877 research outputs found

    A Virtual Commissioning Learning Platform

    Get PDF

    Identify - Quantify - Obtain Qualifications for Virtual Commissioning

    Get PDF

    Cyber-physical systems in manufacturing: Future trends and research priorities

    Get PDF
    In the last decades, the manufacturing ecosystem witnessed an unprecedented evolution of disruptive technologies forging new opportunities for manufacturing companies to cope the ever-growing market pressure. Moreover, the race to create value for the customers has been hindered by several issues that both small and large companies have been facing, such as shorter product life cycles, rapid time-to-market, product complexity, cost pressure, increased international competition, etc. In this scenario, ICT represent a crucial enabler for preserving competitiveness and fostering industry innovation. In particular, among these technologies, Cyber-Physical Systems (CPS) is growing an ever-high interest of industry stakeholders, researchers, practitioners and policy makers as they are considered the key technology that will transform manufacturing industry to the next generation. Indeed, CPS is a breakthrough research area for ICT in manufacturing and represents the cornerstone for achieving the EU2020 "smart everywhere" vision. At this early development phase, there is the urgent need to set the ground for future research streams, create a common understanding and consensus, define viable migration paths and support standards definition. This paper describes the identified research challenges and the future trends that will drive to the adoption of CPS in manufacturing. The main evidences on researches challenges expected for CPS in manufacturing are outlined by the authors that have been involved in the sCorPiuS project 'European Roadmap for Cyber- Physical Systems in Manufacturing', promoted by the European Commission to define a roadmap for future CPS in manufacturing adoption research agenda

    CFD modeling in Industry 4.0: New perspectives for smart factories

    Get PDF
    Abstract Industrial market is becoming increasingly competitive and companies need even more advanced resources to advantage over competitors. As an example, simulation is part of Industry 4.0 technologies and a key tool for lay out re-configuration, in order to realize a flexible product customization but also to optimize manufacturing processes. For these reasons Computational Fluid Dynamics (CFD) simulation can determine a competitive advantage for smart factories in the light of possibilities offered by new technologies. The research is focused on a conceptual solution to integrate CFD simulation with technologies of the Industry 4.0, in order to open new opportunities for companies in terms of in terms of growth and competitiveness

    A New Concept of Digital Twin Supporting Optimization and Resilience of Factories of the Future

    Get PDF
    In the context of Industry 4.0, a growing use is being made of simulation-based decision-support tools commonly named Digital Twins. Digital Twins are replicas of the physical manufacturing assets, providing means for the monitoring and control of individual assets. Although extensive research on Digital Twins and their applications has been carried out, the majority of existing approaches are asset specific. Little consideration is made of human factors and interdependencies between different production assets are commonly ignored. In this paper, we address those limitations and propose innovations for cognitive modeling and co-simulation which may unleash novel uses of Digital Twins in Factories of the Future. We introduce a holistic Digital Twin approach, in which the factory is not represented by a set of separated Digital Twins but by a comprehensive modeling and simulation capacity embracing the full manufacturing process including external network dependencies. Furthermore, we introduce novel approaches for integrating models of human behavior and capacities for security testing with Digital Twins and show how the holistic Digital Twin can enable new services for the optimization and resilience of Factories of the Future. To illustrate this approach, we introduce a specific use-case implemented in field of Aerospace System Manufacturing.The present work was developed under the EUREKA–ITEA3 Project CyberFactory#1 (ITEA-17032), co-funded by Project CyberFactory#1PT (ANI|P2020 40124), from FEDER Funds through NORTE2020 program and from National Funds through FCT under the project UID/EEA/00760/2019 and by the Federal Ministry of Education and Research (BMBF, Germany, funding No. 01IS18061C).info:eu-repo/semantics/publishedVersio

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Increase the adoption of Agent-based Cyber-Physical Production Systems through the Design of Minimally Invasive Solutions

    Get PDF
    During the last few years, many approaches were proposed to offer companies the ability to have dynamic and flexible production systems. One of the conventional ap-proaches to solving this problem is the implementation of cyber-physical production sys-tems using multi-agent distributed systems. Although these systems can deal with several challenges faced by companies in this area, they have not been accepted and used in real cases. In this way, the primary objective of the proposed work is to understand the chal-lenges usually found in the adoption of these solutions and to develop a strategy to in-crease their acceptance and implementation. Thus, the document focuses on the design and development of cyber-physical produc-tion systems based on agent approaches, requiring minimal changes in the existing pro-duction systems. This approach aims of reducing the impact and the alterations needed to adopt those new cyber-physical production systems. Clarifying the subject, the author presents a definition of a minimal invasive agent-based cyber-physical production system and, the functional requirements that the designers and developers must respect to imple-ment the new software. From these functional requirements derived a list of design princi-ples that must be fulfilled to design and develop a system with these characteristics. Subsequently, to evaluate solutions that aim to be minimally invasive, an evaluation model based on a fuzzy inference system is proposed, which rank the approaches accord-ing to each of the design principles and globally. In this way, the proposed work presents the functional requirements, design principles and evaluation model of minimally invasive cyber-physical production systems, to increase the adoption of such systems
    • …
    corecore