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Abstract. The computation of market equilibria is a fundamental and practically relevant
problem. Current advances in computational optimization allow for the organization of
large combinatorial markets in the field. Although we know the computational complexity
and the types of price functions necessary for combinatorial exchanges with quasilinear
preferences, the respective literature does not consider financially constrained buyers. We
show that computing market outcomes that respect budget constraints but are core stable
is Σp

2-hard. Problems in this complexity class are rare, but ignoring budget constraints can
lead to significant efficiency losses and instability, as we demonstrate in this paper. We in-
troduce mixed integer bilevel linear programs (MIBLP) to compute core-stable market out-
comes and provide effective column and constraint generation algorithms to solve these
problems. Although full core stability quickly becomes intractable, we show that realistic
problem sizes can actually be solved if the designer limits attention to deviations of small
coalitions. This n-coalition stability is a practical approach to tame the computational com-
plexity of the general problem and at the same time provides a reasonable level of stability
for markets in the field where buyers have budget constraints.

Funding: This workwas supported by Deutsche Forschungsgemeinschaft [Grant BI-1057/1-9].
Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2021.2132.
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1. Introduction
The analysis of market equilibria is arguably one of
the most fundamental problems in the economic sci-
ences. In the textbook model of perfect competition, a
competitive equilibrium occurs when demand equals
supply (Mas-Colell et al. 1995). The resulting price is
often called the competitive price or market clearing
price that will not change unless demand or supply
changes. Participants have no incentive to change
their behavior, and the outcome is considered stable.

Most of the more recent microeconomic literature
on competitive equilibria assumes a utilitarian or Ben-
thamite welfare function, which maximizes the sum
of all participants’ utilities. This literature assumes an
economy with purely quasilinear utility functions (i.e.,
bidders maximize payoff) and no budget constraints.
However, ignoring budget constraints can lead to sig-
nificant welfare losses and instability.

We draw on the core as the most prominent notion
of stability. The core of a market is the set of alloca-
tions and prices that cannot be improved upon by a

subset or coalition of the economy’s agents if the coali-
tion was to trade among each other. In this paper, we
aim to find core-stable outcomes in combinatorial
markets with indivisible goods and general preferen-
ces that maximize welfare subject to budget con-
straints. Our main theoretical result proves that it is
Σ
p
2-hard to compute such market outcomes. Then, we

introduce algorithms to solve these problems. Despite
the high computational complexity, we provide em-
pirical evidence that stable solutions can be found for
small but realistic problem sizes.

1.1. Combinatorial Markets
We focus on combinatorial markets, which allow bid-
ders to specify package bids. This means a price is de-
fined for a subset of the items. The bid price specified
is only valid for the entire package, and the package is
indivisible such that bidders can express quasilinear
preferences for general valuations, including comple-
ments and substitutes. Combinatorial markets have
found widespread application for the sale of spectrum
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licenses (Bichler and Goeree 2017), in truck-load trans-
portation (Caplice and Sheffi 2006), for airport
time-slots (Pellegrini et al. 2012, Ball et al. 2017), in
day-ahead energy markets (Martin et al. 2014), for
supply chain coordination (Fan et al. 2003, Guo et al.
2012, Walsh et al. 2000), and in transportation, and in-
dustrial procurement (Schwind et al. 2009, Sandholm
2012). Milgrom (2007) has highlighted the importance
of such markets for theory and practice.

Although package bids in a fully enumerative (XOR)
bid language allow for general valuations, this generali-
ty comes at a price. First, thewinner determination prob-
lem with an XOR (or also an OR) bid language becomes
an NP-hard optimization problem (Pekec and Rothkopf
2003). Second, competitive equilibrium prices need to be
nonlinear and personalized to allow for maximum wel-
fare (Bikhchandani and Ostroy 2002, Bichler and Wald-
herr 2017). Our definition of combinatorial markets in
this paper is broad and includes all types of bid lan-
guages thatmake the allocation problem a combinatorial
optimization problem (Goetzendorff et al. 2015).

1.2. The Core
In an economy with purely quasilinear utilities and no
budget constraints, a competitive equilibrium is de-
fined as a feasible allocation and set of prices where
buyers and sellers maximize payoff and the market is
budget balanced (Bikhchandani and Ostroy 2002). In
these economies, the core coincides with the set of com-
petitive equilibria, in which each participant maximizes
payoff at the prices. Weak Pareto efficiency describes
an outcome for which there are no possible alternative
outcomes whose realization would cause every partici-
pant to gain. A core allocation consists of an assign-
ment of items and prices and is weakly Pareto efficient.

Example 1. Consider an auction with a single seller s
that sells a good without a reserve price. Suppose
there are two buyers, b1 with a value of $5 for the
good and b2 with a value of $3 for the good. The core
allocations consist of assigning the good to b1 for any
price p with $3 ≤ p ≤ $5, which results in a payoff of p
for s, a payoff of 5− p for b1, and a payoff of of 0 for b2.
In these cases, no subset of the economy’s agents can
improve upon the outcome:

i. The two buyers b1 and b2, cannot both gain because
they cannot trade with each other (hence, both pay-
offs would be 0).

ii. Trading with b2 will lead to a payoff of at most $3
for seller s, so s and b2 cannot both gain from form-
ing a coalition.

iii. If s and b1 would agree on a different price p′ ≠ p
for trading the good, it would either lower the
payoff of s or b1; hence, both cannot improve.

The core is the most prominent notion of stability,
and it can also be computed for markets with multiple

objects for sale and multiple bidders (Day and Cramton
2012). The principle of core stability is central for the
computation of payments in high-stakes spectrum auc-
tion markets (Bichler and Goeree 2017). However, this
literature assumes quasilinear utility functions, and
bidders do not have budget constraints.

1.3. Exogenous Budget Constraints
Budget constraints are an important concern in most
markets, including spectrum auctions (Janssen et al.
2017), display ad auctions (Wu et al. 2018), and spon-
sored search auctions (Colini-Baldeschi et al. 2011). In
most markets, bidders can only submit their budget-
capped valuations, which can lead to significant ineffi-
ciencies, as we show in this paper. Although the
consideration of budget constraints appears as a
practically important extension of the established qua-
silinear utility model, it turns out that it leads to sub-
stantial problems. Competitive equilibria in which
each participant maximizes his or her payoff at the
given prices might not be possible with budget con-
straints, as the package that maximizes the payoff of a
buyer could be not affordable to the buyer. It is also
straightforward to see that a core-stable solution does
not need to maximize welfare when bidders have
budget constraints; see the following example.

Example 2. Suppose there are two buyers, b1 and b2,
having a value of $10 and $9, respectively, for a good. In
addition, buyer b1 has a budget constraint of $1 and can-
not spend more money. There are sellers s1 and s2, with
reserve prices of $0 and $4, respectively. The welfare-
maximizing allocation is to match b1 and s1 at a price be-
tween $0 and $1, and b2 and s2 at a price somewhere be-
tween $9 and $4, which yields $15 gains from trade.
However, this efficient allocation is not stable, because s1
could approach b2, and they could agree to deviate at a
price of less than $4 andmore than $1, which is profitable
for both of them. Matching buyer s1 to b2 is stable but
does not allow b1 to trade with s2. Therefore, the gains
from trade are only $9 as compared with the welfare-
maximizing allocationwith gains from trade of $15.

