33 research outputs found

    Development of power recovery circuit for bio-implantable stimulator

    Get PDF
    This paper presents a modified design of low power recovery circuit in micro-system implanted device to stimulate the human nerve and muscle. The amplitude shift keying ASK was used to modulate data by using operating frequency 6.78MHz ISM industrial scientific medical band to be less invasive to tissue. The proposed system consists of an external part which has ASK modulator and class-E power amplifier with 94.5% efficiency. The internal part has half wave rectifier and voltage regulator to generate very stable 1.8VDC using 0.35um CMOS technology. The Orcad pspice 16.6 and MULTISIM 11 software were used to simulate the design of power recovery and class-E power amplifier respectively. The regulated voltage utilised to power the sub-electronic device implanted inside human body with very stable voltage even change implanted load resistance. The proposed system has 12.5%modulation index and low power consumption

    Simple and Efficient Transcutaneous Inductive Micro-System Device Based on ASK Modulation at 6.78 MHz ISM Band

    Get PDF
    This paper deals with designing a simple and efficient simultaneous inductive power and data transmission for transcutaneous Micro-system based on ASK modulation at 6,78 MHz industrial, scientific, and medical (ISM) band to avoid the tissue damage. The modified ASK modulator and inductive coupling link driven by efficient Class-E power amplifier with 94,5% efficiency and the coupling link of up to 78,29% of efficiency are introduced to transmit 500 Kbit/s of data with modulation index 12,5%, modulation rate 7,37%. The proposed design is simple, easy to implement and able to power the bio-implantable devices with DC V up to 5 V. The mathematical model is given and the system is designed and validated by professional OrCADPsPice 16,6 environment simulation using a standard AMS 0,35 μm MOS technology. In addition, for real-time simulation, the electronic workbench MULISIM 11 has been used to simulate the class-E power amplifier switching. This design is useful for cochlear implants, retinal implants and implantable micro-system stimulator

    Wireless power and data transmission to high-performance implantable medical devices

    Get PDF
    Novel techniques for high-performance wireless power transmission and data interfacing with implantable medical devices (IMDs) were proposed. Several system- and circuit-level techniques were developed towards the design of a novel wireless data and power transmission link for a multi-channel inductively-powered wireless implantable neural-recording and stimulation system. Such wireless data and power transmission techniques have promising prospects for use in IMDs such as biosensors and neural recording/stimulation devices, neural interfacing experiments in enriched environments, radio-frequency identification (RFID), smartcards, near-field communication (NFC), wireless sensors, and charging mobile devices and electric vehicles. The contributions in wireless power transfer are the development of an RFID-based closed-loop power transmission system, a high-performance 3-coil link with optimal design procedure, circuit-based theoretical foundation for magnetic-resonance-based power transmission using multiple coils, a figure-of-merit for designing high-performance inductive links, a low-power and adaptive power management and data transceiver ASIC to be used as a general-purpose power module for wireless electrophysiology experiments, and a Q-modulated inductive link for automatic load matching. In wireless data transfer, the contributions are the development of a new modulation technique called pulse-delay modulation for low-power and wideband near-field data communication and a pulse-width-modulation impulse-radio ultra-wideband transceiver for low-power and wideband far-field data transmission.Ph.D

    Remote Powering and Data Communication Over a Single Inductive Link for Implantable Medical Devices

