
A Comparison of Optimization Methods for Solving

the Depot Matching and Parking Problem

Jørgen Thorlund Haahr1, Richard Martin Lusby1, and Joris C.
Wagenaar2

1Department of Management Engineering, Technical University of
Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark,

email: jhaa@dtu.dtk, rmlu@dtu.dk
2Rotterdam School of Management, Erasmus University , Technology
and Operations Management, Burgemeester Oudlaan 50, 3062 PA,

Rotterdam The Netherlands, e-mail: jwagenaar@rsm.nl

October 15, 2015

Abstract

We consider the Train Unit Shunting Problem, an important plan-
ning problem for passenger railway operators. This problem entails
assigning physical train units to scheduled train services in such a
way that the resulting shunting yard operations are feasible. As such,
it arises at every shunting yard in the railway network and involves
matching train units to arriving and departing train services as well as
assigning the selected matchings to appropriate shunting yard tracks.
We present a comparison benchmark of multiple solution approaches
for this problem. In particular, we have developed a Constraint Pro-
gramming formulation, a Column Generation approach, and a random-
ized greedy heuristic. We compare and benchmark these approaches
against slightly adjusted existing methods based on a a Mixed Inte-
ger Linear Program, and a Two-Stage heuristic. The benchmark con-
tains multiple real-life instances provided by the Danish State Rail-
ways (DSB) and Netherlands Railways (NS). The results highlight the
strengths and weaknesses of the considered approaches.

Keywords: Passenger Railway Optimization, Shunting, Matching,
Parking

1 Introduction

Passenger railway operation is an important mode of transportation in many
countries. Commuters depend on a safe, reliable and timely operation that
requires careful planning of trains, personnel and infrastructure. Planning

1

the operations of a railway operator includes, among other things, i) de-
termining a timetable, stipulating arrival and departure times of the train
services to be operated, ii) creating a rolling stock schedule, specifying a
feasible fleet circulation and iii) constructing a crew plan, assigning train
personnel to operate the trains. Due to the complexity of each the un-
derlying optimization problems, the planning problems are usually resolved
sequentially and in isolation.

A rolling stock schedule indicates which individual train units are allo-
cated to each of the timetabled train services. If multiple units are assigned
to the same train service, this results in a given train composition. Train
services can, and do, have di↵erent compositions since the allocation of train
units to services is done in such a way that the passenger demand is matched
as closely as possible. The aim is typically to meet the passenger demand
forecast, while not using more train units than is necessary. Whenever the
composition changes between two successive train services, either a train
unit is taken out of service or a train unit is brought into service. In the
first case, the uncoupled unit must be shunted to the station’s depot where
it awaits its next service, while in the second case a unit must be retrieved
from the depot and coupled to the train service. In both cases shunting
movements are induced.

Shunting movements are often not considered when planning the rolling
stock schedule. It is usually assumed that these can be resolved in a post-
processing phase. The assumption is that the capacity as well as the in-
frastructure layout of any depot (i.e. shunting yard) is su�cient to cater
for the induced shunting movements. In this paper we challenge this basic
assumption. For railway networks where depot capacity is scarce, such as
the suburban railway network in Copenhagen, it is not always possible to
perform the shunting movements induced by a given rolling stock schedule.
Furthermore, planning such movements is not a trivial problem. This is
especially true at larger stations that have many shunting movements oc-
curring over the course of a day and many depot tracks of di↵erent lengths
on which to park train units not in service. E↵ective methods for finding
feasible depot plans are essential.

In this paper, we present a comparison of optimization methods for de-
termining whether the scheduled shunting movements at a given depot are
feasible with respect to the number of depot tracks available. We term this
problem the Train Unit Shunting Problem (TUSP) and benchmark several
previously proposed methods from the literature on both realistic and arti-
ficial problem instances. In addition, we also test and compare three novel
approaches for solving this problem. The first is a constraint programming
approach, the second is column generation based approach, and the third
is a greedy randomized heuristic approach. We view the TUSP as a fea-
sibility problem only, as it ultimately determines whether or not a given
rolling stock schedule is feasible. The majority of the operational cost is

2

incurred in the rolling schedule and this would almost never be changed in
order to improve the combined objective of the TUSP problems at each of
the depots. It is important to simply know whether the induced shunting
movements are feasible with respect to the depots. We note that, after con-
firming feasibility of the shunting movements, the TUSPs can be resolved
with an appropriate objective function.

The set of shunting movements at each of the depots in the railway
network can be deduced from a given rolling stock schedule. Scheduling the
rolling stock is, however, beyond the scope of this paper; it is assumed to
be given as input. From a rolling stock schedule all arrivals and departures
from depots are implicitly specified. Railway operators typically have fleets
of train units of di↵erent types. Two di↵erent unit types typically di↵er in
their respective physical characteristics, e.g. length and passenger capacity.
We assume rolling stock units of the same type to be interchangeable. The
depots of two di↵erent stations are also assumed to be independent of each
other. All shunting movements at a given depot are confined to that depot
and have no impact on the shunting movements of other depots. A feasible
solution to the TUSP, termed a shunting plan, must satisfy the following
two constraints: the total length (or capacity) of each individual depot track
is not violated at any given time, and no unit ordering conflicts are present.
A conflict occurs when the arrival of a unit at a depot track blocks the
departure of a unit from the same track. Depot tracks are assumed to
function as last-in first-out (LIFO) queues, meaning the last unit to arrive
at a depot track must be the first to leave. In reality, open ended depot
tracks are allowed; however, such cases will also have ordering restrictions
that must be obeyed. In this paper, any open-ended track is operated as a
LIFO queue.

The TUSP entails finding a feasible shunting plan. However, in the
absence of any possible solution, proving that no solution exists is equally
as important. In such situations, a new rolling stock schedule must be found.
The emphasis in this paper is on determining whether a solution exists. As
mentioned above, no cost-structure is used to distinguish or rank distinct
feasible solutions to a given instance of the TUSP.

We compare previously proposed methods and devise new methods to
tackle the problem using di↵erent optimization techniques. These include:
Constraint Programming, problem decomposition, Column Generation, and
Mixed Integer Linear Programming with delayed constraint generation. Some
of the proposed approaches are exact solution methods, which find one feasi-
ble solution (if it exists) or prove that no solution exists. The other methods
are heuristic approaches that strive to quickly find any feasible solution by
searching subsets of the entire solution space and consequently cannot prove
infeasibility.

This research makes several contributions to the existing literature in
this field. These include the following. First, we describe several e�cient

3

initial infeasibility checks for the TUSP. Secondly, we develop three novel
methods for the TUSP: i) A constraint program formulation, ii) a column
generation approach, and iii) a randomized greedy construction heuristic.
We compare the performance of these against Mixed Integer Program (MIP)
approach and a two-stage decomposition approach; two methods that have
been proposed in the literature, for reference. Due to the high memory
consumption of the MIP approach, we investigate the potential of delayed
constraint generation for this method. A track and unit type decomposition
approach is also presented that reduces a TUSP instance into several smaller
and independent TUSP sub-problems. Furthermore, we discuss and present
rolling stock platform parking, which is an interesting extension used by
several railway operators in practice in order to circumvent capacity issues.
Finally, all methods are benchmarked on TUSP instances from multiple
railway operators residing in di↵erent countries. A few additional realistic
benchmarks are performed in order to test di↵erent aspects of the presented
methods.

The remainder of this paper is structured as follows. First, in Section 2
we give an overview of related literature and highlight the main di↵erences
to our contributions. In Section 3 we present the problem description. A
number of polynomial solvable feasibility checks are discussed in Section 4
before introducing the solution methods in Section 5. The problem instances
are presented in Section 6 followed by the benchmark of the solution meth-
ods. Finally, we conclude and give some remarks on further research in
Section 7.

2 Literature overview

To our knowledge, the TUSP was first introduced by Freling et al. [1]. Other
authors have considered di↵erent variants of the same problem, including ad-
ditional constraints and decisions such as maintenance operations or station
routing. In some cases the train matching is given as input and not part of
the problem. With the exception of Kroon et al. [2], all studies do not inte-
grate the matching and parking problem, but solve them separately. A cost
structure is often used to rank di↵erent matching and parking assignments.
We, however, focus on the core matching and parking problem and do not
di↵erentiate between distinct solutions.

Freling et al. [1] consider the problem of parking train units overnight at
a shunting yard in such a way that each unit can be retrieved when needed
during the operations of the following day. Any feasible parking must ensure
that train units of di↵erent types do not block each other when departing
the yard the next day. The problem is decomposed into two smaller sub-
problems: a matching problem and a parking (or track allocation) problem.
The first entails matching arrival and departure services at the shunting yard

4

under consideration. A solution to this problem hence also stipulates the
train services each physical unit will perform. This problem is formulated as
a MIP and solved using a commercial solver. The parking problem, on the
other hand, determines how to park the assigned matchings on each of the
tracks at the yard such that the track capacity is never exceeded and such
that the movements associated with the matchings are conflict-free. The au-
thors model this as a set partitioning problem with side constraints and solve
it using a heuristic column generation procedure. A corresponding MIP ap-
proach was not considered nor compared. The proposed approach was tested
on one instance from Netherlands Railways and results were found within
20 to 60 minutes of computation time. In contrast to our work, the authors
adopt a cost-structure to both problems in order to rank the solutions. We
compare our methods with a variant of this approach in Section 6.