The example highlights an important impossibility.
Whereas core outcomes maximize welfare in the Arrow-
Debreu model (Arrow and Debreu 1954) and in markets
with quasilinear utility but no budget constraints (Bikh-
chandani and Ostroy 2002), this no longer holds with
budget constraints. Welfare-maximizing but unstable
outcomes are hard to justify and maintain, which is why
core constraints are enforced in high-stakes spectrum
auctions. Therefore, we aim for core-stable outcomes that
maximizewelfare subject to budget constraints.

1.4. Contributions
Our paper has three main contributions. The first con-
tribution is theoretical, as we provide a thorough
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analysis of the computational complexity of comput-
ing welfare-maximizing and core-stable outcomes of a
combinatorial exchange with payoff-maximizing but
financially constrained participants. This is a new and
fundamental problem. We focus on combinatorial
markets because they do not restrict the types of bid-
der valuations and for their practical relevance. We
prove that in the presence of payoff-maximizing but
budget-constrained buyers, the allocation and pricing
problem becomes a Σ

p
2-hard optimization problem.

This is important to show formally but requires an
elaborate reduction from the canonical Σp

2-hard prob-
lem QSAT2. Problems in this complexity class are rare
and considered intractable for all but toy problems.
The hardness of these problems comes from the fact
that prices and budgets need to be considered in the
allocation problem, whereas with quasilinear prefer-
ences one can first solve the allocation and then the
pricing problem (e.g, via core constraint generation, as
in Day and Raghavan 2007). In addition, we also
show restricted cases with dyadic coalitions that can
be modeled and solved as integer programs and,
therefore, are not Σp

2-hard but in NP. Finally, we intro-
duce n-coalition stability, describing a solution that is
robust against coalitions of size at most n. This leads
to a more tractable notion of stability, as we will
show. The cost of forming large coalitions with a doz-
en participants in a combinatorial market can be
considered prohibitive in most markets. Note that it is
already NP-hard for a given coalition with a given set
of prices to determine whether a profitable deviation
exists.1

Second, we provide quite a general mixed integer
bilevel linear program (MIBLP) to model the alloca-
tion and pricing problem of a combinatorial market
with budget and core constraints, which can easily be
adapted to specific bid languages.2 Although bilevel
programming has been a topic in the literature for
many years, algorithms to solve MIBLPs have seen
progress only recently. Based on the MIBLP formula-
tion, we develop column and constraint generation al-
gorithms for combinatorial exchanges with budget
constraints.

It is not obvious that realistic problem sizes of a
Σ
p
2-hard problem could be solved in practice. In our

third contribution, we perform extensive experimental
analyses in which we provide evidence that even full
core solutions can be found for small but realistic
problem sizes. If we limit ourselves to n-coalition sta-
bility, we can compute much larger problem sizes
while still providing a good level of stability for prac-
tical applications. We analyze two types of combinato-
rial markets, an airport time slot allocation problem
based on the CATS instance generator (Leyton-Brown
et al. 2000), and a fishery rights exchange (Bichler et al.
2019). Although full core stability quickly becomes

intractable, we show that small but realistic problem
sizes can actually be solved if the designer limits at-
tention to deviations of coalitions with limited size.
Our experimental results also show that if budget con-
straints are ignored and bidders can only submit
budget-capped valuations, the computed prices and
allocations are not stable, and the welfare loss is
substantial.

2. Related Work
Early on in the economic sciences, general equilibrium
theory attempted to explain competitive equilibria in
a market with multiple commodities. The Arrow-
Debreu model shows that under convex preferences
and perfect competition there must be a set of compet-
itive equilibrium prices (Arrow and Debreu 1954).
Market participants are price takers, and they sell or
buy goods in order to maximize their total value sub-
ject to their budget or initial wealth. The results
derived from the Arrow-Debreu model led to the
well-known welfare theorems, an important argument
for markets as an efficient way to allocate resources.
The first theorem states that any competitive equilibri-
um leads to a Pareto efficient allocation of resources.
The second theorem states that any efficient allocation
can be attained by a competitive equilibrium, given
the market mechanisms leading to redistribution.

In the Arrow-Debreu model, each participant has
an endowment of goods and money. Fisher markets
are a simpler version of the Arrow-Debreu model in
which the total quantity of each product is given, and
each buyer comes only with a monetary budget. They
follow a tradition where utility is cardinal and indi-
viduals have interpersonally commensurable utility
functions. These markets have received significant at-
tention in the past 20 years in computer science, when
researchers have gone beyond existence theorems and
tried to find algorithms to actually compute alloca-
tions and prices (Vazirani 2007, Vazirani and Yanna-
kakis 2011, Cole e al. 2017). In the Eisenberg-Gale
convex program to solve Fisher markets, buyers have
linear valuations that they aim to maximize subject to
a budget constraint (Vazirani 2007). The designer
maximizes a Nash social welfare function, which is
described as the budget-weighted geometric mean of
the bidders’ utilities.3

Most of the more recent microeconomic literature on
competitive equilibria assumes a utilitarian or Ben-
thamite welfare function, which maximizes the sum of
all participants’ utilities.4 As in the earlier literature on
general equilibrium, the central question is when com-
petitive equilibria exist. A number of authors explore
conditions for linear and anonymous competitive equi-
librium prices, so-called Walrasian equilibria (Kelso
and Crawford 1982, Gul and Stacchetti 1999, Ausubel
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2006, Leme 2017, Bichler et al. 2020). Bikhchandani
and Mamer (1997) have shown necessary conditions
for the aggregate valuation function of all individuals,
and Baldwin and Klemperer (2019) have characterized
necessary conditions for the individual valuation func-
tions to yield Walrasian equilibria. Baldwin et al.
(2020) recently extended these results to markets with
income effects, for example, those with financial con-
straints. In addition, Bikhchandani and Ostroy (2002)
discussed the existence of nonlinear and personalized
competitive equilibrium prices. As indicated earlier,
this entire literature assumes purely quasilinear utility
functions and no budget constraints; market partici-
pants maximize their payoff, that is, the value of an
allocation minus the total price they pay for it. We con-
tinue to use these standard market design assumptions
but consider exogenous budget constraints that buyers
might have.

Roughgarden and Talgam-Cohen (2015) highlight
the tight connection between pricing, algorithms,
and optimization, and our work contributes to this
line of research. We know that simple quasilinear
preference models with unit demand allow for effi-
cient computation and Walrasian prices, whereas
more complex quasilinear preferences, including
complements and substitutes, require the solution of
NP-hard optimization problems, and they demand
nonlinear and personalized prices. Table 1 relates
different types of preferences to the type of price
function necessary and the computational complexi-
ty to solve the allocation and pricing problem. In this
paper, we show that the consideration of exogenous
budget constraints yields an allocation and pricing
problem that is even higher in the polynomial hierar-
chy compared with combinatorial exchanges with
quasilinear utilities.

