434 research outputs found

    Solving ill-posed bilevel programs

    No full text
    This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to obtain local optimal solutions for the original optimistic problem by this process. Considering the intrinsic non-convexity of bilevel programs, computing local optimal solutions is the best one can hope to get in most cases. To achieve this goal, we start by establishing an equivalence between the original optimistic problem an a certain set-valued optimization problem. Next, we develop optimality conditions for the latter problem and show that they generalize all the results currently known in the literature on optimistic bilevel optimization. Our approach is then extended to multiobjective bilevel optimization, and completely new results are derived for problems with vector-valued upper- and lower-level objective functions. Numerical implementations of the results of this paper are provided on some examples, in order to demonstrate how the original optimistic problem can be solved in practice, by means of a special set-valued optimization problem

    On the relationship between bilevel decomposition algorithms and direct interior-point methods

    Get PDF
    Engineers have been using bilevel decomposition algorithms to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upperlevel problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used bilevel decomposition algorithms may fail to converge even when the starting point is very close to the minimizer. In this paper, we establish a relationship between a particular bilevel decomposition algorithm, which only performs one iteration of an interior-point method when solving the subproblems, and a direct interior-point method, which solves the problem in its original (integrated) form. Using this relationship, we formally prove that the bilevel decomposition algorithm converges locally at a superlinear rate. The relevance of our analysis is that it bridges the gap between the incipient local convergence theory of bilevel decomposition algorithms and the mature theory of direct interior-point methods

    Core Pricing in Combinatorial Exchanges with Financially Constrained Buyers: Computational Hardness and Algorithmic Solutions

    Get PDF

    A globally convergent neurodynamics optimization model for mathematical programming with equilibrium constraints

    Get PDF
    summary:This paper introduces a neurodynamics optimization model to compute the solution of mathematical programming with equilibrium constraints (MPEC). A smoothing method based on NPC-function is used to obtain a relaxed optimization problem. The optimal solution of the global optimization problem is estimated using a new neurodynamic system, which, in finite time, is convergent with its equilibrium point. Compared to existing models, the proposed model has a simple structure, with low complexity. The new dynamical system is investigated theoretically, and it is proved that the steady state of the proposed neural network is asymptotic stable and global convergence to the optimal solution of MPEC. Numerical simulations of several examples of MPEC are presented, all of which confirm the agreement between the theoretical and numerical aspects of the problem and show the effectiveness of the proposed model. Moreover, an application to resource allocation problem shows that the new method is a simple, but efficient, and practical algorithm for the solution of real-world MPEC problems

    Bilevel Disjunctive Optimization on Affine Manifolds

    Get PDF
    Bilevel optimization is a special kind of optimization where one problem is embedded within another. The outer optimization task is commonly referred to as the upper-level optimization task, and the inner optimization task is commonly referred to as the lower-level optimization task. These problems involve two kinds of variables: upper-level variables and lower-level variables. Bilevel optimization was first realized in the field of game theory by a German economist von Stackelberg who published a book (1934) that described this hierarchical problem. Now the bilevel optimization problems are commonly found in a number of real-world problems: transportation, economics, decision science, business, engineering, and so on. In this chapter, we provide a general formulation for bilevel disjunctive optimization problem on affine manifolds. These problems contain two levels of optimization tasks where one optimization task is nested within the other. The outer optimization problem is commonly referred to as the leaders (upper level) optimization problem and the inner optimization problem is known as the followers (or lower level) optimization problem. The two levels have their own objectives and constraints. Topics affine convex functions, optimizations with auto-parallel restrictions, affine convexity of posynomial functions, bilevel disjunctive problem and algorithm, models of bilevel disjunctive programming problems, and properties of minimum functions
    corecore