102,834 research outputs found

    Security requirement management for cloud-assisted and internet of things⇔enabled smart city

    Full text link
    The world is rapidly changing with the advance of information technology. The expansion of the Internet of Things (IoT) is a huge step in the development of the smart city. The IoT consists of connected devices that transfer information. The IoT architecture permits on-demand services to a public pool of resources. Cloud computing plays a vital role in developing IoT-enabled smart applications. The integration of cloud computing enhances the offering of distributed resources in the smart city. Improper management of security requirements of cloud-assisted IoT systems can bring about risks to availability, security, performance, confidentiality, and privacy. The key reason for cloud- and IoT-enabled smart city application failure is improper security practices at the early stages of development. This article proposes a framework to collect security requirements during the initial development phase of cloud-assisted IoT-enabled smart city applications. Its three-layered architecture includes privacy preserved stakeholder analysis (PPSA), security requirement modeling and validation (SRMV), and secure cloud-assistance (SCA). A case study highlights the applicability and effectiveness of the proposed framework. A hybrid survey enables the identification and evaluation of significant challenges

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    • …
    corecore