    Get PDF
    RÉSUMÉ Les implants médicaux électroniques (Implantable Medical Devices - IMDs) sont notamment utilisés pour restaurer ou améliorer des fonctions perdues de certains organes. Ils sont capables de traiter des complications qui ne peuvent pas être guéries avec des médicaments ou par la chirurgie. Offrant des propriétés et des améliorations curatives sans précédent, les IMDs sont de plus en plus demandés par les médecins et les patients. En 2017, le marché mondial des IMD était évalué à 15,21 milliards de dollars. D’ici 2025, il devrait atteindre 30,42 mil-liards de dollars, soutenu par un taux de croissance annuel de 9,24% selon le nouveau rapport publié par Fior Markets. Cette expansion entraîne une augmentation des exigences pour as-surer des performances supérieures, des fonctionnalités supplémentaires et une durée de vie plus longue. Ces exigences ne peuvent être satisfaites qu’avec des techniques d’alimentation avancées, un débit de données élevé et une électronique miniaturisée robuste. Construire des systèmes capables de fournir toutes ces caractéristiques est l’objectif principal d’un grand nombre de chercheurs. Parmi plusieurs technologies sans fil, le lien inductif, qui consiste en une paire de bobines à couplage magnétique, est la technique sans fil la plus largement utilisée pour le transfert de puissance et de données. Cela est dû à sa simplicité, sa sécurité et sa capacité à transmettre à la fois de la puissance et des données de façon bidirectionnelle. Cependant, il existe encore un certain nombre de défis concernant la mise en œuvre d’un tel système de transfert d’énergie et de données sans fil (Wireless Power and Data Transfer - WPDT system). Un défi majeur est que les exigences pour une efficacité de transfert d’énergie élevée et pour une communication à haut débit sont contradictoires. En fait, la bande passante doit être élargie pour des débits de données élevés, mais réduite pour une transmission efficace de l’énergie. Un autre grand défi consiste à réaliser un démodulateur fonctionnant à haute vitesse avec une mise en œuvre simple et une consommation d’énergie ultra-faible. Dans ce projet, nous proposons et expérimentons un nouveau système WPDT dédié aux IMD permettant une communication à haute vitesse et une alimentation efficace tout en maintenant une faible consommation d’énergie, une petite surface de silicium et une mise en œuvre simple du récepteur. Le système proposé est basé sur un nouveau schéma de modulation appelé "Carrier Width Modulation (CWM)", ainsi que sur des circuits de modulation et de démodulation inédits. La modulation consiste en un coupe-circuit synchronisé du réservoir LC primaire pendant un ou deux cycles en fonction des données transmises.----------ABSTRACT Implantable Medical Devices (IMDs) are electronic implants notably used to restore or en-hance lost organ functions. They may treat complications that cannot be cured with medica-tion or through surgery. O˙ering unprecedented healing properties and enhancements, IMDs are increasingly requested by physicians and patients. In 2017, the worldwide IMD market was valued at USD 15,21 Billion. By 2025, it is expected to attain USD 30.42 Billion sus-tained by a compound annual growth rate of 9.24% according to a recent report published by Fior Markets. This expansion is bringing-up more demand for higher performance, additional features, and longer device lifespan and autonomy. These requirements can only be achieved with advanced power sources, high-data rates, and robust miniaturized electronics. Building systems able to provide all these characteristics is the main goal of many researchers. Among several wireless technologies, the inductive link, which consists of a magnetically-coupled pair of coils, is the most widely used wireless technique for both power and data transfer. This is due to its simplicity, safety, and ability to provide simultaneously both power and bidirectional data transfer to the implant. However there are still a number of challenges regarding the implementation of such Wireless Power and Data Transfer (WPDT) systems. One main challenge is that the requirements for high Power Transfer Eÿciency (PTE) and for high-data rate communication are contra-dictory. In fact, the bandwidth needs to be widened for high data rates, but narrowed for eÿcient power delivery. Another big challenge is to implement a high-speed demodulator with simple implementation and ultra-low power consumption. In this project, we propose and experiment a new WPDT system dedicated to IMDs allow-ing high-speed communication and eÿcient power delivery, while maintaining a low power consumption, small silicon area, and simple implementation of the receiver. The proposed system is based on a new Carrier Width Modulation (CWM) scheme, as well as novel modu-lation and demodulation circuits. The modulation consists of a synchronized opening of the primary LC tank for one or two cycles according to the transmitted data. Unlike conventional modulation techniques, the data rate of the proposed CWM modulation is not limited by the quality factors of the primary and secondary coils. On the other hand, the proposed CWM demodulator allows higher-speed demodulation and simple implementation, unlike conven-tional demodulators for a similar modulation scheme. It also o˙ers a wide range of data rates under any selected frequency from 10 to 31 MHz