The work of Lentink et al. [3] extends the work of Freling et al. [1], where
a four-step approach is proposed to solve the matching and parking problem.
The problems are still solved independently; however, the parking problem
is extended to include more practical aspects, e.g. cleaning and maintenance
of units, as well as the routing costs incurred from the shunting yard to the
station platforms. The small problem instances are solved quickly, but the
larger instances require at least 700 seconds of computation time.

A dynamic programming based heuristic approach for the TUSP is pro-
posed by Haijema et al. [4]. The matching and parking problems are solved
sequentially and in isolation. To reduce the problem size the authors pro-
pose a rolling horizon technique to solve the problem. A realistic test case
from the railway station Zwolle in the Netherlands is used to analyse the
performance of the algorithm. A 24 hour period is considered in which 45
units arrive and 55 units depart. The shunting yard has 19 tracks and a
total capacity of 4000 metres. Solutions to the problems are found quickly
and the results are promising; however, only a single instance is considered.

In contrast to Freling et al. [1], Lentink et al. [3], and Haijema et al. [4],
we propose methods that integrate the matching and parking problems. In
addition, we present and discuss the possibility of parking rolling stock units
at platforms at the end of the planning horizon. Di↵erent models of the
problem are presented and compared considering multiple di↵erent problem
instances. Finally, as has been mentioned, we consider the TUSP to be a
feasibility problem and hence do not di↵erentiate between di↵erent, feasible
plans.

Solving the TUSP without some form of matching/parking separation
has been proposed by Kroon et al. [2]. The authors essentially extend the
work of Freling et al. [1] and propose a large MIP formulation that simulta-
neously solves the matching and parking problems. The authors propose to
minimize the number of splitted compositions, and in addition try to keep
the depot tracks as homogeneous (w.r.t. unit type) as possible. In addition,
they also consider conflict-cliques in order to reduce the large number of

5

conflict constraints. In contrast, in our work we accommodate this problem
by adding conflict constraints on the fly in the Branch-and-Bound (B&B)
framework. Practical restrictions that include how to handle depot tracks
that can be approached from both sides are described. Two stations from
the Dutch Railway network form the computational study, where instances
with up to 125 train units of 12 di↵erent types are considered.

Jacobsen and Pisinger [5] present three di↵erent heuristics to solve a
variant of the TUSP that includes maintenance scheduling. The model is
tested on small instances and the runtimes are low. Internal rearrangements
are permitted if one unit is blocking another unit. The model is not tested
on problem instances from practice.

3 Problem description

In this section we give a formal problem description for the TUSP and in-
troduce some general notation that is used throughout the paper. The core
problem is to create a feasible shunting plan or prove that no such plan ex-
ists. A feasible shunting plan matches all initially parked units at the depot,
as well as any units that arrive during the day, with compatible departures.
Any unmatched unit must remain parked at the depot. Unmatched units re-
side in inventory until the end of the planning period. In a feasible matching
all departures must be covered, otherwise the TUSP is infeasible. Given a
feasible matching, the unit assignments to depot tracks must be conflict-free.

We term all units initially parked at the depot and all units that arrive
during the day as arrival events. A specific unit type and known arrival time
are associated with each arrival. The arrival time of initially parked units
is assumed to be the start of the planning horizon t0. Likewise, departing
units are termed departure events. A departure has a known departure time
and a required unit type. For the sake of simplicity, a departure is defined
for all units remaining in the depot at the end of the planning horizon, t1.
Consequently, a feasible matching covers all arrival events and all departure
events. In other words, initially parked and arriving units are matched to
either a compatible departure or assigned to stay on some track in the depot
at time t1.

The matching and parking assignment must satisfy two types of con-
straints. First, the capacity on each individual depot track may not be
violated at any time. In other words, the total length of all train units re-
siding on a track at any time may not exceed the length of the track itself. It
su�ces to ensure that this holds whenever a train unit arrives at the depot.
Second, all tracks must be processed in a LIFO order, i.e the last parked
unit on a track must be the unit that leaves first. A unit cannot leave a
track (for a departure) if a di↵erent unit has arrived in the meantime and
is staying on the same track. We assume that an assigned track is occupied

6

Event Type Time
Arrival a1 12:00
Arrival a2 12:30
Arrival b1 13:00
Arrival c 13:30
Arrival b2 14:00
Departure b 15:00
Departure c 15:30
Departure a 16:00

Table 1: Example list of events in a problem instance. Note, that a1 and a2
(and b1 and b2) denote the same type, only di↵erent physical units.

Matching 1 Matching 2
(b1, b) (b2, b)
(c,c) (c,c)
(a1, a) (a1, a)
(a2, inv) (a2, inv)
(b2, inv) (b1, inv)

Table 2: Two examples of possible matching assignments for the problem
instance in Figure 1.

from (and including) the arrival time until (and including) the departure
time of the corresponding matching. This is a conservative approach as an
arrival will occupy its assigned depot track some time after arriving, and a
departure will release the track allocation some time before departing from
the associated station.

An example of a problem instance is given in Table 1, where a list arriving
and departing events is specified. Each event occurs at a specific time and
specifies the type of the units that is arriving, or the type that needs to
depart. The lengths of the unit types are: a : 200, b : 100 and c : 150. The
arrivals have to be matched to a departure or a stay in the depot (denoted
by inv). Two matching examples are given in Table 2. Assume that we have
two depot tracks available: track 1 of length 550 and track 2 of length 200.
There is only one feasible parking possible using the track 1 and 2. This
parking is shown in Figure 1. The matching to the left in Table 2 (Matching
1) is infeasible, because unit b2 is blocking the departure of unit b1. The
other matching (Matching 2) is, however, feasible as no units are blocking
any departure.

The shunting movements at di↵erent stations in the railway network are
completely independent of each other. Hence, the respective TUSPs can
be solved separately for every station. No maintenance operations are con-
sidered in our problem. Thus, train units of the same type are completely

7

Track 1

Track 2

(a1)(a2)(c)

(b1)(b2)

Figure 1: An example of units in Table 1 assigned to two depot tracks.

interchangeable. Internal shunting of train units is also not considered; once
a train unit is parked it can only be moved when retrieved for departure.
In practice, internal shunting can be performed; albeit, at the cost of us-
ing shunting personnel resources. A plan without additional movements is
preferred, if possible. Finally, a certain bu↵er period between consecutive
arrivals and departures may be desired for the same train unit. We assume
that a unit must be parked at a track for at least � minutes. The value of �
is parametric. A high value of � will result in a shunting plan that is more
robust to delays; however, it also reduces the combinatorial solution space.
In the computational experiments we set � equal to one minute.

Most of the considered problem instances have an initial inventory of
units at the start of the planning horizon. Each depot track may therefore
contain a number of units in a specific order. The proposed approaches
adhere to this initial ordering of the units. It is also possible for the presented
approaches to determine the initial parking order of the units on the track.
Not having an initial ordering is a less restrictive problem, potentially giving
a greater number of feasible solutions. This variant will not be pursued
further in this paper, but we note that it may be relevant in a strategic or
tactical planning phase.

In contrast to other work in the literature, no cost structure is defined.
The TUSP is considered a feasibility problem as this is the most prominent
question to answer. The presented solution approaches can be used as part
of a larger framework to determine whether or not a feasible solution exists
before finding the most preferred one. This is highly applicable in an op-
erational setting where time is limited and it is crucial to detect feasibility
quickly. We note, however, that almost all of the presented approaches can,
without much di�culty, be extended to include an objective.

Platform Parking

Rolling stock units can be, and are in certain situations, parked on passenger
platform tracks in practice. During the day passengers board and alight from
trains at platforms. Consequently, units should not be parked there during
the day. However, during the night there is no, or limited, tra�c. If units
parked on platform tracks overnight can service the first train service of the
following day, then no additional shunting is required.

8

According to some railway operators, e.g. Nederlandse Spoorwegen (NS)
and Danish State Railways (DSB), trains are, under certain circumstances,
parked on platforms. The rolling stock activities for the following day are
known, and it can be practical to park train units on a platform overnight
if the parked composition is to depart early the next day. Depending on
the track layout and the number of platforms at the station, a number of
platform tracks may be eligible to be used in this way. A number of platforms
must, however, be reserved in order to allow night trains or maintenance
crews to operate.

