10 research outputs found

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps

    Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems

    Get PDF
    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Collective analog bioelectronic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 677-710).In this thesis, I present two examples of fast-and-highly-parallel analog computation inspired by architectures in biology. The first example, an RF cochlea, maps the partial differential equations that describe fluid-membrane-hair-cell wave propagation in the biological cochlea to an equivalent inductor-capacitor-transistor integrated circuit. It allows ultra-broadband spectrum analysis of RF signals to be performed in a rapid low-power fashion, thus enabling applications for universal or software radio. The second example exploits detailed similarities between the equations that describe chemical-reaction dynamics and the equations that describe subthreshold current flow in transistors to create fast-and-highly-parallel integrated-circuit models of protein-protein and gene-protein networks inside a cell. Due to a natural mapping between the Poisson statistics of molecular flows in a chemical reaction and Poisson statistics of electronic current flow in a transistor, stochastic effects are automatically incorporated into the circuit architecture, allowing highly computationally intensive stochastic simulations of large-scale biochemical reaction networks to be performed rapidly. I show that the exponentially tapered transmission-line architecture of the mammalian cochlea performs constant-fractional-bandwidth spectrum analysis with O(N) expenditure of both analysis time and hardware, where N is the number of analyzed frequency bins. This is the best known performance of any spectrum-analysis architecture, including the constant-resolution Fast Fourier Transform (FFT), which scales as O(N logN), or a constant-fractional-bandwidth filterbank, which scales as O (N2).(cont.) The RF cochlea uses this bio-inspired architecture to perform real-time, on-chip spectrum analysis at radio frequencies. I demonstrate two cochlea chips, implemented in standard 0.13m CMOS technology, that decompose the RF spectrum from 600MHz to 8GHz into 50 log-spaced channels, consume < 300mW of power, and possess 70dB of dynamic range. The real-time spectrum analysis capabilities of my chips make them uniquely suitable for ultra-broadband universal or software radio receivers of the future. I show that the protein-protein and gene-protein chips that I have built are particularly suitable for simulation, parameter discovery and sensitivity analysis of interaction networks in cell biology, such as signaling, metabolic, and gene regulation pathways. Importantly, the chips carry out massively parallel computations, resulting in simulation times that are independent of model complexity, i.e., O(1). They also automatically model stochastic effects, which are of importance in many biological systems, but are numerically stiff and simulate slowly on digital computers. Currently, non-fundamental data-acquisition limitations show that my proof-of-concept chips simulate small-scale biochemical reaction networks at least 100 times faster than modern desktop machines. It should be possible to get 103 to 106 simulation speedups of genome-scale and organ-scale intracellular and extracellular biochemical reaction networks with improved versions of my chips. Such chips could be important both as analysis tools in systems biology and design tools in synthetic biology.by Soumyajit Mandal.Ph.D

    Towards Battery-Free Internet of Things (IoT) Sensors: Far-Field Wireless Power Transfer and Harmonic Backscattering

