349 research outputs found

    Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition

    Full text link
    Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step.Comment: Accepted to WACV 202

    Design of CNN architecture for Hindi Characters

    Get PDF
    Handwritten character recognition is a challenging problem which received attention because of its potential benefits in real-life applications. It automates manual paper work, thus saving both time and money, but due to low recognition accuracy it is not yet practically possible. This work achieves higher recognition rates for handwritten isolated characters using Deep learning based Convolutional neural network (CNN). The architecture of these networks is complex and plays important role in success of character recognizer, thus this work experiments on different CNN architectures, investigates different optimization algorithms and trainable parameters. The experiments are conducted on two different types of grayscale datasets to make this work more generic and robust. One of the CNN architecture in combination with adadelta optimization achieved a recognition rate of 97.95%. The experimental results demonstrate that CNN based end-to-end learning achieves recognition rates much better than the traditional techniques

    On the application of reservoir computing networks for noisy image recognition

    Get PDF
    Reservoir Computing Networks (RCNs) are a special type of single layer recurrent neural networks, in which the input and the recurrent connections are randomly generated and only the output weights are trained. Besides the ability to process temporal information, the key points of RCN are easy training and robustness against noise. Recently, we introduced a simple strategy to tune the parameters of RCNs. Evaluation in the domain of noise robust speech recognition proved that this method was effective. The aim of this work is to extend that study to the field of image processing, by showing that the proposed parameter tuning procedure is equally valid in the field of image processing and conforming that RCNs are apt at temporal modeling and are robust with respect to noise. In particular, we investigate the potential of RCNs in achieving competitive performance on the well-known MNIST dataset by following the aforementioned parameter optimizing strategy. Moreover, we achieve good noise robust recognition by utilizing such a network to denoise images and supplying them to a recognizer that is solely trained on clean images. The experiments demonstrate that the proposed RCN-based handwritten digit recognizer achieves an error rate of 0.81 percent on the clean test data of the MNIST benchmark and that the proposed RCN-based denoiser can effectively reduce the error rate on the various types of noise. (c) 2017 Elsevier B.V. All rights reserved
    corecore