At any station we assume that a certain number of platform tracks, N ,
can be used for overnight parking. In order to ensure a smooth operation,
the first N departing train services (of the the following day) dictate which
units can be parked on the N available platform tracks. A departing train
service may consist of multiple units, allowing more than a single unit to
be parked on a platform track. For instance, if N = 2, and the first two
departing trains have the compositions aa and bc, then two units of type
a can be assigned to the first platform (even coming from di↵erent arrival
services), and a single unit of each type b and c on the second platform.
In the considered variation of the problem, the extension can be handled
by adding the N platform tracks as normal shunting tracks with additional
restrictions. More specifically, in addition to the existing track constraints,
an arrival and departure matching can only be assigned to the platform
track if the arrival takes place in an appropriate time window (close to the
end of the daily operation) and if the departure corresponds to one of the
first train services of the following day.

3.1 General notation

In the TUSP, a set of incoming and outgoing events occurring at a shunting
yard are assumed to be given. This set of events is denoted by E. Each event
e 2 E is either an arrival or a departure. The sets Earr and Edep respectively
contain all arrivals and departures, and together define a partition of all
events; that is, Earr [Edep = E ^ Earr \Edep = ;. An arrival corresponds
to a unit that is uncoupled at the station and must be parked, while a
departure is a unit that is to be coupled at the station and must be retrieved
from the shunting yard. Furthermore, we assume a set, M , of the rolling
stock types and that a set, S, of shunting yard tracks are available in the
depot. Two subsets of Sd [Sp = S denote the set of depot tracks and the
set of platform tracks. All definitions are summarized in Table 3.

The time at which event e 2 E takes place is denoted by te, and me

denotes the train unit type of the corresponding event. We let cs denote
the parking capacity of track s 2 S. This capacity is equal to the maximum
length that can be stored simultaneously on track s 2 S. The length of
a train unit type m 2 M is assumed to be lm. Table 4 summarises this

9

Set Definition
E Set of all events
Earr ⇢ E Set of arrival events
Edep ⇢ E Set of departing events
M Set of train unit types
S Set of tracks
Sd ⇢ S Set of tracks in the depot for parking
Sp ⇢ S Set of platform tracks

Table 3: List of defined sets

Notation Description
te Time event e 2 E takes place
me Rolling stock type corresponding to event e 2 E
lm Length of rolling stock type m 2M
cs Length of track s 2 S

Table 4: List of defined shorthand notations

notation.

Complexity

The complexity of matching and parking trains has been addressed by mul-
tiple authors in the literature. Multiple variants of the problem exist, which
are known to be NP-hard. The shunting problem considered by Freling et
al. [1] is essentially a specialization of the considered TUSP. They prove the
variant to be NP-hard by reduction from the Tram Dispatching Problem
studied by Winter et al. [6], which in turn is NP-hard.

We present a simple and informal proof, that shows that the considered
TUSP is NP-hard by reduction from the Graph Coloring Problem (GCP).
In the GCP a color must be assigned to each vertex such that no adjacent
vertices have the same color. Two vertices are adjacent if an edge connects
them. The problem is then to decide the fewest number of colors needed.
The corresponding decision problem is to decide whether a graph can be
colored using k colors. The GCP is known to be NP-hard [7].

First, the TUSP is in NP since a feasible solution can be verified in
polynomial time. The matching constraints are verified by counting the
number of assignments, the capacity constrains can be verified by looping
through the events (ordered by time), and a pair-wise comparison of all
matching assignments to tracks can verify that no ordering conflicts exist.
Second, we argue that the TUSP is a generalization of the GCP. Given a
instance of the GCP, the number of colors corresponds to the number of
available tracks. The length of the tracks is set su�ciently high, such that
it is never binding. The constructed TUSP instance is generated such that

10

only one valid matching exists by assigning a unique unit type to all train
units. A vertex corresponds to a track assignment (of a matching), and
the selected track represents the selected color. The edges of the graph are
now used to generate a relative ordering of the arrival and departure events
such that two matchings are in conflict if and only if an edge exists between
the corresponding vertices in the graph. If the constructed TUSP instances
contains a feasible solution, then a feasible assignment of k colors is given
by the track assignments of the matchings of the TUSP instance.

4 Infeasibility Checks

A select number of e�cient feasibility checks can be performed indepen-
dently of any solution method. The problem instances considered in the
benchmark testing of Section 6 have all passed the checks discussed in this
section. There is no reason to consider an instance, which violates any of
the following checks as it is inherently infeasible.

Aggregated Track Capacity

At any given time the sum of all depot track lengths must be no less than
the sum of all train units that need to be parked. This aggregated constraint
must hold since no feasible solution can exist if it is violated. This property is
easily checked in polynomial time. Rolling stock schedules implicitly satisfy
this constraint if depot capacity is modeled in the rolling stock problem.

Individual Track Capacity

The depot must have at least one feasible initial parking. At the start of
the planning horizon a feasible parking must exist, otherwise no solution can
exist to the TUSP either. With a given set of initial units, a feasible solution
can be found by solving a Multiple Knapsack Problem (MKP). Every train
unit corresponds to an item, where the capacity consumption is equal to the
physical length of the unit. Each depot track corresponds to a knapsack,
where the capacity is equal to the track length. E�cient algorithms for
solving the MKP exist (see e.g. Pisinger [8]), making this check e�cient;
especially since the resulting MKP problem size is small.

In this paper, we assume that the initial parking given is feasible with
respect to the mentioned knapsack constraints. However, the same con-
straints must be satisfied during the whole planning period, and not only
for the initial parking. The same check is applied every time a unit arrives
to the depot. Note that the individual track capacity can be violated even
if the aggregated track capacity is satisfied.

11

Set Definition
A Set of all matchings
Aarr

e Set of matchings where event e 2 Earr is the arrival

Adep
e Set of matchings where event e 2 Edep is the depar-

ture

Table 5: List of MIP specific sets

Feasible Matching

In the common case, multiple feasible matching exists for the same problem
instance, especially when ignoring depot track capacities. The reason for
integrating matching and parking in the TUSP is the fact that all feasible
matchings do not necessarily have a feasible parking assignment. However,
if no feasible matching exists then the TUSP is infeasible as well. Detecting
whether a feasible matching exists is equivalent to solving the Assignment
Problem (AP) (Munkres [9]), which is solvable in polynomial time as the
resulting Linear Program (LP) is totally unimodular. As the number of
arrival and departure events are equal in size, the problem is the linear AP;
this can be solved using specialized polynomial time algorithms, such as the
Hungarian algorithm (Kuhn [10]).

5 Solution methods

In this Section we describe the di↵erent solution methods for solving the
TUSP. First, the Reference MIP Method (RMM) is described in Section 5.1.
In Section 5.2 the Constraint Programming Method (CPM) is presented. A
column generation method and the Two-Stage Method (TSM) are presented
in Section 5.3. Finally in Section 5.5 we introduce the Randomized Greedy
Construction Heuristic (RGCH).

5.1 The Reference MIP Method

Arrivals and departures are linked using matchings. The matching of an
arrival and a departure event is allowed if and only if su�cient time sepa-
rates the events and the unit types are compatible. The set of all possible
matchings is denoted by A:

A = { (e, f) | te + � tf , me = mf , e 2 Earr, f 2 Edep }
The set of matchings where event e1 2 Earr is the arrival is denoted by

Aarr
e1 and the set of matchings where event e2 2 Edep is the departure is

denoted by Adep
e2 . These additional sets are summarized in Table 5.

The mathematical model contains one family of binary decision variables
Xa,s. The variable Xa,s takes a value of 1 if and only if matching a 2 A

12

is selected and parked on track s 2 Sd. We extend the model to include
platform parking later.

A number of constraints need to be satisfied in order to achieve a feasible
solution. First, each arrival must be assigned to exactly one departure,
c.f. Constraints (1). Similarly, each departure must be assigned to exactly
one arrival, c.f. Constraints (2).

X

s2Sd

X

a2Aarr
e

Xa,s = 1 8e 2 Earr (1)

X

s2Sd

X

a2Adep
f

Xa,s = 1 8f 2 Edep (2)

Constraints (1)-(2) ensure a feasible matching. The capacity of a depot
track can not be exceeded at any point in time. It is therefore su�cient to
ensure that the track capacity is not exceeded at every arrival, c.f. (3).

X

{e02Earr|te0te}

X

a2Aarr
e0

Xa,s · lme0

�
X

{e02Edep|te0te}

X

a2Adep
e0

Xa,s · lme0 cs 8e 2 Earr, s 2 Sd (3)

For each arrival, Constraints (3) sum the contribution of past events
and ensure that the used track length is less than the available track length;
arrivals consume capacity, while departures release capacity.

The depot tracks are subject to LIFO restrictions. Only the out-most
(top of stack) can be retrieved at any point in time. We model these re-
strictions by adding one constraint per pair-wise conflict to disallow such
assignments, c.f. Constraints (4). It states that any two pairs of matchings
cannot be assigned simultaneously if they block each others’ movements.

Xa,s +Xa0,s 1 8s 2 Sd, (a, a
0) 2 C (4)

where

C = { (a, a0) | a = (e, f) 2 A,

a0 = (e0, f 0) 2 A,

te0 < te ^ tf 0 < tf ^ tf 0 > te }

Note, that the conflict set is not track-dependent. All pair-wise con-
flicts are therefore repeated for every track, e↵ectively generating very many
constraints. We note that the number of constraints in the model can be
reduced, possibly drastically, by replacing the pair-wise conflicts with con-
flict cliques, see Kroon et al [2]. In general, the problem of finding such

13

cliques is NP-hard (Karp [11]). However, a number of cliques can be found
heuristically in order to make the problem more tractable.