    Low Power Low Modulation Index Ask Demodulator Design for RFID Applications

    Get PDF
    In the era of the Internet of Things (IoT) there is a tremendous increase in portable wireless devices utilized in our day to day working. One such example is the Radio Frequency Identification tag. The primary challenge in designing passive RFID tags is reliable functionality over extreme temperature and environmental conditions with low power operation. An important component of the RFID tag architecture is the demodulator which is tasked with interpreting the incoming data and extracting the reference clock for the Phase Locked Loop. A novel ASK demodulator architecture that functions across a temperature range of -25? to 125? is designed, analyzed and optimized for the worst and best case semiconductor process variations. The incoming RF frequency is selected as 900MHz based on the EPC GEN2 protocol and the baseband signal is set at 450 KHz with a modulation index of 5%. MOS transistor operation and variability in semiconductor processes is explored and a better understanding of how these concepts effect and shape our design decisions is established. A design objective is setup and steps to achieve these design objectives are presented. The design of the ASK demodulator is completed with the help of the Cadence Virtuoso tool, utilizing the IBM 0.18µm (CMOS 7RF) process. In order to test our design we have used the Monte Carlo analysis and all the significant DC parameters of the design have been tested for 10,000 samples owing to the high variability associated with modern semiconductor processes. On the other hand Monte Carlo simulations for the transient simulations have been done for 30 samples in accordance with the Central Limit Theorem. The results of the design are compared with other ASK RFID demodulator designs in the past and a comparison is made by utilizing a Figure of Merit from literature. The design is among the best ASK demodulator designs found in literature. Throughout this effort there is emphasis on MOS transistor operation and variations in semiconductor processes. The design takes all pertinent challenges such as extreme temperature, environment conditions and the reliability of the design. Through this work an attempt is made to try and simplify the work of the reader and expose them to the challenges associated with ASK demodulator design.Electrical Engineerin

    A Wireless, High-Voltage Compliant, and Energy-Efficient Visual Intracortical Microstimulator

    Get PDF
    RÉSUMÉ L’objectif général de ce projet de recherche est la conception, la mise en oeuvre et la validation d’une interface sans fil intracorticale implantable en technologie CMOS avancée pour aider les personnes ayant une déficience visuelle. Les défis majeurs de cette recherche sont de répondre à la conformité à haute tension nécessaire à travers l’interface d’électrode-tissu (IET), augmenter la flexibilité dans la microstimulation et la surveillance multicanale, minimiser le budget de puissance pour un dispositif biomédical implantable, réduire la taille de l’implant et améliorer le taux de transmission sans fil des données. Par conséquent, nous présentons dans cette thèse un système de microstimulation intracorticale multi-puce basée sur une nouvelle architecture pour la transmission des données sans fil et le transfert de l’énergie se servant de couplages inductifs et capacitifs. Une première puce, un générateur de stimuli (SG) éconergétique, et une autre qui est un amplificateur de haute impédance se connectant au réseau de microélectrodes de l’étage de sortie. Les 4 canaux de générateurs de stimuli produisent des impulsions rectangulaires, demi-sinus (DS), plateau-sinus (PS) et autres types d’impulsions de courant à haut rendement énergétique. Le SG comporte un contrôleur de faible puissance, des convertisseurs numérique-analogiques (DAC) opérant en mode courant, générateurs multi-forme d’ondes et miroirs de courants alimentés sous 1.2 et 3.3V se servant pour l’interface entre les deux technologies utilisées. Le courant de stimulation du SG varie entre 2.32 et 220μA pour chaque canal. La deuxième puce (pilote de microélectrodes (MED)), une interface entre le SG et de l’arrangement de microélectrodes (MEA), fournit quatre niveaux différents de courant avec la valeur maximale de 400μA par entrée et 100μA par canal de sortie simultanément pour 8 à 16 sites de stimulation à travers les microélectrodes, connectés soit en configuration bipolaire ou monopolaire. Cette étage de sortie est hautement configurable et capable de délivrer une tension élevée pour satisfaire les conditions de l’interface à travers l’impédance de IET par rapport aux systèmes précédemment rapportés. Les valeurs nominales de plus grandes tensions d’alimentation sont de ±10V. La sortie de tension mesurée est conformément 10V/phase (anodique ou cathodique) pour les tensions d’alimentation spécifiées. L’incrémentation de tensions d’alimentation à ±13V permet de produire un courant de stimulation de 220μA par canal de sortie permettant d’élever la tension de sortie jusqu’au 20V par phase. Cet étage de sortie regroupe un commutateur haute tension pour interfacer une matrice des miroirs de courant (3.3V /20V), un registre à décalage de 32-bits à entrée sérielle, sortie parallèle, et un circuit dédié pour bloquer des états interdits.----------ABSTRACT The general objective of this research project is the design, implementation and validation of an implantable wireless intracortical interface in advanced CMOS technology to aid the visually impaired people. The major challenges in this research are to meet the required highvoltage compliance across electrode-tissue interface (ETI), increase lexibility in multichannel microstimulation and monitoring, minimize power budget for an implantable biomedical device, reduce the implant size, and enhance the data rate in wireless transmission. Therefore, we present in this thesis a multi-chip intracortical microstimulation system based on a novel architecture for wireless data and power transmission comprising inductive and capacitive couplings. The first chip is an energy-efficient stimuli generator (SG) and the second one is a highimpedance microelectrode array driver output-stage. The 4-channel stimuli-generator produces rectangular, half-sine (HS), plateau-sine (PS), and other types of energy-efficient current pulse. The SG is featured with low-power controller, current mode source- and sinkdigital- to-analog converters (DACs), multi-waveform generators, and 1.2V/3.3V interface current mirrors. The stimulation current per channel of the SG ranges from 2.32 to 220μA per channel. The second chip (microelectrode driver (MED)), an interface between the SG and the microelectrode array (MEA), supplies four different current levels with the maximum value of 400μA per input and 100μA per output channel. These currents can be delivered simultaneously to 8 to 16 stimulation sites through microelectrodes, connected either in bipolar or monopolar configuration. This output stage is highly-configurable and able to deliver higher compliance voltage across ETI impedance compared to previously reported designs. The nominal values of largest supply voltages are ±10V. The measured output compliance voltage is 10V/phase (anodic or cathodic) for the specified supply voltages. Increment of supply voltages to ±13V allows 220μA stimulation current per output channel enhancing the output compliance voltage up to 20V per phase. This output-stage is featured with a high-voltage switch-matrix, 3.3V/20V current mirrors, an on-chip 32-bit serial-in parallel-out shift register, and the forbidden state logic building blocks. The SG and MED chips have been designed and fabricated in IBM 0.13μm CMOS and Teledyne DALSA 0.8μm 5V/20V CMOS/DMOS technologies with silicon areas occupied by them 1.75 x 1.75mm2 and 4 x 4mm2 respectively. The measured DC power budgets consumed by low-and mid-voltage microchips are 2.56 and 2.1mW consecutively

