareAgainst) 

 { 

  boolean same = false; 

  if (compareTo!= null && compareAgainst != null) 

  { 

   if (compareTo.equals(compareAgainst)) 

   { 

    same = true; 

 

   } 

  } 
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  return same; 

 

 } 

 

 

 // count of actions 

 private class ActionCount 

 { 

  public Constants.ACTION_PRIMITIVE actions = null; 

  public int count = 0; 

 } 

 

} 
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APPENDIX G:  TEAMBOTS TRAINING LOG EXAMPLE 
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Simtime: 150 

West Player Num: 1 

force: 943, -179 

Position: -0.47179944866997425 0.006726016850005653 

Heading: 0.6283185307179586 

Speed: 0.5 

West Player Num: 2 

force: 650, -58 

Position: -0.1296391780932033 0.4786319522074346 

Heading: 5.254788967838833 

Speed: 0.5 

West Player Num: 3 

0 {} -> 0 

Position: -0.10500000000000001 8.279243814703243E-18 

Heading: 2.5182511086550745E-16 

Speed: 1.0 

West Player Num: 4 

force: 650, 59 

Position: -0.129679030353685 -0.47860810128612646 

Heading: 1.0345889169854128 

Speed: 0.5 

West Player Num: 0 

force: 9113, -178 

Position: -1.171799448669974 0.006726016850005653 

Heading: 0.6283185307179586 

Speed: 0.5 

East Player Num: 1 

move to ball 

Position: 0.46971585360860924 0.24272644902562826 

Heading: 3.1012852357677674 

Speed: 0.5565695831417508 

East Player Num: 2 

move to ball 

Position: 0.12108029045933653 0.47475973540040445 

Heading: 3.918891207450441 

Speed: 0.7770624821186477 

East Player Num: 3 

move to ball 

Position: 0.46983390007558673 -0.24277365130138612 

Heading: 3.1869577937501816 

Speed: 0.5526480897515875 

East Player Num: 4 

move to ball 

Position: 0.1210805380236585 -0.474759128533849 

Heading: 2.364242091994057 

Speed: 0.7770790940491115 

East Player Num: 0 

move to backfield 

Position: 1.1557342698229496 0.00457586630152627 

Heading: 3.145551904873635 

Speed: 1.0 
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Ball Pos: 0.0 0.0 

Ball Heading: 0.0 

Score: 0 0 

After: 

Player Number: 1 

move to ball 

Heading: 3.1012852357677674 

Speed: 0.5440002345838894 

Kicked: false 

Player Number: 2 

move to ball 

Heading: 3.918891207450441 

Speed: 0.767530279364854 

Kicked: false 

Player Number: 3 

move to ball 

Heading: 3.1869577937501816 

Speed: 0.5399778840878489 

Kicked: false 

Player Number: 4 

move to ball 

Heading: 2.364242091994057 

Speed: 0.767587803740367 

Kicked: false 

Player Number: 0 

move to backfield 

Heading: 3.145551904873635 

Speed: 0.8282914053303387 

Kicked: false  
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