The initial inventory is not modeled directly in the above formulation.
Recall, that initially parked units are modeled using arrivals and that park-
ing (at the end of the planning horizon) is modeled using departures. Any
initial unit to track assignment can be modeled by fixing the variables cor-
responding to the first set of events. Any order of units on depot track can
also be achieved by shifting the artificial arrival times (without exceeding
the real first event) to reflect the same ordering. Likewise, any final parking
can be achieved using a similar modification for the artificial departures.

In the computational experiments of Section 6, a parking order is im-
posed. We note that in the implementation of the model all fixed variables
are removed in order to obtain a more compact model.

Due to the large number of (conflict) constraints present in the model,
we also introduce the Delayed Constraint MIP Method (DCMM), where
these constraints are generated on-the-fly. The DCMM is solved as a MIP
model, where violated conflict constraint are added as they become violated
by the optimal LP solutions. Initially, no conflict constraints are added.
The success of this approach depends on the fact that most conflicts will
never be violated in the B&B approach of a MIP solver.

Platform Parking Extension

A given set of platforms s 2 Sp is available for parking arrival trips overnight.
The set of decision variables is extended to include platform parking. The
model now contains one variable Xa,s for every activity a 2 A and track
s 2 S = Sd [Sp. We denote the number of slots at track s 2 Sp for units
of type m 2 M to be pm,s. Constraints (5) ensure that the number of
parked units does not exceed the number of units that can be parked on the
platform.

X

a2Aarr
e

Xa,s pm,s 8m 2M, e 2 Elast, s 2 Sp (5)

No LIFO ordering contains are included as the units on the track leave
as a whole, and the track capacity is implicitly satisfied by construction of
the pm,s coe�cients. Preferably, only arrivals close to the end of day can be
matched to the platforms. This is enforced by fixing or removing the invalid
matching variables.

5.2 The Constraint Programming Method

As it is primarily a feasibility problem, the TUSP can be formulated using a
Constraint Program (CP) approach. Our proposed formulation is inspired

14

Set Definition
C Set of possible compositions
Q Set of possible composition changes
Qe,s Set of composition changes that are allowed after

event e 2 E at track s 2 S

Table 6: List of all additional sets required by the CP model

by the rolling stock composition model of Fioole et al [12], where it was
originally used for Rolling Stock (Re)Scheduling; however, we use the idea
of compositions and composition changes for the TUSP. Instead of assigning
events to tracks, we assign compositions to tracks. For every time-interval
one composition is assigned to every track individually. A composition con-
sists of a number of train units in a specific order. Note that the empty
composition, containing no train units, is a valid composition.

We let C be the set of all possible compositions and Q be the set of all
possible composition changes. The set Qe,s consists of all feasible composi-
tion changes that can take place just after event e 2 E on track s 2 S. For
instance, if event e stipulates that a unit of type a is arriving, then only com-
position changes where a unit of type a appears on the top of the stack are
included in Qe,s. Additionally, composition changes where no units are ap-
pended or removed are included as all una↵ected tracks remain unchanged.
See Table 6 for an overview of the additional sets.

The first additional parameter required by the CP is is, which specifies
the initial composition on track s 2 S. Next, �e defines the predecessor
event of event e 2 E, i.e. the event that occurs just before e. Furthermore,
for composition change q 2 Q, we introduce the shorthand notation, In[q]
and Out[q], which denote the index of the first and second composition in
a composition change. Thus, the original composition and its successor
composition. Finally, ↵m[q] and �m[q] specify whether a unit of type m is
appended or removed. These parameters are summarized in Table 7.

We define two families of decision variables. First, the integer variable
Xe,s specifies which composition is assigned track s 2 S just after event
e 2 E. The compositions are mapped to integer values, e.g., Xe,s = 3
stipulates that the ab composition is assigned to track s after event e. Recall,
a composition c 2 C which is assigned to track s 2 S just after event e 2 E
consists of all train units parked at that moment on track s, in order of
arrival time. For instance, if the composition abcd is assigned track s after
event e, it means that unit d was parked there first, thereafter unit c, then
b, and finally train unit a.

The integer decision variable Ye,s represents the composition change that
is performed on track s 2 S just after event e 2 E. An example is the com-
position change from composition aa to a, where one unit is removed. Again,

15

Parameters Description
is The composition belonging to the start inventory at

track s 2 S
�e The predecessor event of event e 2 E
In[q] The index of the first composition belonging to com-

position change q 2 Q
Out[q] The index of the second composition belonging to

composition change q 2 Q
↵m[q] Equals 1 if a unit of type m 2M is appended to the

composition on the track during composition change
q 2 Q

�m[q] Equals 1 if a unit of type m 2M is removed from the
composition on the track during composition change
q 2 Q

Table 7: List of all parameters

the integer values are mapped to the change from a specific composition to
another specific composition.

The construction of theQe,s set models the allowed compositions changes
with respect to the depot track capacity and the LIFO restriction. Note that
platform parking can also be modeled by construction of this set. First,
composition changes that exceed the length of a track are not allowed. All
composition changes that involve a transition to a composition that has a
total length longer than the capacity of track s are removed from the set
Qe,s. Furthermore, restrictions with respect to the unit type of events are
considered. First, if event e 2 E is an arrival of a unit of type a, then only
composition changes where a unit of type a is appended and composition
changes where no units are appended or removed are allowed. Second, the
LIFO constraints further restrict the set of composition changes. If, for
instance, the composition abcd was assigned to track s just after event �e,
then there are only 2 allowed composition changes after a departure e 2 E:
abcd ! abcd, or abcd ! bcd. Units b, c, and d cannot depart as unit a is
blocking them. Finally, if platform parking is allowed, as it is not allowed to
park train units at platforms during the day, the only allowed composition
change after events during the day is empty ! empty. For the last events
of the day, however, platform parking can be considered. In such cases the
platform track composition is restricted to being a subset of the composition
of the train service which will first depart from the platform on the following
day. This can be considered by only allowing those composition changes
that involve transitions to compositions which are a subset of the specific
departing train service composition for the following day.

The TUSP can be modeled with the following mathematical program,

16

which is used as a basis for the CPM:

X�e,s = In[Ye,s] 8e 2 E, s 2 S (6)

Xe,s = Out[Ye,s] 8e 2 E, s 2 S (7)
X

s2S
�m[Ye,s] = 1 8e 2 Edep,m 2M : me = m (8)

X

s2S
↵m[Ye,s] = 1 8e 2 Earr,m 2M : me = m (9)

Constraints (6) state that the first composition of a chosen composition
change on a track has to match the actual composition that is appointed
before the composition change took place on the track. This actual compo-
sition is the composition that is assigned to the track just after the previous
event, �e. A similar composition flow conservation constraint is used for the
second composition of a chosen composition change. This composition must
be equal to the actual composition that is appointed to track after the com-
position change took place, which equals the composition that is assigned
to the track just after the event, e. This is modeled by Constraints (7).

Every departure event has a corresponding unit that has to depart from
precisely one of the tracks in the depot. Consequently, exactly one com-
position change has to be selected where a unit of type me is removed; on
all other tracks no shunting movements can take place. This is modeled
by Constraints (8). A similar requirement holds for an arrival. The corre-
sponding unit me has to be appended to precisely one track; this is handled
by Constraints (9).

Finally, the start inventory is enforced by fixing the values for Xe,s of an
auxiliary source event e that occurs before the first event.

5.2.1 Solution procedure

The proposed model can be solved using a CP solver, e↵ectively solving the
TUSP by assigning compositions and composition changes to the events on
the tracks. Similar to the rolling stock scheduling variant in [1], the model
does not scale well. Long depot tracks and a high number of unit types
result in a huge number of variables in practice. A large number of vari-
ables is needed for long depot tracks as the number of possible compositions
increases drastically in such cases. Multiple, di↵erent unit types further
increase the combinatorial solution space.

Preliminary results showed that small instances with two unit types are
practical to solve. However, larger instances with four unit types quickly
become impractical to solve primarily due to the memory footprint. As a
remedy, the CPM can be adapted to a more practical heuristic method. We
present a heuristic variant, the Constraint Programming Heuristic (CPMH),

17

that restricts the compositions on tracks to contain at most ✏ � 1 di↵erent
unit types. Note, that the contained types can change over the course of a
planning horizon. At any time, the number of di↵erent types is at most ✏.
In e↵ect, fewer tracks will be mixed, i.e., contain more than one unit type,
in the solution. Keeping tracks homogeneous is beneficial as it also reduces
the potential LIFO conflicts. The main benefit is the drastic reduction of
variables in the CP model. If the heuristic finds a solution, then clearly
it is feasible for the TUSP. However, if it fails to find a solution we cannot
conclude that the solution is infeasible, unless ✏ is equal to the actual number
of unit types.