Even though budget constraints have not been con-
sidered in the more recent competitive equilibrium
theory, they have been a concern in other streams of
the literature. Auction theory focuses on smaller auc-
tion markets, with strategic bidders able to influence
the price. Here, auctions are modeled as Bayesian
games. Whereas quasilinearity is also a standard as-
sumption in this literature (Krishna 2010), a number
of papers have dealt with the impact of budget con-
straints in auctions (Benoit and Krishna 2001, Borgs
et al. 2005, Dütting et al. 2016). Unfortunately, it was

shown that we cannot hope for any incentive-
compatible mechanism in the presence of private bud-
get constraints in multiobject auctions (Dobzinski et al.
2008, Colini-Baldeschi et al. 2011, Dütting et al. 2016),
and there is a long literature addressing payoff-
maximizing but budget-constrained bidders from a
mechanism design perspective (Che and Gale 1998,
Benoit and Krishna 2001, Pai and Vohra 2014). Many
authors have also dealt with budget constraints in the
context of dynamic advertising auctions (Borgs et al.
2007, Conitzer et al. 2017, Conitzer et al. 2018). Adver-
tisers often have a budget for a campaign, and they
want to maximize payoff but consider their budget in
a sequence of auctions. In contrast, we analyze a static
environment with multiple buyers and sellers, as is
standard in competitive equilibrium theory, and want
to compute prices that constitute a stable outcome
where no coalition of budget-constrained buyers and
sellers can deviate profitably.

3. Model and Preliminaries
In the following, we provide a formal definition of
our model and concepts. We first introduce a model
without budget constraints based on Bikhchandani
and Ostroy (2002) and Bichler and Waldherr (2017).
The papers show equivalence of the core and the set
of competitive equilibria in a combinatorial exchange
by drawing on specific linear programming formula-
tions. The model without budget constraints is a
convenient starting point for the analysis of budget
constrained buyers.

There is a finite set of bidders N, consisting of
buyers i ∈ I and sellers j ∈ J with I

⋃
J �N and I ∩ J � ∅,

as well as a finite set of indivisible objects or items, K.
Each buyer i ∈ I has a nonnegative value for each set
of objects S ⊆ K denoted vi(S) ∈ R≥0 with vi(∅) � 0.

Sellers also have values or reservation prices for
packages Z ⊆ K with vi(Z) ∈ R≥0. Buyers and sellers
have free disposal. Every package is priced, and each
buyer i ∈ I pays the price pi(S) for the bundle S he or
her receives, and each seller j ∈ J receives the pay-
ment pj(Z) for the bundle Z he or she supplies. The
vectors Pi � (pi(S))i,S and Pj � (pj(Z))j,Z describe the
nonlinear prices of buyers and sellers. In our initial
analysis the preferences are quasilinear, that is, the
payoff of the buyer is πi � vi(S) − pi(S), and that of the

Table 1. Complexity Results and Price Functions for Computing a Core-Stable and Welfare Maximizing Outcome Based on
Different Types of Preferences

Preferences Prices Complexity References

Unit demand Linear and anonymous P Shapley and Shubik (1971)
Strong substitutes Linear and anonymous P Milgrom and Strulovici (2009)
General quasilinear Nonlinear and personalized NP Bikhchandani and Ostroy (2002)
General w. budgets Nonlinear and personalized Σ

p
2 This paper
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seller is πj � pj(Z) − vj(Z). Later we will add budget
constraints.

The problem of finding an efficient assignment
maximizing gains from trade among buyers and sell-
ers can be formulated as a linear program as follows.
We use binary variables xi(S) to describe whether
package S is assigned to bidder i and yj(Z) to describe
whether package Z is supplied by seller j. The vectors
X � (xi(S))i,S and Y � (yj(Z))j,Z describe the allocations
of buyers and sellers. The model enumerates all possi-
ble allocations similar to the single-seller model in de
Vries et al. (2007). The set of all possible object assign-
ments is denoted as Γ and a specific assignment as
(X,Y) ∈ Γ. For each possible allocation, we have a
binary variable δX,Y, which is 1 if an allocation is se-
lected and 0 otherwise. The model allows for a very
natural interpretation of the dual variable as prices.
The dual variables of P are written in brackets:

wP �max
∑
i∈I

∑
S⊆K

vi(S)xi(S) −
∑
j∈J

∑
Z⊆K

vj(Z)yj(Z)

s:t: xi(S) −
∑

X:xi(S)�1
δX,Y � 0 ∀i ∈ I, ∀S ⊆ K (pi(S))

−yj(Z) +
∑

Y:yj(Z)�1
δX,Y � 0 ∀j ∈ J, ∀Z ⊆ K (pj(Z))

∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I (πi)
∑
Z⊆K

yj(Z) ≤ 1 ∀j ∈ J (πj)
∑

(X,Y)∈Γ
δX,Y � 1 (πa)

0 ≤ xi(S) ∀S ⊆ K, ∀i ∈ I

0 ≤ yj(Z) ∀S ⊆ K, ∀j ∈ J

0 ≤ δX,Y ∀(X,Y) ∈ Γ: (P)

The formulation P introduces a variable δ(X,Y) for each
possible allocation, making the linear program large
but integral. An LP solver is guaranteed to select a
vertex such that δ(X,Y) � 1, such that we always get in-
teger allocations xi(S) and yj(Z) of P (Bichler and
Waldherr 2017). At least one of these allocations maxi-
mizes the gains from trade, that is, welfare in the
economy. Note that even though P is a linear pro-
gram, its size is exponential in the number of bids
since the linear program introduces a variable for
each possible allocation. The underlying allocation
problem in combinatorial exchanges is known to be
NP-hard (Sandholm et al. 2002, Pekec and Rothkopf
2003). Even with the restriction of allowing only a sin-
gle seller, the problem is equivalent to the winner de-
termination problem in combinatorial auctions, which
is also known to be NP-hard (Lehmann et al. 2006).5

Note that there are more effective formulations as bi-
nary programs that we will use in Section 5, where we
discuss a bilevel program to compute core payments
in the presence of financially constrained bidders.

However, model P nicely shows how core payments
can be computedwithout budget constraints.

The core prices resulting from the dual variables of
P are nonlinear and personalized. We can now formu-
late the dualD of P:

min
∑
i∈I

πi+
∑
j∈J

πj+πa

s:t: πi≥vi(S)−pi(S) ∀i∈ I,∀S⊆K (xi(S))
πj≥pj(Z)−vj(Z) ∀j∈ J,∀Z⊆K (yj(S))∑

yj(Z)∈Y
pj(Z)−

∑
xi(S)∈X

pi(S)+πa≥0 ∀(X,Y)∈Γ (δX,Y)

πi,πj,pi(S),pj(Z)≥0 ∀S,Z⊆K,

∀i∈ I,∀j∈ J
πa∈R (D)

The LP relaxation of the primal P is always integral
such that strong duality holds. Now, the dual D intro-
duces a price for each bidder and package, that is, a
nonlinear and personalized price.

Definition 1. Let Πi � (πi) ∈ R
|I|
≥0 and Πj � (πj) ∈ R

|J|
≥0 be

the payoff vectors of the buyers and sellers in the auc-
tion E and V(·) be the coalitional value function, that
is, the maximum transferable utility that can be
gained by a coalition. Then (Πi,Πj) is in the core of the
auction game E, denoted (Πi,Πj) ∈ core(E), if∑

i∈I
πi+

∑
j∈J

πj �V(N) core efficiency

∑
i∈C

πi+
∑
j∈C

πj ≥V(C) ∀C⊂N � I
⋃

J core rationality

Bichler and Waldherr (2017) showed that if πa � 0, an
optimal solution of D lies in the core of the auction,
and the core is nonempty.

Quasilinear utility functions describe a game with
transferable utility. The presence of budget constraints
Bi of the buyers i ∈ I violates quasilinearity, however,
and only parts of the utility of the buyer up to the
budget are transferable. We analyze the impact of this
change in the following sections.

4. Complexity Analysis
In what follows, we analyze the complexity of welfare
maximization subject to budget and core constraints.
Example 2 has already illustrated that budget con-
straints can reduce the gains from trade. Even more is-
sues can come up when bidders are not allowed to
communicate their budget constraints, as is the stan-
dard in combinatorial auctions where bidders only
submit their (nonrestricted) bids.

