4,444 research outputs found

    Shunting passenger trains: getting ready for departure

    Get PDF
    In this paper we consider the problem of shunting train units on a railway station. Train units arrive at and depart from the station according to a given train schedule and in between the units may have to be stored at the station. The assignment of arriving to departing train units (called matching) and the scheduling of the movements to realize this matching is called shunting. The goal is to realize the shunting using a minimal number of shunt movements.\ud For a restricted version of this problem an ILP approach has been presented in the literature. In this paper, we consider the general shunting problem and derive a greedy heuristic approach and an exact solution method based on dynamic programming. Both methods are flexible in the sense that they allow the incorporation of practical planning rules and may be extended to cover additional requirements from practice

    Optimisation of simultaneous train formation and car sorting at marshalling yards

    Get PDF
    Efficient and correct freight train marshalling is vital for high quality carload freight transportations. During marshalling, it is desirable that cars are sorted according to their individual drop-off locations in the outbound freight trains. Furthermore, practical limitations such as non-uniform and limited track lengths and the arrival and departure times of trains need to be considered. This paper presents a novel optimisation method for freight marshalling scheduling under these circumstances. The method is based on an integer programming formulation that is solved using column generation and branch and price. The approach minimises the number of extra shunting operations that have to be performed, and is evaluated on real-world data from the Hallsberg marshalling yard in Sweden

    Optimized shunting with mixed-usage tracks

    Get PDF
    We consider the planning of railway freight classification at hump yards, where the problem involves the formation of departing freight train blocks from arriving trains subject to scheduling and capacity constraints. The hump yard layout considered consists of arrival tracks of sufficient length at an arrival yard, a hump, classification tracks of non-uniform and possibly non-sufficient length at a classification yard, and departure tracks of sufficient length. To increase yard capacity, freight cars arriving early can be stored temporarily on specific mixed-usage tracks. The entire hump yard planning process is covered in this paper, and heuristics for arrival and departure track assignment, as well as hump scheduling, have been included to provide the neccessary input data. However, the central problem considered is the classification track allocation problem. This problem has previously been modeled using direct mixed integer programming models, but this approach did not yield lower bounds of sufficient quality to prove optimality. Later attempts focused on a column generation approach based on branch-and-price that could solve problem instances of industrial size. Building upon the column generation approach we introduce a direct arc-based integer programming model, where the arcs are precedence relations between blocks on the same classification track. Further, the most promising models are adapted for rolling-horizon planning. We evaluate the methods on historical data from the Hallsberg shunting yard in Sweden. The results show that the new arc-based model performs as well as the column generation approach. It returns an optimal schedule within the execution time limit for all instances but from one, and executes as fast as the column generation approach. Further, the short execution times of the column generation approach and the arc-indexed model make them suitable for rolling-horizon planning, while the direct mixed integer program proved to be too slow for this. Extended analysis of the results shows that mixing was only required if the maximum number of concurrent trains on the classification yard exceeds 29 (there are 32 available tracks), and that after this point the number of extra car roll-ins increases heavily

    Hump Yard Track Allocation with Temporary Car Storage

    Get PDF
    In rail freight operation, freight cars need to be separated and reformed into new trains at hump yards. The classification procedure is complex and hump yards constitute bottlenecks in the rail freight network, often causing outbound trains to be delayed. One of the problems is that planning for the allocation of tracks at hump yards is difficult, given that the planner has limited resources (tracks, shunting engines, etc.) and needs to foresee the future capacity requirements when planning for the current inbound trains. In this paper, we consider the problem of allocating classification tracks in a rail freight hump yard for arriving and departing trains with predetermined arrival and departure times. The core problem can be formulated as a special list coloring problem. We focus on an extension where individual cars can temporarily be stored on a special subset of the tracks. An extension where individual cars can temporarily be stored on a special subset of the tracks is also considered. We model the problem using mixed integer programming, and also propose several heuristics that can quickly give feasible track allocations. As a case study, we consider a real-world problem instance from the Hallsberg Rangerbangård hump yard in Sweden. Planning over horizons over two to four days, we obtain feasible solutions from both the exact and heuristic approaches that allow all outgoing trains to leave on time

    Disruption management in passenger railway transportation.

    Get PDF
    This paper deals with disruption management in passengerrailway transportation. In the disruption management process, manyactors belonging to different organizations play a role. In this paperwe therefore describe the process itself and the roles of thedifferent actors.Furthermore, we discuss the three main subproblems in railwaydisruption management: timetable adjustment, and rolling stock andcrew re-scheduling. Next to a general description of these problems,we give an overview of the existing literature and we present somedetails of the specific situations at DSB S-tog and NS. These arethe railway operators in the suburban area of Copenhagen, Denmark,and on the main railway lines in the Netherlands, respectively.Since not much research has been carried out yet on OperationsResearch models for disruption management in the railway context,models and techniques that have been developed for related problemsin the airline world are discussed as well.Finally, we address the integration of the re-scheduling processesof the timetable, and the resources rolling stock and crew.

    Neural Dynamics Underlying Impaired Autonomic and Conditioned Responses Following Amygdala and Orbitofrontal Lesions

    Full text link
    A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.National Science Foundation (SBE-0354378; IIS-97-20333); Office of Naval Research (N00014-01-1-0624); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (R29-DC02952

    Neural Models of Temporally Organized Behaviors: Handwriting Production and Working Memory

    Full text link
    Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309

    A Comparison of Optimization Methods for Solving the Depot Matching and Parking Problem

    Get PDF
    We consider the Train Unit Shunting Problem, an important plan- ning problem for passenger railway operators. This problem entails assigning physical train units to scheduled train services in such a way that the resulting shunting yard operations are feasible. As such, it arises at every shunting yard in the railway network and involves matching train units to arriving and departing train services as well as assigning the selected matchings to appropriate shunting yard tracks. We present a comparison benchmark of multiple solution approaches for this problem. In particular, we have developed a Constraint Pro- gramming formulation, a Column Generation approach, and a random- ized greedy heuristic. We compare and benchmark these approaches against slightly adjusted existing methods based on a a Mixed Inte- ger Linear Program, and a Two-Stage heuristic. The benchmark con- tains multiple real-life instances provided by the Danish State Rail- ways (DSB) and Netherlands Railways (NS). The results highlight the strengths and weaknesses of the considered approaches
    corecore