The minimal value of ✏ that produces a feasible solution is initially un-
known, therefore we begin with ✏ = 1. The strategy is to solve the model
using increasing values of ✏. A time limit of � minutes is set in every itera-
tion. Otherwise, too much time is potentially spent searching an infeasible
solution space. In this paper we divide the available time, T , uniformly by
the number of unit types in the problem instance, � = T/|M |. In every step
when no solution has been found, we increase ✏ with 1 and try again, until
✏ = |M |.

5.3 The Column Generation Method

To combat the potentially large number of constraints in the MIP formula-
tion, a column generation approach can be used to solve the TUSP. In this
approach the problem is decomposed by track, where each track is assigned
to a set of possible matchings, termed a matching pattern. A matching pat-
tern is a subset of matchings that can be feasibly parked on a given track
over the planning horizon. In particular, it is a set of matchings that satis-
fies the LIFO requirements as well as the available track length restriction.
A large number of possible matching patterns exist thus the approach re-
lies on dynamic generation of variables that represent promising matching
patterns. In this paper, the solution method is referred to as the Column
Generation Method (CGM).

The proposed formulation is based on the methodology presented by
Freling et al. [1], with the exception that in our work the matching and
parking problems are not solved separately. We present a model and solu-
tion framework that simultaneously solves both problems. To assist in the
description of the model, we introduce the set Ps, which denotes the set of
all feasible matching patterns for track s 2 S. Note, that platform parking
and LIFO constraints are already satisfied in this set. A binary decision
variable Xp,s is defined for each s 2 S and p 2 Ps and governs the inclusion
of the corresponding matching pattern in the final solution. A value of one
indicates that the matching pattern is chosen, while a value of zero indicates
otherwise. As the majority of the constraints are embedded in the column
construction phase, the problem can be formulated as a large generalized

18

set partitioning problem. In the model, at most one matching pattern is as-
signed to each track. Further, each arrival and departure must appear in at
most one matching pattern, otherwise it is left uncovered. Binary variables
Ye, where e 2 Earr, and Ze, where e 2 Edep, are used to indicate whether
an arrival, respectively departure, is matched or not. These variables are
penalized in the objective function by, �, thus providing an incentive for the
model to match as many events as possible. Finally, the binary parameter
↵e,p indicates whether or not event e 2 E is contained in matching pattern
p 2 Ps. The full binary integer program is given as follows.

Minimize:
X

e2Earr

�Ye +
X

e2Edep

�Ze (10)

subject to:
X

p2Ps

Xp,s 1 8s 2 S, (µ) (11)

X

s2S

X

p2Ps

↵e,pXp,s + Ye = 1 8e 2 Earr, (⇡) (12)

X

s2S

X

a2Ps

↵e,pXp,s + Ze = 1 8e 2 Edep, (�) (13)

Xp,s 2 {0, 1} 8s 2 S, p 2 Ps, (14)

Ye 2 {0, 1} 8e 2 Earr, (15)

Ze 2 {0, 1} 8e 2 Edep. (16)

The objective, given in (10), minimizes the penalties incurred from un-
covered events. Constraints (11) ensure each depot track is assigned at
most one matching pattern. Constraint sets (12) and (13) enforce the re-
quirement that each arrival and departure appears in one of the selected
matching patterns, or is left uncovered. Finally, variable domains are spec-
ified by constraints (14)-(16). We refer to Model (10)-(16) as the master
problem.

The Master Problem

Given the exponential number of matching patterns in any real-life example
it is impractical to enumerate all corresponding columns and solve this for-
mulation. In our solution method, a subset (restricted set) of the possible
matching patterns are included. We relax the integrality restrictions and
associated bounds given by (14)-(16). A relaxed, restricted master problem
(RRMP) is obtained. Using the optimal dual solution vector (µ⇤,⇡⇤,�⇤)
to this relaxed problem, a pricing problem is solved to determine if any
favourable matching patterns exist. Promising variables are inserted itera-
tively into the restricted master problem until none exist - implying that the

19

LP solution is proven optimal. By iterating between the RRMP and several
pricing problems (typically one for each track), one can limit the search for
the optimal solution to model (10)-(16) to include only those matching pat-
terns that have the potential to improve the objective value. For a general
introduction to column generation the reader is referred to [13].

The Pricing Problem

The pricing problem requires one to find a favourable set of matchings that
can feasibly be parked on a given track. In other words, given an optimal
solution to the RRMP, one must solve up to |Sd| + |Sp| pricing problems
at any column generation iteration to determine if any improving matching
pattern exists. To find such patterns we present an approach that finds
shortest paths in a directed pricing graph.

In the pricing graph there is one node for every possible matching, one
node for every arrival (corresponding to not parking the arrival), and a
source and sink node. The graph is layered by matchings for each arrival
(including the node corresponding to not parking the arrival) and these
layers are ordered in increasing arrival time. Arcs connect matchings in one
layer with those of the subsequent layer - providing the two matchings can
feasibly use the same track. The source node is connected to each matching
in the first layer, while each matching in the last layer is connected to the
sink. There is a cost on any arc entering a matching node equal to dual
contribution to the reduced cost of the arrival and departure matched in the
matching. E.g. if events e 2 Earr and e0 2 Edep are matched, the cost on
any arc entering the node corresponding to this matching will have a cost
of �(⇡e + �e0). An example of such a network is given in Figure 2

As we must observe the available track length and satisfy the LIFO re-
quirement when generating matching patterns, a resource constrained short-
est path problem must be solved. Consequently, a standard label setting
algorithm is used to identify paths in this network. The algorithm is sim-
ilar to that of Freling et al. [1]; however, as we must also simultaneously
find the matching, the proposed network is much bigger. Additionally, we
must also keep track of previously matched departures. The ordering of the
layers ensures that each arrival is matched exactly once (or not parked);
however, a path in the presented graph can match the same departure more
than once. This is indeed likely if doing it improves the reduced cost re-
sulting in matching patterns that cover the same departure multiple times.
In addition to being infeasible, these patterns also dominate feasible labels.
For an exact approach, the only option would be to weaken the dominance
(ensuring all possibilities) are generated; however, this is impractical with
large networks. In this paper, we adopt the second approach; i.e. a label
can not visit a matching if the departure associated with the matching has
been previously matched. This is heuristic; however, it ensures the solution

20

Arrivals
D
ep
ar
tu
re
s

O D
�(⇡

1
+
� 1
)

Figure 2: An example subproblem network with five arrivals and five depar-
tures. Every node corresponds to either the matching of an arrival and a
departure or an unmatched arrival (gray nodes). All paths originating at the
source (O) and terminating at the sink (D) represent a matching pattern,
which is feasible if the resource constraints are respected. An example of
such a path is given in black. Note that not all arcs and costs are shown.

times of the pricing problem are manageable.
To ensure exactness of the column generation, the heuristic column gen-

eration approach outlined can be complemented with a MIP solve. For
instance, one can resort to a MIP when the column generation fails to iden-
tify a negative reduced column. This MIP, however, would be similar in
structure to that described in Section 5.1, with the exception that only the
“best” set of matchings need to be decided for the shunting track in question.
For large problems, this is expected to be slow.

5.4 The Two-Stage Method

Given a matching to an instance of the TUSP, the remaining problem sim-
ply entails parking the set of matchings. A problem instance may contain
multiple feasible matchings for which a feasible parking exists. Solving these
two problems in isolation is expected to be easier than solving them jointly.
This motivates the Two-Stage Method (TSM), where in the first stage a
feasible matching of arriving and departing units is generated, while in the
second stage the method tries to park the found matchings.

The matching and the parking problem can be solved using di↵erent
methods. For the matching problem we resort to a MIP approach for two
reasons. First, it is easy to formulate and implement a MIP for the matching
problem. Second, as mentioned in Section 4, the resulting LP is totally
unimodular. We also adopt a MIP approach for solving the parking problem.
Freling et al. [1] proposed a column generation approach for solving this

21

problem; however, the fast runtimes of our approach gave us no reason to
pursue a more complicated framework.

For the matching problem formulation a binary decision variable Xa is
introduced that indicates whether a given matching a 2 A is selected or not.
In a feasible matching, each arrival and departure should appear in exactly
one matching. The resulting constraints of the MIP are given below.

X

a2Aarr
e

Xa = 1 8e 2 Earr, (17)

X

a2Adep
e

Xa = 1 8e 2 Edep, (18)

Xa 2 {0, 1} 8a 2 A. (19)

There is no objective used in the MIP, since we are interested in feasibility
only. Constraints (17) and (18) ensure, respectively, that each arrival and
departure event appears in exactly one matching. The variable domains are
given by (19). Several solutions, i.e. matchings, to the model may exist
and it may therefore be useful to guide the solution in a more advanced
approach.

If a solution to the matching problem problem exists, we proceed to the
second stage and attempt to park them. For this, we use the MIP described
by Haahr et al. [14], which is identical in structure to the reference MIP
approach described earlier.