Example 3. Consider an example with two sellers, s1
offering item A and s2 offering item B, and two buyers
and their respective values and budgets as depicted in
Table 2. Each buyer wants to obtain exactly one of the
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two items. If buyer b1 is not allowed to communicate
his or her budget and values, he or she can only place
a bid of at most 4 for any of the items, leading to an as-
signment of A to b1 and B to b2, which maximizes
welfare for these reported values. However, this allo-
cation is not stable since b1 would approach s2 to ob-
tain item B in order to increase the buyer’s true utility.
Communicating financial constraints is necessary to
ensure stability in this case.

From Bikhchandani and Ostroy (2002), we know
that the core of a combinatorial exchange can be emp-
ty even without budget constraints. But even if the
core is nonempty without budget constraints, it can be
empty if such constraints are added.

Proposition 1. A budget-constrained combinatorial ex-
change instance may have an empty core, even if the core is
nonempty when budgets are ignored.

Proof. Consider a case with two sellers, s1 offering
item A and s2 offering item B, and two buyers with
values and budgets as demonstrated in Table 3. With-
out budget constraints, buyer b1 can pay a price of 4
for each of the items, resulting in a core outcome.
However, if we consider the budget constraints, there
is no core outcome. Suppose buyer b1 obtains {A, B}
for a combined price of at most 3. Then there is at least
one seller with a payoff lower than 2, and buyer b2
and this seller can form a coalition in which both are
better off. Similarly, suppose b2 obtains one of the
buyer’s desired items from one of the sellers, whereas
b1 does not obtain any items. Because the combined
payoff of the sellers is at most 2, b1 and the sellers can
form a coalition where all three are better off. Q.E.D.

The previous examples show that ignoring budget
constraints can lead to substantial problems in combi-
natorial markets. Providing values and budget con-
straints in a market is not unusual. For example, in
Google’s auction for TV ads, buyers were allowed to
specify both (Nisan et al. 2009). However, allowing

for budgets to be communicated comes at a price as
well. In the following, we will show that it can be
quite challenging to find core-stable outcomes in the
presence of budget constraints.

A combinatorial exchange with budget constraints
on the buyers’ side can be seen as a game with partial-
ly transferable utility. The problem has a specific
structure, and therefore, it is important to understand
its computational complexity. We show that the prob-
lem is actually Σ

p
2-hard, a complexity class in the poly-

nomial hierarchy that is higher than the class of
NP-hard problems (Stockmeyer 1976).

Theorem 1. Computing a welfare-maximizing core out-
come or providing a certificate that the core is empty in a
combinatorial exchange with budget constraints is
Σ
p
2-hard.

Proof techniques for this complexity class are much
less developed than those for lower levels in the poly-
nomial hierarchy. The proof (see the appendix)
reduces from QSAT2 and requires an elaborate con-
struction. A reduction from more abstract problems
such as min-max clique, which are known to be
Σ
p
2-hard, appears simpler at first sight but is not prac-

tical upon application.
The hardness of the problem comes from the fact

that the allocation and pricing problem needs to be
treated in a single optimization problem. Without
budget constraints, the auctioneer can compute the
welfare-maximizing solution first and then compute
core-stable payments, as it is currently done for spec-
trum auctions (Day and Raghavan 2007). In this case,
the welfare-maximal solution does always allow for
prices such that the outcome is in the core (for exam-
ple, charging the total bid amount). Thus, both
calculations can be made independently. With budget
constraints, however, this is not the case, because there
might not exist prices such that the welfare-maximizing
solution can be extended to a core outcome.

An interesting question is whether there are some
sufficient conditions for a combinatorial exchange to
have a nonempty core that are simple to check. For
transferable utility games, the Bondareva-Shapley the-
orem describes balancedness as a necessary and suffi-
cient condition for the core of a cooperative game
with transferable utility (TU) to be nonempty (see
Bondareva 1963 and Shapley 1967). Balancedness is a
rather obscure property, but it can be checked with
linear programming in transferable utility games, and
linear programming is also used to decide whether
the core is empty in combinatorial exchanges without
budget constraints (Bichler and Waldherr 2017).

A combinatorial exchange with budget constraints
is closer to a game with nontransferable utility (NTU).
The main result for NTU games is that balanced
games have a nonempty core, but the converse is not

Table 3. Example of Values and Budgets

{A} {B} {A,B} Budget

Buyer b1 0 0 10 3
Buyer b2 4 4 4 2

Note. There exists a stable allocation when no bidder is financially
constrained, but the core is empty in the presence of budgets.

Table 2. Example of Values and Budgets

{A} {B} Budget

Buyer b1 4 10 4
Buyer b2 2 3 3

Note. If b1 is not allowed to communicate her budget, the welfare-
maximal allocation is unstable with regards to the true values.
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true (Scarf 1967). So, balancedness is a requirement
that is sufficient for TU and NTU games to have a
nonempty core. Scarf’s algorithm is a central result to
compute whether the core of an NTU game is empty.
The computational version of Scarf’s lemma is PPAD-
complete (Kintali 2008). Moreover, the algorithm re-
quires a matrix as an input that has a column with the
payoff of each player for every coalition. In a combi-
natorial exchange with budget constraints, every
coalition can have multiple allocations with different
payoffs. Moreover, we have partially transferable
utility (up to the budget constraint), and the payoff
vectors for each coalition are not unique for a coali-
tion, as is the case for a pure NTU game, but depend
on the prices. In such price-guided markets, Scarf’s al-
gorithm does not provide a solution.

Therefore, it is interesting to understand restricted
cases for which the problem falls into a lower com-
plexity class. This approach has shown to be success-
ful for standard multiobject markets with quasilinear
bidders. For example, it is well-known that the gross
substitutes condition is equivalent to M]-concavity, a
form of discrete concavity of a valuation function,
which is a sufficient condition allowing for Walrasian
prices and polynomial time algorithms to solve the
allocation problem (Danilov et al. 2001, Milgrom and
Strulovici 2009, Baldwin and Klemperer 2019).

One important case that simplifies the problem,
however, is that of markets where we only care about
dyadic coalitions, that is, coalitions of size two, for
which we introduce an integer program to solve in
Section 6.3. Let us first introduce a bilevel optimiza-
tion problem that allows us to solve the general case.

5. Optimization Model
Mixed-integer bilevel linear programs (MIBLP) provide
an adequate mathematical abstraction to model the al-
location and pricing problem with budget-constrained
bidders. Integer bilevel programs (IBLPs) are Σ

p
2-com-

plete (Jeroslow 1985), as is our specific problem. Only
recent algorithmic advances suggest that such prob-
lems can be solved in practice (Zeng and An 2014,
Fischetti et al. 2017, Tahernejad et al. 2017).

MIBLPs belong to the class of bilevel optimization
problems that have roots in the seminal work by Von
Stackelberg (1934). Bilevel linear programs (BLPs) are
frequently used to model sequential distributed
decision-making. In these situations, typically a leader
makes the first decision and a follower reacts after ob-
serving the leader’s decision. The follower’s action is
important to the leader because it might interfere with
the leader’s objective. The challenge of the leader is to
predict the follower’s reaction and take action in such
a way that after the follower’s reaction the leader’s ob-
jective is reached to the highest possible degree.