    Integrated Electronics for Wireless Imaging Microsystems with CMUT Arrays

    Get PDF
    Integration of transducer arrays with interface electronics in the form of single-chip CMUT-on-CMOS has emerged into the field of medical ultrasound imaging and is transforming this field. It has already been used in several commercial products such as handheld full-body imagers and it is being implemented by commercial and academic groups for Intravascular Ultrasound and Intracardiac Echocardiography. However, large attenuation of ultrasonic waves transmitted through the skull has prevented ultrasound imaging of the brain. This research is a prime step toward implantable wireless microsystems that use ultrasound to image the brain by bypassing the skull. These microsystems offer autonomous scanning (beam steering and focusing) of the brain and transferring data out of the brain for further processing and image reconstruction. The objective of the presented research is to develop building blocks of an integrated electronics architecture for CMUT based wireless ultrasound imaging systems while providing a fundamental study on interfacing CMUT arrays with their associated integrated electronics in terms of electrical power transfer and acoustic reflection which would potentially lead to more efficient and high-performance systems. A fully wireless architecture for ultrasound imaging is demonstrated for the first time. An on-chip programmable transmit (TX) beamformer enables phased array focusing and steering of ultrasound waves in the transmit mode while its on-chip bandpass noise shaping digitizer followed by an ultra-wideband (UWB) uplink transmitter minimizes the effect of path loss on the transmitted image data out of the brain. A single-chip application-specific integrated circuit (ASIC) is de- signed to realize the wireless architecture and interface with array elements, each of which includes a transceiver (TRX) front-end with a high-voltage (HV) pulser, a high-voltage T/R switch, and a low-noise amplifier (LNA). Novel design techniques are implemented in the system to enhance the performance of its building blocks. Apart from imaging capability, the implantable wireless microsystems can include a pressure sensing readout to measure intracranial pressure. To do so, a power-efficient readout for pressure sensing is presented. It uses pseudo-pseudo differential readout topology to cut down the static power consumption of the sensor for further power savings in wireless microsystems. In addition, the effect of matching and electrical termination on CMUT array elements is explored leading to new interface structures to improve bandwidth and sensitivity of CMUT arrays in different operation regions. Comprehensive analysis, modeling, and simulation methodologies are presented for further investigation.Ph.D