The TSM is similar to what is described by Freling et al. [1]. However,
the matching problem we propose is slightly di↵erent and we use a MIP
solver for the parking problem. A heuristic column generation framework is
described in Freling et al. [1].

5.5 The Randomized Greedy Construction Heuristic

Modeling ordering constraints e�ciently in integer linear programs such as
LIFO constraints is cumbersome. Our proposed solution methods over-
come this modelling issue by either adding all pairwise conflicts, enumer-
ating all possible transition states, or by generating feasible parking pat-
terns. All methods have scaling issues, by the number of constraints or
variables. In contrast, modelling one or multiple stacks programmatically is
fairly straightforward.

We propose a heuristic that greedily assigns arrivals and departures to
and from tracks. The important key ingredients are the e�ciency of the
construction and the randomization of the greedy choice. Together these
characteristics allow the heuristic method to try multiple paths of track
assignments and extractions within a short time. The method terminates
with the first feasible solution.

22

Algorithm 1 Randomize Greedy Construction Heuristic
1: Input: Track set S
2: Input: Event set E, ordered by time
3: Output: Matching set M
4: M ;
5: S InitializeEmptyTrackStacks()
6: for e 2 E do
7: if Type(e) =Arrival then
8: s FindRandomCompatibleTrack(S)
9: if s = ; then

10: return ;
11: else
12: S[s] Push(S[s], e)

13: else
14: s FindRandomCompatibleUnitType(S)
15: if s = ; then
16: return ;
17: else
18: (S[s], e0) Pop(S[s])
19: M M [{(e, e0, s)}

An overview of the heuristic is shown in Algorithm 1. The input to the
heuristic is the set of events to process and the set of available tracks. The
main loop processes events by ascending time. In case of an arrival, a ran-
dom compatible track is sought, i.e., any track that has su�cient remaining
length to hold the arriving train unit. Many candidates may exist, thus the
following selection criteria are used:

1. A track where the existing outmost unit has the same type

2. A track which is empty

3. Any track with su�cient capacity

The goal is to group the same type of units, and avoid stacking di↵erent unit
types on the same tracks. Note, units of the same type do not block each
other as they are interchangeable. In order to avoid a standstill in certain
situations at depots with scarce capacity, the first and second criteria are
skipped with a low probability. The situation occurs when unit types must
be mixed on tracks in order to utilize the capacity fully.

In case of a departure, tracks are processed in a random order. The
track with the correct unit type (on the top of the stack) is selected. Here
it might be worthwhile considering a selection criteria approach based on
the e↵ect of removing this unit. However, preliminary results show that this
simple extraction rule is su�ciently e↵ective.

23

The algorithm output is a list, where every element defines an arrival, a
departure matching, and a specific track. On arrival the unit is parked on
the track, and the specified departure extracts the unit from the same track.

The heuristic is able to evaluate one construction path very quickly,
thus it is embedded in an iterative loop, where the heuristic is applied with
di↵erent seeds to initialize the random number generator. Every iteration
thus essentially restarts the whole process. The loop continues until either
a feasible solution is found or the time limit is reached.

5.6 Type and Track Decomposition

Some problem instances contain many events, unit types, or long tracks.
This results in a large number of possible matchings or track assignments,
which makes the problem impractical to solve using exact methods. For ex-
ample, the CPM and RMM require too much memory to represent the math-
ematical formulas as they contain an explicit representation of the problem.

The solution space can be reduced significantly by decomposing the prob-
lem instances by unit types and tracks. In the proposed decomposition, a
unit type is restricted to park on a select subset of tracks. The partitioning
of the tracks and unit types can be performed such that the original problem
decomposes into several independent problems, which can be solved individ-
ually in sequence or in parallel. We consider such partitions where both the
unit types and tracks are partitioned into K groups, such that one group of
unit types is assigned to one group of tracks. By construction, no interaction
needs to takes place across the selected groups.

The decomposition divides the problem into a number of smaller inde-
pendent subproblems. The primary advantage is that solving all resulting
subproblems is easier than solving the full original problem. A second advan-
tage is that the decomposition is independent of the underlying solver. The
subproblems can be solved using any solution method for the TUSP. The
primary disadvantage is that the resulting framework is inherently heuristic
as the decomposition restricts the original solution space. Feasible solutions
found using the decompositions are naturally also feasible in the original
problem; however, we cannot conclude that a problem instance is infeasi-
ble if any one subproblem is infeasible. Another drawback of the proposed
decomposition is the existence of multiple partitions. Some of the parti-
tions may contain feasible solutions to all subproblems while others may
not. Determining the partition is therefore another problem that must be
addressed.

Due to the scope of this paper, we only propose a simple method of
finding eligible partitions that will be tested in Section 6. For the selected
problem instances we generated a number of random partitions. Partitions
are rejected if they do not pass the checks described in Section 4.

24

6 Computational Results

The presented solution methods are benchmarked on di↵erent classes of
instances, which originate from three di↵erent railway networks in two dif-
ferent countries. Four classes, summarized in Tables 8, 9 and 10, are con-
sidered: STOG, DSB, NS, and NS-HARD. These instances are based on the
railway networks of the Danish State Railways (DSB) and the Nederlandse
Spoorwegen (NS) - the principal operators in Denmark and the Netherlands
respectively.

All instances, except the DSB class, have been generated using a rolling
stock optimizer. The events going in and out of the depots are extracted
from the optimized schedule and define separate instances for each depot.
Information about fleet size, train unit types, and depot track lengths are
given by the railway operators.

The STOG class consists of twelve distinct rolling stock schedules ob-
tained by optimizing the suburban railway network in the greater Copen-
hagen area (DSB S-tog). This gives up to twelve di↵erent event lists per
station. Identical problem instances have been eliminated resulting in a
total of 96 instances for the STOG class.

The DSB class consists of real-life data for a recurring weekly schedule at
the busiest station in Denmark, which is located in the center of Copenhagen.
Every day in the weekly schedule is unique thus resulting in seven instances
for the DSB class.

The NS class consists of ten distinct rolling stock schedules for the whole
country. This leads to ten di↵erent problem instances at eleven di↵erent
stations. There are large di↵erences between the event lists per station;
some are large and some are small. Consequently, there are both di�cult
and relatively simple problem instances for the NS class.

The NS-HARD class is identical to the NS class, expect that fewer tracks
are now available at busy stations. These artificial cases are therefore con-
strained in terms of capacity, in turn reducing the number of feasible parking
plans. These have been included as an attempt to stress test the solution
methods.

All computation experiments are performed on a dedicated machine
equipped with two Intel(R) Xeon(R) CPU X5550 (2.67GHz) processors and
24 gigabytes of main memory. Version 12.6 of the commercial solver CPLEX
is used to solve the MIP and CP based approaches. A time limit of 900 sec-
onds is set for all experiments.

The following is a short summary of the solution methods proposed in
Section 5 benchmarked in this section.

RMM A reference MIP approach solved using the CPLEX MIP solver.

DCMM A variant of the RMM where the pairwise order conflict con-
straints are generated on-the-fly.

25

Class Depot Min Max Tracks Length Types

STOG BA 12 14 4 936 2
STOG FM 16 66 4 727 2
STOG FS 26 58 6 1 020 2
STOG HI 20 54 6 1 635 2
STOG HOT 2 22 1 173 2
STOG HTAA 20 68 35 3 272 2
STOG KH 36 78 9 2 753 2
STOG KJ 24 60 6 1 115 2
STOG KL 6 66 3 558 2
STOG UND 24 46 6 1 670 2

DSB KK 326 518 10 3 878 12

Table 8: Summary of instances: The first column indicates to which class
the problem belongs. The second column defines the station. The third and
fourth column show the minimum and maximum number of events taking
place at the station. The fifth column presents the number of depot tracks
available within the station and the sixth column defines the total length of
all depot tracks combined. Finally, the seventh column defines the number
of di↵erent rolling stock types that need to be parked within the station.

Class Depot Min Max Tracks Length Types

NS AMR 157 159 9 2 267 4
NS DDR 162 162 4 939 4
NS EHV 153 179 20 7 061 4
NS EKZ 97 97 5 1 590 4
NS GVC 742 744 17 5 690 4
NS HDR 82 82 3 1 143 4
NS HFDO 561 561 8 3 020 4
NS HN 75 75 12 2 023 4
NS NM 268 268 25 6 495 4
NS RTD 378 380 22 5 384 4
NS ZP 87 87 9 4 127 4

Table 9: Continued summary of instances.

26

Class Depot Min Max Tracks Length Types

NS-HARD GVC14 742 744 14 4 712 4
NS-HARD HFDO5A 561 561 5 1 934 4
NS-HARD HFDO5B 561 561 5 1 898 4
NS-HARD HFDO6 561 561 6 2 197 4
NS-HARD NM10 268 268 10 2 457 4
NS-HARD NM11 268 268 11 2 657 4
NS-HARD RTD11 378 380 11 3 085 4
NS-HARD RTD12 378 380 12 3 410 4
NS-HARD RTD13 378 380 13 3 669 4

Table 10: Continued summary of instances.