More technically, a BLP is a linear program that is
constrained by another linear optimization problem.
Usually the first optimization problem is called the
upper-level problem (leader) whereas the constrain-
ing problem is referred to as the lower-level problem
(follower). Given an upper-level solution, the lower
level computes an optimal solution under consider-
ation of its respective constraints. This in turn affects
the upper level by altering the value of the objective
function or violating constraints, possibly making the
overall solution infeasible. For this introduction to bi-
level optimization, let X be the set of variables in the
upper-level problem and Y be the set of variables in
the lower-level problem. Then, the general form of the
problem is

max
x∈X F(x, y) (1a)

s:t: G(x, y) ≤ 0 (1b)
min
y∈Y f (x, y) (1c)

s:t: g(x, y) ≤ 0, (1d)

where F, f : Rn × R
m → R

1,G : Rn × R
m → R

p,g : Rn ×
R

m → R
q are continuous, twice differentiable func-

tions. Note that in MIBLP, F and f are represented by
linear objective functions of the upper and lower level,
whereas G and g are the respective linear constraints.
BLPs, where X and Y include only continuous varia-
bles, are already NP-hard (Dempe 2002). A standard
way to solve BLPs is to add the Karush-Kuhn-Tucker
conditions of the lower-level program to the upper-
level program. This adds complementarity constraints
that can be modeled via integer variables. MIBLPs
may include integer variables in the upper as well as
in the lower level of the bilevel programming prob-
lem. In this case, the MIBLP cannot simply be formu-
lated by modeling the KKT conditions of the lower
level, and the problems become very hard to solve.

The MIBLP we suggest finds core allocations in
combinatorial exchanges with budget constraints. If
the core is not empty, the solution of the bilevel pro-
gram consists of a core allocation with maximum wel-
fare. Additionally, we obtain prices and payments for
buyers and sellers. If the core is empty, the MIBLP is
infeasible. The goal of the upper level is to find prices
P � {Pi,Pj}, such that the corresponding allocation (X,
Y) is in the core, and there is no core allocation with a
higher welfare.

In the lower level of the bilevel program, we look
for a coalition of bidders and sellers that can all im-
prove their payoffs when trading among each other.
For this, we introduce a variable d ∈ R, indicating
the minimum improvement a member of the coalition
can achieve. Lower-level variables χi(S) ∈ 0, 1{ } and
γj(Z) ∈ 0, 1{ } denote the allocation of bundles S,Z ⊆K,
which are traded, and ρi(S),ρj(Z), which describe the
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corresponding prices and payments. Then, for each
bidder that trades at least one item in the lower level,
his or her difference in payoff (based on her trade in
the upper and lower level) is calculated and consid-
ered for the minimum improvement d.

In the following, (CEx) presents the general frame
of the bilevel program that finds welfare-maximal
core allocations and prices. For the moment, we ig-
nore domain-specific allocation and pricing con-
straints. Hence, we simply denote the set of feasible
allocations and prices by A and P in the upper level
and by AL and PL in the lower level, respectively. De-
pending on the exchange, these can represent arbi-
trary linear constraints that constitute a feasible trade.
We assume an XOR bidding language because it does
not pose restrictions on the valuations. This means
that A contains a constraint that allows each bidder to
only buy or sell a single bundle, respectively. This al-
lows for a simpler representation of the welfare
function as well as the calculation of the lower-level
deviation that should depend only on bidders actually
participating in the blocking coalition. The general ap-
proach is not limited to XOR bidding languages, how-
ever, and can easily be adapted to other bid languages
or exchanges that allow participants to buy and sell at
the same time. We will give examples of how to adapt
the general MIBLP (CEx) in Section 7. It is also
straightforward to include swap bids that allow bid-
ders to buy and sell items in a single bid:

max
xi(S),yj(Z)

∑
S⊆K

∑
i∈I

vi(S)xi(S) −
∑
j∈J

∑
Z⊆K

vj(Z)yj(Z) (CEx)

s:t:
∑
S⊆K

pi(S)xi(S) ≤min Bi,
∑
S⊆K

vi(S)xi(S)
{ }

∀i ∈ I

(UBC)
pj(Z)yj(Z) ≥ vj(Z)yj(Z) ∀Z ⊆ K, ∀j ∈ J

(UIRS)
x,y ∈A (UFA)
p ∈ P (UFP)
d ≤ 0 (Core)
d �maxd (lower level)

s:t:
∑
S⊆K

ρi(S)χi(S) ≤min Bi,
∑
S⊆K

vi(S)χi(S)
{ }

∀i ∈ I

(LBC)
ρj(Z)γj(Z) ≥ vj(Z)γj(Z) ∀j ∈ J, ∀Z ⊆ K (LIRS)

χ,γ ∈AL (LFA)
ρ ∈ PL (LFP)

d ≤∑
S⊆K

vi(S) − ρi(S)
( )

χi(S) −
∑
S⊆K

vi(S) − pi(S)( )
xi(S) +M 1−∑

S⊆K
χi(S)

( )
∀i ∈ I

(Imp-B)

d ≤ ∑
Z⊆K

ρj(Z)γj(Z) −
∑
Z⊆K

pj(Z)yj(Z) +M 1−∑
Z⊆K

γj(S)
( )

∀j ∈ J

(Imp-S)∑
i∈I

∑
S⊆K

χi(S) +
∑
j∈J

∑
Z⊆K

γj(Z) ≥ 1 (part)

χi(S) ∈ {0, 1} ∀S ⊆ K, i ∈ I (binary)
γj(Z) ∈ {0, 1} ∀Z ⊆ K, j ∈ J (binary)

ρi(S) ∈ R
+
0 ∀S ⊆ K, i ∈ I (real)

ρj(Z) ∈ R
+
0 ∀Z ⊆ K, j ∈ J (real)

d ∈ R (real)
xi(S) ∈ {0, 1} ∀S ⊆ K, i ∈ I (binary)
yj(Z) ∈ {0, 1} ∀Z ⊆ K, j ∈ J (binary)

pi(S) ∈ R
+
0 ∀S ⊆ K, i ∈ I (real)

pj(Z) ∈ R
+
0 ∀Z ⊆ K, j ∈ J (real)

The objective of (CEx) is to maximize gains from trade
by determining an assignment of bundles and corre-
sponding prices, such that the prices respect the budget
constraints and individual rationality of buyers (UBC)
and sellers (UIRS). Furthermore, allocations and prices
have to satisfy all domain-specific feasibility conditions
for the allocation (UFA) and the prices (UFP). The prices
have to be set in such a way that there is no coalition of
participants that can benefit from deviating. To find
such a coalition, an assignment χ,γ with payments ρ is
determined in the lower level. Similar to the upper lev-
el, these assignments have to respect budget constraints
(LBC) and individual rationality (LIRS) as well as all
other feasibility conditions for assignments (LFA) and
prices (LFP). Constraints (Imp-B) and (Imp-S) deter-
mine an upper bound for the minimum deviation of
participants by calculating the improvement for each in-
dividual buyer and seller when participating in this co-
alition. Herein, M is a very big number to not restrict d
in the case that a buyer or seller is not participating in a
trade within the lower level (i.e., is not part of the block-
ing coalition). Constraint (part) requires at least one par-
ticipant in the lower level, a necessary condition since d
would otherwise be trivially maximized by setting all
χ,γ to zero in constraints (Imp-B) and (Imp-S). The ob-
jective of the lower level is to maximize the minimum
improvement of participants of a blocking coalition. For
the allocation (X, Y) and the corresponding payments
to be in the core, this improvement must not be positive
for any coalition (core).