    Get PDF
    RÉSUMÉ Notre vie tend à être plus agréable, plus facile et plus efficace grâce à l'évolution rapide de la technologie de l'Internet des objets (IoT). La clef de voute de cette technologie repose essentiellement sur la quantité de capteurs IoT interconnectés, que l’on est en mesure de déployer dans notre environnement. Malheureusement, l’électronique conventionnelle fonctionnant sur piles ou relié au réseau électrique ne peut pas constituer une solution durable en raison des aspects de coût, de faisabilité et d'impact environnemental. Pendant ce temps, le changement climatique dû à la consommation excessive de combustibles fossiles continue de s'aggraver. Il devient donc urgent de trouver une solution pour l’alimentation électrique des capteurs IoT géographiquement répartis à grande échelle, afin de simultanément soutenir la mise en oeuvre de nombreux capteurs IoT tout en limitant leur poids environnemental. L'énergie radiofréquence (RF) ambiante, qui sert de support à l'information sans fil, est non seulement capitale pour notre société, mais aussi omniprésente dans les zones urbaines et suburbaines. Elle permet de réaliser des communications et des détections sans fil. Cependant, l'énergie RF ambiante est majoritairement « gaspillée » car seule une toute petite partie de la puissance transmise est effectivement reçu ou « consommée » par le destinataire. C'est pourquoi le recyclage de l'énergie RF ambiante est une solution prometteuse pour alimenter les capteurs IoT. Pour certains capteurs IoT consommant une puissance plus élevée, l’apport d'énergie sans fil pourra similairement se faire par des centrales électriques spécialisées, suivant le même schéma d’alimentation sans fil. Pour utiliser et récupérer cette énergie RF, cette thèse présente deux techniques principales : la récupération/réception de puissance sans fil en champ lointain (wireless power transfer: WPT) et la rétrodiffusion d'harmoniques. Le chapitre 2 aborde les différents mécanismes de conversion de fréquence entre le WPT en champ lointain et la rétrodiffusion d'harmoniques. La récupération de WPT en champ lointain consiste à convertir l'énergie RF en puissance continue. En revanche, la rétrodiffusion d'harmoniques a pour but de convertir l'énergie RF dans une autre fréquence, dans la plupart des cas, la composante harmonique de rang 2. A titre d'étape préliminaire de recherche et d'étude de faisabilité, une cartographie de la densité de l'énergie RF ambiante dans les zones centrales de l'île de Montréal est résumée au chapitre 3. Contrairement aux mesures traditionnelles précédentes effectuées à des endroits fixes, cette mesure dynamique a été réalisée le long des rues, des routes, des avenues et des autoroutes pour couvrir une large zone.----------ABSTRACT Our life is becoming more convenient, efficient, and intelligent with the aid of fast-evolving Internet of Things (IoT) technology. One essential foundation of IoT technology is the development of numerous interrelated IoT sensors that are distributed extensively in our environment. However, conventional batteries/cords-based powering solutions are certainly not an acceptable long-term solution, considering the incurred cost, feasibility, most of all, environmental impact. Meanwhile, climate change due to excessive consumption of fossil fuels is worsening day by day. Therefore, a transformative powering solution for such large-scale and geographically scattered IoT sensors is of extreme importance in support of such extensive IoT sensors implementation while simultaneously mitigating its environmental burden. Serving as a critical information carrier, ambient radiofrequency (RF) energy is pervasive in urban and suburban areas to realize wireless communication and sensing. However, part of ambient RF energy is dissipated due to path loss if not fully consumed by end-users. Hence, recycling the wasted ambient RF energy to power IoT sensors is a promising solution. The concept of harnessing wireless energy for powering IoT sensors requiring a higher power supply is also feasible through the dedicated wireless power delivery from specialized power stations, which can be an effective supplement. To realize the RF power scavenging, this thesis research introduces two mainstream techniques: far-field wireless power transfer (WPT) and harmonic backscattering. Chapter 2 discusses the different frequency conversion mechanisms applied for far-field or ambient WPT harvesting and harmonic backscattering. Far-field WPT harvesting converts RF energy into dc power (zeroth harmonic). In contrast, harmonic backscattering upconverts RF energy into its harmonics, in most cases, the second harmonic component. As a preliminary research step and a feasibility study, a survey of ambient RF energy density in the core areas on Montreal Island is summarized in Chapter 3. Different from the previously published traditional measurements at fixed locations, this dynamic measurement is carried out along streets, roads, avenues, and highways to cover a large area. Also, a stationary measurement in Downtown Montreal is to reveal whether human activities are able to bring visible change to ambient RF energy levels. This work demonstrates how much ambient RF energy is available in free space and acts as a significant reference for researchers and engineers designing ambient RF energy harvesting circuits/systems for practical applications

    Modern Telemetry

    Get PDF
    Telemetry is based on knowledge of various disciplines like Electronics, Measurement, Control and Communication along with their combination. This fact leads to a need of studying and understanding of these principles before the usage of Telemetry on selected problem solving. Spending time is however many times returned in form of obtained data or knowledge which telemetry system can provide. Usage of telemetry can be found in many areas from military through biomedical to real medical applications. Modern way to create a wireless sensors remotely connected to central system with artificial intelligence provide many new, sometimes unusual ways to get a knowledge about remote objects behaviour. This book is intended to present some new up to date accesses to telemetry problems solving by use of new sensors conceptions, new wireless transfer or communication techniques, data collection or processing techniques as well as several real use case scenarios describing model examples. Most of book chapters deals with many real cases of telemetry issues which can be used as a cookbooks for your own telemetry related problems

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied
    corecore