    Low-Power High Data-Rate Wireless Transmitter For Medical Implantable Devices

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) sont les circuits de communication les plus communs pour établir des interfaces home-machine dédiées aux dispositifs médicaux implantables. Par exemple, la surveillance continue de paramètres de santé des patients souffrant d'épilepsie nécessite un étage de communication sans-fil capable de garantir un transfert de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un faible volume. La consommation de puissance des dispositifs implantables implique une durée de vie limitée de la batterie qui nécessite alors une chirurgie pour son remplacement, a moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un émetteur RF à faible puissance et haut-débit de données opérant à 902-928 MHz de la bande fréquentielle industrielle-scientifique-médicale (ISM) d’Amérique du Nord. Cet émetteur fait partie d'un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et mettables et bénéficie d’une nouvelle approche de modulation par déplacement de fréquence (FSK). Les différentes étapes de conception et d’implémentation de l'architecture proposée pour l'émetteur sont discutées et analysées dans cette thèse. Les blocs de circuits sont réalisés suivant les équations dérivées de la modulation FSK proposée et qui mènera à l'amélioration du débit de données et de la consommation d'énergie. Chaque bloc est implémenté de manière à ce que la consommation d'énergie et la surface de silicium nécessaires soient réduites. L’étage de modulation et le circuit mélangeur ne nécessitent aucun courant continu grâce à leur structure passive.Parmi les circuits originaux, un oscillateur en quadrature contrôlé-en-tension (QVCO) de faible puissance est réalisé pour générer des signaux différentiels en quadrature, rail-à-rail avec deux gammes de fréquences principales de 0.3 à 11.5 MHz et de 3 à 40 MHz. L'étage de sortie énergivore est également amélioré et optimisé pour atteindre une efficacité de puissance de ~ 37%. L'émetteur proposé a été implémenté et fabriqué à la suite de simulations post-layout approfondies.----------ABSTRACT Wireless radio frequency (RF) transceivers are the most common communication front-ends used to realize the human-machine interfaces of medical devices. Continuous monitoring of body behaviour of patients suffering from Epilepsy, for example, requires a wireless communication front-end capable of maintaining a fast, real-time and low-power data communication while implemented in small size. Power budget limitation of the implantable and wearable medical devices obliges engineers to replace or recharge the battery cell through frequent medial surgeries or other power transfer techniques. In this project, a low-power and high data-rate RF transmitter (Tx) operating at North-American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) is designed, implemented and tested. This transmitter is a part of a bi-directional transceiver dedicated to the wireless interface of implantable and wearable medical devices and benefits from a new efficient Frequency-Shift Keying (FSK) modulation scheme. Different design and implementation stages of the proposed transmitter architecture are discussed and analyzed in this thesis. The building blocks are realized according to the equations derived from the proposed FSK modulation, which results in improvement in data-rate and power consumption. Each block is implemented such that the power consumption and needed chip area are lowered while the modulation block and the mixer circuit require no DC current due to their passive structure. Among the original blocks, a low-power quadrature voltage-controlled oscillator (QVCO) is achieved to provide differential quadrature rail-to-rail signals with two main frequency ranges of 0.3-11.5 MHz and 3-40 MHz. The power-hungry output stage is also improved and optimized to achieve power efficiency of ~37%. The proposed transmitter was implemented and fabricated following deep characterisation by post-layout simulation. Both simulation and measurement results are discussed and compared with state-of-the-art transmitters showing the contribution of this work in this very popular research field. The Figure-Of-Merit (FOM) was improved, meaning mainly increasing the data-rate and lowering the power consumption of the circuit. The transmitter is implemented using 130 nm CMOS technology with 1.2 V supply voltage. A data-rate of 8 Mb/s was measured while consuming 1.4 mA and resulting in energy consumption of 0.21 nJ/b. The fabricated transmitter has small active silicon area of less than 0.25 mm2
    corecore