Note that the bilinear term
∑

S⊆K pi(S)xi(S) can easily
be replaced by a single variable pi (similar with pj) for
nonlinear and personalized prices. In contrast, some-
times an auctioneer might want to have nonlinear but
anonymous prices, and he or she could replace the
variables pi(S) (pj(Z)) for all i ( j) by a single variable
p(S) (p(Z)) for each package S (Z). Neither personal-
ized nor anonymous prices might be unique.
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It is important to understand that the Σ
p
2-hardness of

the problem hinges on the fact that items are indivisible.
If the auctioneer had the opportunity to allocate frac-
tional items or fractional packages, then both the lower-
and the upper-level programs contain only rational allo-
cation variables in [0, 1] instead of binary variables, and
the mixed-bilevel integer program reduces to a BLP.

Unfortunately, the core of the combinatorial ex-
change can also be empty; that is, no allocation of
items with prices for which there is no blocking coali-
tion may exist. However, the gains for each blocking
coalition might only be marginal and exceed the costs
of finding such a blocking coalition for the partici-
pants. In cooperative game theory, the ε-core is
defined as the set of outcomes for which blocking coa-
litions can only improve by at most ε when deviating
from the grand coalition. For the combinatorial ex-
change as defined above, the ε-core is equivalent to
those allocations and prices for which there is no
blocking coalition of buyers and sellers such that ev-
ery member can improve its payoff by more than ε. A
welfare-maximal ε-core outcome can be calculated by
changing constraint (core) to d ≤ ε.

6. Algorithms
If the lower-level problem does not contain integer vari-
ables and is an LP, bilevel programs can be reformulated
as single-level problem by replacing the lower level with
its optimality conditions (e.g., Karush-Kuhn-Tucker
(KKT)) and then solving the resultingmathematical pro-
gram with equilibrium constraints, which can easily be
translated into a mixed-integer programming (MIP)
problem and solved via standard MIP techniques (Bard
andMoore 1990, Dempe 2002).

Bard and Moore (1990) initiated algorithmic solu-
tions to mixed-integer bilevel linear programs
(MIBLPs). However, algorithms for MIBLPs are a rela-
tively new research field, and there are no standard
techniques for solving MIBLPs. MIBLPs with noncon-
vex lower level have been considered “still unsolved
by the operations research community” (Delgadillo
et al. 2010, Dempe 2003).

It has only been recently that two quite general
branch-and-cutMIBLP algorithms have been proposed.
Fischetti et al. (2017) proposed an algorithm for MIBLPs
with binary upper-level variables. They require the link-
ing variables, those variables that have nonzero coeffi-
cients and are present in the upper- and lower-level pro-
gram, to be integer. Tahernejad et al. (2017) proposed
another MIBLP solver based on cut generation, which is
available as open source in the MibS solver and has the
same requirement on the linking variables.

A naïve technique would be to write down the full
programwith all optimality conditions of the lower lev-
el for all possible solutions of the upper level. However,

this program would be huge and intractable for all but
the smallest of toy instances. Even the smallest instances
we consider in our computational experiments allow
for 960 coalitions and hundreds of possible assignments
for each of these coalitions. Hence, a naïve approach
enumerating all those options (and introducing KKT
conditions for all of them)would be intractable to solve.

It is natural to use column and constraint genera-
tion techniques because the search space tends to be
large. Zeng and An (2014) discussed a generic column
and constraint generation framework. These authors
first make use of the high-point relaxation of the bile-
vel program, wherein all lower level variables and
constraints are duplicated into the upper level and a
classical MILP is solved. This yields a solution that is
feasible with respect to upper and lower level con-
straints but not optimal with respect to the lower lev-
el. Actually, the high-point relaxation is generally
adopted as the fundamental relaxation within MIBLP
techniques in the literature (Moore and Bard 1990, Xu
and Wang 2014, Scaparra and Church 2008). The solu-
tion serves as an upper bound UB for the optimal so-
lution of the MIBLP.

A generic scheme for column and constraint genera-
tion in MIBLP, like that explored in Zeng and An
(2014), can be summarized in the following steps:

1. Given an assignment x∗ of the upper level varia-
bles in the single-level reformulation, the lower
level problem is then solved to optimality, yield-
ing an assignment y∗ for the lower level variables.

2. If the combined solution (x∗,y∗) is feasible for the
MIBLP, then F(x∗,y∗) is a lower bound LB for its
optimal solution. In the case that LB � UB, (x∗,y∗)
is also an optimal solution.

3. Otherwise, let yZ ∈ YZ consist of the lower-level
variables with integer domain and yR ∈ YR denote
the continuous lower-level variables. The single-
level reformulation is extended by KKT optimality
conditions of the lower level, with the integer vari-
ables fixed to y∗

Z
.

The procedure continues as described above until
lower bound and upper bound converge to the same
value or the single-level reformulation is infeasible.
Column and constraint generation is a widespread
and textbook-level technique to solve large-scale inte-
ger programming problems. The challenge is how
constraints and columns are generated, and this is
typically specific to the problem at hand.

In the case of computing welfare-maximal core allo-
cations, the problem has a very special structure. For
instance, simply adding the lower-level variables and
constraints to the upper-level problem (i.e., using the
high-point relaxation) does not restrict the upper level
since the core feasibility constraint can be trivially sat-
isfied (with d � 0) by setting the lower-level allocation
variables to the exact copy of the upper level

Bichler and Waldherr: Core Pricing in Combinatorial Exchanges with Financially Constrained Buyers
Operations Research, 2022, vol. 70, no. 1, pp. 241–264, © 2021 INFORMS 249

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
5.

10
8.

24
6.

11
6]

 o
n 

04
 A

ug
us

t 2
02

2,
 a

t 0
1:

42
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

Published in Operations Research on November 01, 2021 as DOI: 10.1287/opre.2021.2132. 
This article has not been copyedited or formatted. The final version may differ from this version.



allocation variables. Additionally, solving the lower
level does not yield any meaningful lower bounds for
the optimization problem. Either the lower-level solu-
tion leads to an infeasibility, or the solution of the up-
per level is optimal.

In the following, we present an algorithm for com-
puting welfare-maximal core allocations. As in the
scheme by Zeng and An (2014) introduced above, our
algorithm is also based on the classical idea of trans-
forming the bilevel program into a single-level prob-
lem by dynamically adding columns and constraints,
which are specific to our welfare maximization and
pricing problem. The overall solution to the allocation
and pricing problem involves the initial MIBLP
formulation, an algorithm to solve the MIBLP formu-
lation via column and constraint generation, the
restriction on n-blocking-coalitions, and the delayed
coalition generation discussed below. These compo-
nents allowed us to solve realistic problem sizes, as
we show in our experiments.

6.1. Column and Constraint Generation
In what follows, we introduce our bilevel integer pro-
gramming algorithm for the specific problem of com-
puting a welfare-maximal core allocation and core
prices in combinatorial exchanges.