CPM A constraint program formulation inspired by the composition model
in [12]. The formulation is solved using the CPLEX constraint program
solver.

CPMH A variant of the CPM where the number of di↵erent unit types
assigned to the same track is limited.

RGCH A randomized greedy construction heuristic that is executed mul-
tiple times with di↵erent initial seeds.

CGM A column generation approach that assigns matching patterns to
tracks.

TSM A two-stage decomposition method that solves the matching and
parking problem in sequence using MIP approaches.

Before presenting the results in detail, we first note that the CGM, an
extension of a method proposed in literature [1], is discarded from further
analysis. The performance of this method on all instances was always infe-
rior in comparison to the other methods. For small cases the time it took
to produce an optimal solution to the linear programming relaxation was
significantly greater than the time it took the MIP based approaches to pro-
duce a feasible solution. For the larger instances, CGM was unable to solve
the root node relaxation (in a Branch-and-Price (B&P) framework) to LP
optimality within the time limit in most cases. These results are consistent
with the study in [14], where a similar column generation approach was
outperformed by a MIP approach for the parking problem only.

Table 11 and 13 show a comparison overview. Table 11 shows the number
of instances for which a feasible solution is found per problem class per
method within the time limit. Table 13 shows the average runtimes.

In the STOG class, which contains the smallest problem instances, 94
out of the 96 instances are feasible. All methods, except the TSM, were able
to find the solutions. The TSM was unable to find a feasible solution for

27

Class No RMM DCMM CPM CPMH RGCH TSM

STOG 96 94 94 94 94 94 93
DSB 7 0 7 0 0 7 7
NS 110 0 93 84 101 110 110
NS-HARD 90 0 27 70 83 70 90

Table 11: Number of feasible instances found by the methods.

Class RMM DCMM CPM CPMH RGCH TSM

STOG 2 2 2 2 0 0
DSB 0 0 0 0 0 0
NS 0 0 0 0 0 0
NS-HARD 0 0 0 0 0 0

Table 12: Number of instances proved to be infeasible by the methods.

one of those instances. The average solution time is less than one second for
all methods.

Solving the mathematical formulations of the other classes directly proves
to be impractical. We observe that the RMM fails to solve all but the rela-
tively small STOG problem instances. Significantly more cases can be solved
by using the more e�cient DCMM, CPM and CPMH variants. The DCMM
can solve all DSB instances and a large portion of the NS instances, but
only a few of the NS-HARD instances. The time limit becomes a prohibit-
ing factor when using the DCMM. The CPMH is more successful at solving
the NS and NS-HARD classes but unable to solve the DSB class due to the
large number of unit types. The CPM performs relatively well compared to
the RMM, but the performance is clearly dominated by the CPMH in terms
of solutions found and average runtimes.

The CPMH, RGCH and TSM perform well on all the realistic instances
as they are able to find the same number of feasible solutions. Further,
RGCH and TSM are able to identify a feasible solution within a few seconds
in average. However, for the artificial class of problem instances TSM proves
to be the most e�cient heuristic. The CPMH was unable to solve some of
the larger instances (GVC), while the RGCH was unable to solve the more
constrained instances (HFDO5A and HFDO5B).

Table 12 shows the number of instances for which infeasibility is proven
per method within the time limit. First, we note that the heuristic methods
RGCH is by definition not able to proof infeasibility. The two infeasible
instances in the benchmark were detected by all exact approaches and the
CPMH. The TSM was unable to prove infeasibility as at least one feasible
matching exists.

28

Class RMM DCMM CPM CPMH RGCH TSM

STOG 0.5 0.4 1.3 0.6 0.0 0.0
DSB 255.8 0.1 1.3
NS 148.0 20.5 6.0 0.0 5.8
NS-HARD 267.5 78.2 33.3 0.3 1.1

Table 13: Average runtimes for finding solutions grouped by method

Based on these results we can conclude that both the TSM and the
RGCH method are very fast and e�cient in finding feasible solutions. The
CPMH is somewhat slower, but also successful in identifying feasible solu-
tions in many cases. The RMM is clearly dominated by the DCMM, and the
CPM by the CPMH. The DCMM solves fewer instances than the CPMH
and requires more runtime, however it can, in contrast, solve some instances
with a higher number of unit types.

Track Splitting

The problem can be decomposed into several independent problems by parti-
tioning the full problem by unit types and tracks as described in Section 5.6.
In this section we investigate whether this decomposition technique can im-
prove the tractability of the exact methods.

We have randomly generated a number of partitions of a selected set of
problem instances with the following procedure. First, a random number
of groups is selected. Second, tracks and unit types are assigned randomly
to the available groups. If any group has an empty set of unit types or
tracks, then the whole generation is rejected. Further, it is ensured that the
maximum depot capacity required by the unit types is less than the capacity
of the tracks in the group. Finally, if units are positioned initially in the
depot, then this naturally adds constraints to the generation of the groups.

The DCMM, CPMH and RGCH have been considered in this benchmark
as they were unable to solve several instances in the previous section. The
benchmark consists of large instances of the NS class that were unsolved
by the RMM, DCMM and CPM. Decomposing this class of problems re-
duces the size of the underlying mathematical models significantly. Further,
we consider two cases of the DSB class that were unsolved by the RMM,
CPM and CPMH. A decomposition of these instances drastically reduces
the number of variables and constraints needed by the CP model since the
resulting number of di↵erent unit types is decreased.

An overview of the generated instances and results are shown in Ta-
ble 14. The average runtimes are listed in Table 15. The HFDO, GVC
and RTD instances were very successfully decomposed as all the resulting
subproblems were feasible. The considered solution methods were able to

29

DCMM CPMH RGCH

Instance # F Sub. F I T F I T F T

HFDO 10 10 20 20 0 0 20 0 0 20 0
GVC 10 10 20 4 0 16 20 0 0 20 0
RTD 10 10 30 30 0 0 30 0 0 30 0
DSB1 25 19 71 65 6 0 43 2 26 50 21
DSB2 25 18 71 64 6 1 40 4 27 50 21

Table 14: Summary of results achieved when running di↵erent methods
on problem instances decomposed by splitting tracks and unit types. The
columns respectively show the instance considered, number of decomposi-
tions, number of feasible decompositions, number of generated subproblems,
and finally the number of Feasible, Infeasible and Timed-out instances for
every method.

Instance No DCMM CPMH RGCH

HFDO 10 83.4 13.3 0.1
GVC 10 3.2 9.9 0.0
RTD 10 18.0 1.7 0.0
DSB1 25 42.2 26.4 0.1
DSB2 25 32.6 30.8 0.1

Table 15: Summary of average runtimes achieved when running di↵erent
methods on problem instances decomposed by splitting tracks and unit
types. The columns respectively show the instance considered, number of
decompositions and finally the average runtime for all found solutions.

solve these instances e�ciently, except for the DCMM which was unable to
produce a feasible solution for the subproblems of the largest instance. Nev-
ertheless, DCMM is able to solve more instances using this decomposition
technique. The DSB1 and DSB2 instances were on the contrary decomposed
into both feasible and infeasible subproblems. The DCMM is able to solve
all subproblems, except one, e�ciently. The CPMH is now able to solve
more than half of the subproblems but several remained unresolved. This
is an improvement compared to the non-decomposed results. Interestingly,
decomposing the problem proved unhelpful for the RGCH as many feasible
subproblems were left unsolved. The RGCH was able to solve the original
instances of the problems. A reduction in computational time is observed
for both the DCMM and the RGCH in Table 15.

30

Instance Cases DCMM CPMH RGCH TSM

KH 3 2 3 3 1
FM 3 3 3 3 0
EHV 3 3 3 3 3
HDR 3 3 3 3 0

Table 16: Summary of results achieved when running di↵erent methods on
problem instances with overnight parking. The columns respectively show
the instance considered, number of problem instances, and the number of
solved instances for every method.

Overnight Parking

In the common case all units leave the depots during the early hours and
enter the depot at the end of the day. Some units enter and leave the depots
during the day, e.g. before and after rush hour periods. The capacity at
depots is therefore not very limiting during the day, which makes it easy to
plan this intermediate period.

The considered problem instances do not stipulate any particular park-
ing order at the end of the day. Consequently, no ordering conflicts arise
regardless of the final track assignment, when the depots are close to be-
ing at capacity. Realistically, a smooth transition from one day to another
is desirable, making sure that units can leave the depot in a conflict free
manner the following day. In our final benchmark, we combine the planning
instances to include the events for two days of operation, thus forcing the
solution methods to consider the overnight parking.

