273 research outputs found

    CMA-ES with Two-Point Step-Size Adaptation

    Get PDF
    We combine a refined version of two-point step-size adaptation with the covariance matrix adaptation evolution strategy (CMA-ES). Additionally, we suggest polished formulae for the learning rate of the covariance matrix and the recombination weights. In contrast to cumulative step-size adaptation or to the 1/5-th success rule, the refined two-point adaptation (TPA) does not rely on any internal model of optimality. In contrast to conventional self-adaptation, the TPA will achieve a better target step-size in particular with large populations. The disadvantage of TPA is that it relies on two additional objective functio

    The Hessian Estimation Evolution Strategy

    Full text link
    We present a novel black box optimization algorithm called Hessian Estimation Evolution Strategy. The algorithm updates the covariance matrix of its sampling distribution by directly estimating the curvature of the objective function. This algorithm design is targeted at twice continuously differentiable problems. For this, we extend the cumulative step-size adaptation algorithm of the CMA-ES to mirrored sampling. We demonstrate that our approach to covariance matrix adaptation is efficient by evaluation it on the BBOB/COCO testbed. We also show that the algorithm is surprisingly robust when its core assumption of a twice continuously differentiable objective function is violated. The approach yields a new evolution strategy with competitive performance, and at the same time it also offers an interesting alternative to the usual covariance matrix update mechanism

    Adaptive Ranking Based Constraint Handling for Explicitly Constrained Black-Box Optimization

    Full text link
    A novel explicit constraint handling technique for the covariance matrix adaptation evolution strategy (CMA-ES) is proposed. The proposed constraint handling exhibits two invariance properties. One is the invariance to arbitrary element-wise increasing transformation of the objective and constraint functions. The other is the invariance to arbitrary affine transformation of the search space. The proposed technique virtually transforms a constrained optimization problem into an unconstrained optimization problem by considering an adaptive weighted sum of the ranking of the objective function values and the ranking of the constraint violations that are measured by the Mahalanobis distance between each candidate solution to its projection onto the boundary of the constraints. Simulation results are presented and show that the CMA-ES with the proposed constraint handling exhibits the affine invariance and performs similarly to the CMA-ES on unconstrained counterparts.Comment: 9 page

    Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles

    Get PDF
    We present a canonical way to turn any smooth parametric family of probability distributions on an arbitrary search space XX into a continuous-time black-box optimization method on XX, the \emph{information-geometric optimization} (IGO) method. Invariance as a design principle minimizes the number of arbitrary choices. The resulting \emph{IGO flow} conducts the natural gradient ascent of an adaptive, time-dependent, quantile-based transformation of the objective function. It makes no assumptions on the objective function to be optimized. The IGO method produces explicit IGO algorithms through time discretization. It naturally recovers versions of known algorithms and offers a systematic way to derive new ones. The cross-entropy method is recovered in a particular case, and can be extended into a smoothed, parametrization-independent maximum likelihood update (IGO-ML). For Gaussian distributions on Rd\mathbb{R}^d, IGO is related to natural evolution strategies (NES) and recovers a version of the CMA-ES algorithm. For Bernoulli distributions on {0,1}d\{0,1\}^d, we recover the PBIL algorithm. From restricted Boltzmann machines, we obtain a novel algorithm for optimization on {0,1}d\{0,1\}^d. All these algorithms are unified under a single information-geometric optimization framework. Thanks to its intrinsic formulation, the IGO method achieves invariance under reparametrization of the search space XX, under a change of parameters of the probability distributions, and under increasing transformations of the objective function. Theory strongly suggests that IGO algorithms have minimal loss in diversity during optimization, provided the initial diversity is high. First experiments using restricted Boltzmann machines confirm this insight. Thus IGO seems to provide, from information theory, an elegant way to spontaneously explore several valleys of a fitness landscape in a single run.Comment: Final published versio

    Model-based relative entropy stochastic search

    Get PDF
    Stochastic search algorithms are general black-box optimizers. Due to their ease of use and their generality, they have recently also gained a lot of attention in operations research, machine learning and policy search. Yet, these algorithms require a lot of evaluations of the objective, scale poorly with the problem dimension, are affected by highly noisy objective functions and may converge prematurely. To alleviate these problems, we introduce a new surrogate-based stochastic search approach. We learn simple, quadratic surrogate models of the objective function. As the quality of such a quadratic approximation is limited, we do not greedily exploit the learned models. The algorithm can be misled by an inaccurate optimum introduced by the surrogate. Instead, we use information theoretic constraints to bound the ‘distance’ between the new and old data distribution while maximizing the objective function. Additionally the new method is able to sustain the exploration of the search distribution to avoid premature convergence. We compare our method with state of art black-box optimization methods on standard uni-modal and multi-modal optimization functions, on simulated planar robot tasks and a complex robot ball throwing task. The proposed method considerably outperforms the existing approaches

    Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains

    Get PDF
    In this paper, we consider comparison-based adaptive stochastic algorithms for solving numerical optimisation problems. We consider a specific subclass of algorithms that we call comparison-based step-size adaptive randomized search (CB-SARS), where the state variables at a given iteration are a vector of the search space and a positive parameter, the step-size, typically controlling the overall standard deviation of the underlying search distribution.We investigate the linear convergence of CB-SARS on\emph{scaling-invariant} objective functions. Scaling-invariantfunctions preserve the ordering of points with respect to their functionvalue when the points are scaled with the same positive parameter (thescaling is done w.r.t. a fixed reference point). This class offunctions includes norms composed with strictly increasing functions aswell as many non quasi-convex and non-continuousfunctions. On scaling-invariant functions, we show the existence of ahomogeneous Markov chain, as a consequence of natural invarianceproperties of CB-SARS (essentially scale-invariance and invariance tostrictly increasing transformation of the objective function). We thenderive sufficient conditions for \emph{global linear convergence} ofCB-SARS, expressed in terms of different stability conditions of thenormalised homogeneous Markov chain (irreducibility, positivity, Harrisrecurrence, geometric ergodicity) and thus define a general methodologyfor proving global linear convergence of CB-SARS algorithms onscaling-invariant functions. As a by-product we provide aconnexion between comparison-based adaptive stochasticalgorithms and Markov chain Monte Carlo algorithms.Comment: SIAM Journal on Optimization, Society for Industrial and Applied Mathematics, 201

    Efficient Covariance Matrix Update for Variable Metric Evolution Strategies

    Get PDF
    International audienceRandomized direct search algorithms for continuous domains, such as Evolution Strategies, are basic tools in machine learning. They are especially needed when the gradient of an objective function (e.g., loss, energy, or reward function) cannot be computed or estimated efficiently. Application areas include supervised and reinforcement learning as well as model selection. These randomized search strategies often rely on normally distributed additive variations of candidate solutions. In order to efficiently search in non-separable and ill-conditioned landscapes the covariance matrix of the normal distribution must be adapted, amounting to a variable metric method. Consequently, Covariance Matrix Adaptation (CMA) is considered state-of-the-art in Evolution Strategies. In order to sample the normal distribution, the adapted covariance matrix needs to be decomposed, requiring in general Θ(n3)\Theta(n^3) operations, where nn is the search space dimension. We propose a new update mechanism which can replace a rank-one covariance matrix update and the computationally expensive decomposition of the covariance matrix. The newly developed update rule reduces the computational complexity of the rank-one covariance matrix adaptation to Θ(n2)\Theta(n^2) without resorting to outdated distributions. We derive new versions of the elitist Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and the multi-objective CMA-ES. These algorithms are equivalent to the original procedures except that the update step for the variable metric distribution scales better in the problem dimension. We also introduce a simplified variant of the non-elitist CMA-ES with the incremental covariance matrix update and investigate its performance. Apart from the reduced time-complexity of the distribution update, the algebraic computations involved in all new algorithms are simpler compared to the original versions. The new update rule improves the performance of the CMA-ES for large scale machine learning problems in which the objective function can be evaluated fast

    Escaping local minima with derivative-free methods: a numerical investigation

    Full text link
    We apply a state-of-the-art, local derivative-free solver, Py-BOBYQA, to global optimization problems, and propose an algorithmic improvement that is beneficial in this context. Our numerical findings are illustrated on a commonly-used but small-scale test set of global optimization problems and associated noisy variants, and on hyperparameter tuning for the machine learning test set MNIST. As Py-BOBYQA is a model-based trust-region method, we compare mostly (but not exclusively) with other global optimization methods for which (global) models are important, such as Bayesian optimization and response surface methods; we also consider state-of-the-art representative deterministic and stochastic codes, such as DIRECT and CMA-ES. As a heuristic for escaping local minima, we find numerically that Py-BOBYQA is competitive with global optimization solvers for all accuracy/budget regimes, in both smooth and noisy settings. In particular, Py-BOBYQA variants are best performing for smooth and multiplicative noise problems in high-accuracy regimes. As a by-product, some preliminary conclusions can be drawn on the relative performance of the global solvers we have tested with default settings
    • …
    corecore