First, the upper level is solved to optimality, ignor-
ing the core constraint and possible blocking coali-
tions. Afterward, given an optimal allocation x∗,y∗
and prices p∗ in the upper level, the lower level is
solved to optimality for the corresponding optimal as-
signment of the upper-level linking variables. If the
optimal deviation d is at most zero, then there exists
no coalition of bidders that block the upper level allo-
cation and prices. In this case, the upper level solution
is feasible and, moreover, the welfare-maximal core
allocation. If, however, the lower level yields a posi-
tive deviation d, let χ∗,γ∗ be the allocation of items
within the blocking coalition as determined by the
lower level. Then, the upper level is extended by the
Karush-Kuhn-Tucker (KKT) optimality conditions of
the lower level, with the integer variables (i.e., χ and
γ) fixed to the result of the lower level. These addi-
tional constraints force the upper level to determine a
new allocation and/or new prices such that there is
no possibility for a blocking coalition with an alloca-
tion χ∗,γ∗ to determine payments among each other
such that all members of the coalition can profit.

Algorithm 1 illustrates the overall procedure. A
welfare-maximal upper level solution (x, y, p) consid-
ering the current constraints is determined in Line 3
of the while loop. If the upper level is infeasible and
no allocation has been fixed, then there exists no stable
outcome. Otherwise, if the allocation in the upper lev-
el was fixed before, no prices for this allocation exist.
Hence, the allocation is unfixed in Line 9, and this

allocation and all other allocations with higher social
welfare are forbidden because they were proven to be
unstable in previous iterations. Afterward, the upper
level is solved again. If the upper level is feasible, we
solve the lower level in order to find a deviating coali-
tion that can improve upon the upper-level allocation
and prices. If there is no such coalition, (x, y, p) consti-
tute welfare-maximal core allocations and prices.
Otherwise, we add the KKT condition for the fixed
lower-level integer variables to the upper level in Line
17 and fix the current welfare-maximal allocation in
Line 18.

Algorithm 1 (Bilevel Algorithm to Obtain Welfare-
Maximal Core Allocation and Prices)

1. Set fixedAllocation � false;
2.while true do
3. Solve the upper level U to obtain allocation x,

y and prices p;
4. ifU is infeasible then
5. if fixedAllocation � false then
6. return that there exist no core alloca-

tion and prices;
7. else
8. Add a constraint to U to forbid alloca-

tion (x, y) as well as all allocations with
higher social welfare;

9. Set fixedAllocation � false;
10. Continue;
11. end
12. end
13. Solve the lower level L with allocations x, y

to obtain deviation d and allocation χ,γ;
14. if d < 0 and fixedAllocation � � false then
15. return x, y, p as the welfare-maximal

core allocation and prices
16. else
17. Add KKT condition for allocation χ,γ to

U;
18. Fix allocation x, y inU;
19. Set fixedAllocation � true;
20. end
21. end

Algorithm 1 already offers a sufficient framework
to obtain welfare-maximal core allocations and prices.
However, the nature of the problem and its inherent
complexity can lead to very long runtimes. In the fol-
lowing, we introduce several methods to further im-
prove our algorithm in order to obtain solutions fast-
er, or at all. First, in Section 6.2, we discuss some
computational approaches such as branching schemes
and reducing the size of the IPs that need to be solved
in Algorithm 1. Afterward, we address the computa-
tional challenges by restricting the number and size of
blocking coalitions. As we show in Section 6.3, with
blocking coalitions of size 2, the problem is even in
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NP (and hence, no longer Σ
p
2-hard). Based on these

ideas, we introduce delayed coalition generation in
Section 6.5.

6.2. Computational Approaches
First, we discuss two speedup strategies to improve
Algorithm 1. It should be noted that the effect of these
improvement depends on the structure of specific in-
stances and can lead to large improvements in some
cases while having only little effect in others. Hence,
while discussing these two general strategies, we also
lay out in which cases these strategies lead to the big-
gest improvements.

6.2.1. Branching Over Possible Payments for Fixed Al-
locations. In each level, branching can be defined by
selecting a subset of bidders B and a payment thresh-
old p′, dividing the problem into two subproblems,
one using the constraint

∑
b∈B

∑
S⊂K pb(S) ≥ p′ and one

using the constraint
∑

b∈B
∑

S⊂K pb(S) ≤ p′. Because for a
fixed allocation the precise payments have no impact
on the welfare, we can terminate the algorithm as
soon as we find a core-stable outcome for any of the
subproblems. In instances where a welfare-maximal
core allocation is easy to find (i.e., not many alloca-
tions have to be forbidden in Line 8) but finding prices
is very difficult, this branching procedure led to no-
ticeable speedups in determining whether an alloca-
tion can be supported by prices to result in a stable
outcome. However, in cases where it is easy to find
blocking coalitions for the allocations determined in
the upper level regardless of prices, adding additional
constraints via a branching scheme to differentiate be-
tween prices can even lead to unnecessary computa-
tional overhead.

6.2.2. Removal of Old KKT Conditions. Another modi-
fication to speed up the algorithm is by not only add-
ing new constraints and variables in each iteration in
the form of KKT conditions but to also removing old
ones regularly in order to keep the upper-level prob-
lem from becoming too large. Deviating coalitions
and the allocation of items among them depend sig-
nificantly on the upper-level solution. Thus, the KKT
conditions that were added iteratively for a fixed allo-
cation x, y in the upper level become redundant when
the allocation could be proven to not allow for stable
prices and a new allocation x′,y′ is determined. In this
case, the coalitions that blocked the previous outcome
might no longer form based on the new allocation.
Then, instead of keeping the corresponding KKT con-
ditions for the remainder of the solution process, these
constraints and variables can be removed, and a sin-
gular constraint can be introduced, which prohibits
the allocation that was proven not to support core pri-
ces. This strategy is very effective when allocations

with high welfare are very different from another (i.e.,
very different allocations are fixed in Line 18 in suc-
cessive rounds of Algorithm 1). On the other hand, if
these allocations are very similar, they also lead to
similar blocking coalitions and hence, a recreation of
the removed KKT conditions.

6.3. Exclusion of Dyadic Coalitions
A fundamental problem of the MIBLP is the exponen-
tial number of coalitions that could possibly block the
upper-level solutions. The concept of the core consid-
ers coalitions of any size. Large coalitions are costly,
not only in terms of tractability of the bilevel program
but also for participants to find. The computation of
the coalitional value of each possible coalition is NP-
hard to compute in general.

An alternative approach is to focus on coalitions of
restricted size. For some applications, it might be suf-
ficient to find a solution that avoids deviations of
dyadic coalitions.

For this, we introduce variables ρij(S) ∈ {0, 1} for
each possible package trade between a buyer i and
seller j over all packages S ⊂ K( j), where K( j) denotes
all bundles Z ⊆ K, which are offered by j. The variable
ρ is set to 1, whenever the respective dyad would
form a blocking coalition. Similar to the general prob-
lem, we introduce constraints such that only outcomes
without blocking coalitions are feasible.

max
xi(S),yj(Z)

∑
S⊆K

∑
i∈I

vi(S)xi(S) −
∑
j∈J

∑
Z⊆K

vj(Z)yj(Z)ρijS (DY)

s:t:
∑
S⊆K

pi(S)xi(S) ≤min Bi,
∑
S⊆K

vi(S)xi(S)
{ }

∀i ∈ I (BC)

pj(Z)yj(Z) ≥ vj(Z)yj(Z) ∀Z ⊆ K, ∀j ∈ J (IRS)∑
i∈I

∑
S⊆K

pi(S)xi(S) �
∑
j∈J

∑
Z⊆K

pj(Z)yj(Z) (BB)

∑
S:k∈K

∑
i∈I

xi(S) ≤
∑
Z:k∈K

∑
j∈J

yj(Z) ∀k ∈ K (supply)

∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I (XOR-B)

∑
Z⊆K

yj(Z) ≤ 1 ∀j ∈ J (XOR-S)