Tables 16 and 17 show the results of the overnight parking instances.
The instances are naturally larger than the original ones, and require more
time to solve as two days of events have been combined. The results show
that the considered methods, except the TSM and DCMM, can e�ciently
solve all instances. All methods except the TSM integrate matching and
parking, where the RGCH does this by trying many di↵erent matchings in
the solution construction. The TSM first finds one feasible matching and
tries to park the matched events. Fixing the matching in a early stage
does, however, restrict the flexibility when resolving the ordering conflicts.
In contrast to the other benchmarks, these problem instances contain at
least one very busy period, where the depots are close to being at capacity.
Evidently, an approach that fixes, i.e., only considers one matching, may
very well fail to find a feasible solution. The average runtimes shown in
Table 17 reveal that the CPMH is faster than the DCMM in general when
considering these extended instances. We note, however that these instances
only contain 2-4 di↵erent unit types. The performance of the CPMH is
expected to decrease with higher numbers of di↵erent unit types.

31

Instance Cases DCMM CPMH RGCH TSM

KH 3 449.5 223.0 0.1 12.3
FM 3 8.2 1.1 0.0 0.0

EHV 3 244.4 11.9 0.1 0.4
HDR 3 17.7 1.0 0.0 0.1

Table 17: Summary of average runtimes achieved when running di↵erent
methods on problem instances with overnight parking. The columns re-
spectively show the instance considered, number of problem instances, and
average runtimes.

7 Conclusion

In this paper we have developed and benchmarked di↵erent models and solu-
tion approaches to solve the Train Unit Shunting Problem. Given a feasible
rolling stock circulation, the objective of the solution approaches is to find a
valid matching and shunting plan. A number of computational experiments
have been performed on multiple problem instances from three di↵erent
railway operators. The benchmark highlights strengths and weaknesses of
the considered approaches. A platform parking extension is described, as
platform tracks are currently used for overnight parking in some railway
operations.

The main benchmark, consisting of multiple daily problem instances, re-
vealed the main weakness of the exact models based on mathematical mod-
els, i.e. RMM and CPM. These approaches were outperformed by the other
approaches. The resulting mathematical models quickly consumed more
than 24 gigabytes of memory due to the large number of constraints and/or
variables required. Using delayed constraint generation (for the RMM) the
DCMM is able to solve significantly more instances. The heuristic extension
CPMH method (of CPM) further outperforms the DCMM when consid-
ering the instances with a small number of di↵erent unit types. In turn,
the DCMM can solve the instances with a high number of unit types. On
average, the solved instances were solved in a few minutes by these methods.

A randomized construction heuristic, the RGCH, was able to solve al-
most all instances within one second. However, some harder and artificially
generated instances were left unsolved by the RGCH. In the main bench-
mark the non-integrated method TSM proved to be most successful, solving
all but one of the feasible instances within a few seconds. Ironically, the
unsolved instance was a relatively small problem instance. Finally, a col-
umn generation approach, the CGM, was also considered, however, it was
not benchmarked as it was always inferior to the MIP/CP based approaches
on small instances and required too much computation time to solve larger
instances.

32

The TUSP can be decomposed by splitting the available tracks and unit
types into several independent and smaller subproblems. A set of the larger
instances were decomposed in a second benchmark. In general, most of the
the resulting partitions were feasible. Using this decomposition the DCMM
and CPMH were able to solve more problem instances than before, but not
all. In fact, the RGCH performed worse than before as it was unable to find
solutions for some of the problems that were solved originally.

In a final benchmark a number of instances were combined in order to
solve two days of operation. Interestingly, the results show that no added
di�culty is introduced when using the integrated methods. However, the
TSM is now unable to solve most of the problem instances.

The considered solution approaches have both strengths and weaknesses.
The results show that no method is superior. Solving the full mathemat-
ical formulations, i.e. RMM, CPM, directly proves to be ine↵ective. The
DCMM is able to prove infeasibility in most cases. In addition, note that
the proposed feasibility checks in Section 4 are very e�cient - few instances
were infeasible in general. Very fast solutions can be found using the RGCH
but it proves to be ine�cient for the more constrained instances. Finally,
the TSM solves more instances using a few seconds, but has the drawback of
using a fixed matching, which can lead to premature infeasibility. In conclu-
sion, given the low runtime requirement of the RGCH and the TSM, these
approaches form a reasonable choice as a first step in any solution frame-
work. If no solution is found the DCMM and the CPMH can be adopted in
a subsequent phase.

This paper focusses only on finding a feasible solution. There is no
distinction made between any feasible solution. In future research it might
be interesting to extend the models by considering an objective in order to
find a solution with, for instance, homogeneous tracks. Furthermore, several
important restrictions have not been considered. If, for instance, the rolling
stock circulation passes our feasibility check, it might still be infeasible with
respect to the available crew members present for shunting operations at a
station. Consequently, the crew has to be taken into account in the TUSP
in future research. Other practical aspects needs to be taken into account
as well, e.g. parking whole compositions instead of single units, units might
require maintenance at the station, and cyclic rolling stock circulations. In
future research it would be interesting to include some or all of these aspects
in the TUSP.

References

[1] R. Freling, R. M. Lentink, L. G. Kroon, D. Huisman, Shunting of pas-
senger train units in a railway station, Transportation Science 39 (2)
(2005) 261–272.

33

[2] L. G. Kroon, R. M. Lentink, A. Schrijver, Shunting of passenger train
units: an integrated approach, Transportation Science 42 (4) (2008)
436–449.

[3] R. M. Lentink, P.-J. Fioole, L. G. Kroon, C. van’t Woudt, Applying
operations research techniques to planning of train shunting, Planning
in Intelligent Systems: Aspects, Motivations, and Methods (2006) 415–
436.

[4] R. Haijema, C. Duin, N. Van Dijk, Train shunting: A practical heuristic
inspired by dynamic programming, Planning in Intelligent Systems:
Aspects, Motivations, and Methods (2006) 437–475.

[5] P. M. Jacobsen, D. Pisinger, Train shunting at a workshop area, Flexible
services and manufacturing journal 23 (2) (2011) 156–180.

[6] T. Winter, Online and real-time dispatching problems, Ph.D. thesis,
Technical University, Braunschweig, Germany (1999).

[7] M. R. Garey, D. S. Johnson, L. Stockmeyer, Some simplified np-
complete problems, in: Proceedings of the sixth annual ACM sym-
posium on Theory of computing, ACM, 1974, pp. 47–63.

[8] D. Pisinger, Algorithms for knapsack problems, Ph.D. thesis, DIKU,
University of Copenhagen, Denmark, technical Report 95-1 (1995).

[9] J. Munkres, Algorithms for the assignment and transportation prob-
lems, Journal of the Society for Industrial and Applied Mathematics
5 (1) (1957) 32–38.

[10] H. W. Kuhn, The hungarian method for the assignment problem, Naval
research logistics quarterly 2 (1-2) (1955) 83–97.

[11] R. M. Karp, Reducibility among combinatorial problems, Springer,
1972.

[12] P.-J. Fioole, L. Kroon, G. Maroti, A. Schrijver, A rolling stock circu-
lation model for combining and splitting of passenger trains, European
Journal of Operational Research 174 (2) (2006) 1281–1297.

[13] M. Lubbecke, J. Desrosiers, Selected topics in column generation, Op-
erations Research 53 (2004) 1007–1023.

[14] J. Haahr, R. Lusby, J. Larsen, D. Pisinger, Simultaneously Recovering
Rolling Stock Schedules and Depot Plans Under Disruption, Proceed-
ings of the 13th Conference on Advanced Systems in Public Transport
(CASPT), 2015.

34

ERIM Report Series Research in Management
ERIM Report Series reference number ERS–2015–013–LIS
Date of publication 2015–10–15
Version 15–10–2015
Number of pages 35
Persistent URL for paper http://hdl.handle.net/1765/78820

Email address corresponding author jwagenaar@rsm.nl
Address Erasmus Research Institute of Management

(ERIM)
RSM Erasmus University / Erasmus School
of Economics
Erasmus University Rotterdam
PO Box 1738
3000 DR Rotterdam, The Netherlands
Phone: +31104081182
Fax: +31104089640
Email: info@erim.eur.nl
Internet: http://www.erim.eur.nl

Availability The ERIM Report Series is distributed
through the following platforms:
RePub, the EUR institutional repository
Social Science Research Network (SSRN)
Research Papers in Economics (RePEc)

Classifications The electronic versions of the papers in the
ERIM Report Series contain bibliographic
metadata from the following classification
systems:
Library of Congress Classification (LCC)
Journal of Economic Literature (JEL)
ACM Computing Classification System
Inspec Classification Scheme (ICS)

http://www.erim.eur.nl
http://repub.eur.nl/
http://papers.ssrn.com/sol3/JELJOUR_Results.cfm?form_name=journalbrowse&journal_id=308571
http://ideas.repec.org/s/dgr/eureri.html
http://www.loc.gov/catdir/cpso/lcco/lcco_h.pdf
http://www.aeaweb.org/journal/jel_class_system.php
http://www.acm.org/about/class/
http://www.theiet.org/

	Introduction
	Literature overview
	Problem description
	General notation

	Infeasibility Checks
	Solution methods
	The DepotReferenceMIP
	The DepotCP
	Solution procedure

	The DepotCG
	The DepotTwoStage
	The DepotGreedyHeuristic
	Type and Track Decomposition

	Computational Results
	Conclusion