πi �
∑
S⊆K

(vi(S) − pi(S))xi(S) ∀i ∈ I (payoffB)

πj �
∑
Z⊆K

(pj(Z) − vj(Z))yj(Z) ∀j ∈ J (payoffS)

πj + vj(S) ≥ Biδij(S) ∀i ∈ I, ∀j ∈ J, ∀S⊆K(j) (Block-B)
πj + vj(S) ≥ vi(S) −πi −Mγij(S) ∀i ∈ I, ∀j ∈ J, ∀S⊆K(j)

(Block-Imp)
δij(S) ≥ γij(S) ∀i ∈ I, ∀j ∈ J, ∀S⊆K(j) (No-Block)

xi(S) ∈ {0,1} ∀S⊆K, i ∈ I (binary)

yj(Z) ∈ {0,1} ∀Z⊆K, j ∈ J (binary)

δij(S),γij(S),ρij(S) ∈ {0,1} ∀i ∈ I, ∀j ∈ J, ∀S⊆K(j)
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πi,pi(S) ∈R
+
0 ∀S⊆K, i ∈ I (real)

πj,pj(Z) ∈R
+
0 ∀Z⊆K, j ∈ J (real)

Constraints (Block-B) to (No-Block) of (DY) character-
ize blocking dyads and require some explanation.
Note that a buyer i wants to deviate if for his or her
new payoff vi(S) − pij(S) > πi would hold, where pij(S)
is some transfer price in a blocking dyad. Similarly, a
seller j would want to deviate if pij(S) − vj(S) > πj. Re-
arranging terms, πj + vj(S) < vi(S) −πi characterizes a
blocking coalition; that is, with πj + vj(S) ≥ vi(S) −πi, a
dyad would not be blocking (see (Block-Imp)). We
also need to consider budget constraints of buyers Bi.
With πj + vj(S) ≥ Bi in constraint (Block-B), we avoid
payments to the seller j characterized by the LHS
of the constraint that is higher than the budget of
the buyer Bi. The binary variable γij(S) � 1 indicates
whether a dyad would deviate due to improvement
in payoffs, variable δij(S) � 1, if the required payments
would exceed budget. Constraint (No-Block) de-
mands that a dyad can only be willing to deviate due
to payoffs if the required payments would exceed the
budget of the buyer involved, because this dyad
would otherwise be blocking the outcome.

Note that without the constraints (BC), (Block-B),
(Block-Imp), and (No-Block), we have the winner de-
termination problem in a combinatorial exchange,
which is known to be NP-hard. With these additional
constraints involving additional binary variables, the
problem cannot be solved in polynomial time. Inter-
estingly, however, the problem is not Σ

p
2-hard any-

more, but it is inNP since it can be solved by the integer
programmixed-integer program (DY).

6.4. Restrictions on Blocking Coalitions
Beyond dyadic coalitions, one can restrict the cardi-
nality of coalitions to those with only a few partici-
pants. We will refer to such outcomes where we only
achieve stability against blocking coalitions with at
most n bidders as n-coalition stable or in short n-stable
outcomes. Such a restriction speeds up the solution
process in two places. First, the solution space of the
lower-level program becomes smaller due to the addi-
tional constraints on coalitions and possible omission
of participants. Second, the smaller number of pro-
spective deviating coalitions obviously leads to fewer
options for deviations and hence, to fewer KKT condi-
tions that need to be added to the upper level before
obtaining welfare-optimal outcomes that are n-coali-
tion stable. In a similar way, one can leverage prior in-
formation about likely coalitions and find outcomes
that are stable with respect to these coalitions. In
many cases, it might be sufficient to find n-coalition
stable outcomes or outcomes that are stable against
coalitions of close participants due to the high

computational or organizational cost (or even inabili-
ty) for these bidders to find blocking coalitions of larg-
er sizes themselves.

6.5. Delayed Coalition Generation
As discussed in the previous sections, stable outcomes
against subsets of coalitions are easier to find than stable
outcomes against all possible blocking coalitions. In de-
layed coalition generation (DCG), instead of considering
all coalitions and their possible trades from the begin-
ning, we determine an initial set of coalitions C ⊆ C and
solve the MIBLP, considering only coalitions in C. For
example, we can search for n-coalition stable outcomes
by defining C as the set of all coalitions with size at most
n. If we find an outcome that is stable against coalitions
in C, then we extend C in order to obtain stability with
regard to a larger set of coalitions. If, however, one can-
not find a stable outcome against coalitions in C, the auc-
tion cannot be stable in general. DCG can also be seen
as a procedure to determine the largest size of blocking
coalitions, for which a stable outcome can exist.

7. Experimental Design
At first sight the problem appears to be too hard to
solve even small problems. Interestingly, we show
that small but realistic problem sizes can actually be
solved at the present time. Given the advances in
mixed-integer bilevel programming and hardware in
the last 10 years, we expect to solve increasingly larger
problem sizes in the future.

In order to evaluate the empirical hardness of the
problem, we draw on two problem types with differ-
ent characteristics, a combinatorial exchange for the
allocation of airport time slots to airlines and a market
for fishery access rights. For the airport time slot mar-
ket, we could handle instances up to eight airports, 40
airlines, and 80 slots traded. In the fishery access
rights market, we could solve problems with 10 sellers
and 10 buyers and hundreds of units traded of two
distinct items (share classes). The bidding languages
differ, but the MIBLP is very flexible and can easily be
adapted on the upper and lower level to the very spe-
cifics of the allocation problem. In both environments,
we restricted the analysis to a computation time of 10
minutes and for some instances to two hours. First,
this allowed us to run a large number of experiments.
Second, we found that even computation times of 24
hours typically did not get much better results.

7.1. Airport Time Slots
The first market we consider is the allocation of airport
time slots that has been discussed repeatedly in the lit-
erature (Rassenti et al. 1982, Castelli et al. 2011, Pelle-
grini et al. 2012). Current assignment mechanisms for
slots have come under much scrutiny over the years.
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Theoretically, airport time slots are reallocated at the
start of each season. However, within the current slot
allocation process, airlines in Europe and the United
States enjoy grandfather rights over the slots they ob-
tained in previous seasons, which leads to inefficient
usage. For example, in 2016, only 22 slots were made
available for auction by Heathrow Airport. Ball et al.
(2017) argued that currently there is a strong case for
the use of market mechanisms to allocate or reallocate
such slots. Package bids are essential in this domain. A
takeoff slot is valuable only with a landing slot. Such
slots can cost millions of U.S. dollars. Haylen and
Butcher (2017) reported airlines that bid up to US$75
million for a pair of slots at HeathrowAirport. Airlines
are interested in many of these combinations, but there
are concerns about depressed bidding of smaller air-
lines that are financially constrained (Debyser 2016).

7.1.1. Data. For our experiments, we draw on the val-
uation model for airport slot allocation in the combi-
natorial auction test suite (CATS) (Leyton-Brown et al.
2000), a very widely used instance generator for com-
binatorial auctions. Given the input of a number of
airports, their respective location, and available slots,
CATS generates values for pairs of slots at two distinct
airports, representing a flight between these two re-
spective cities. Each bidder is interested in obtaining
one pair of slots. The values for these pairs are based
on a common value for each slot at a given airport as
well as a private deviation for each bidder. The instan-
ces we generate for our market describe bids by up to
40 bidders that are interested in up to 80 slots at the
eight coordinated airports. In addition to the values
generated by CATS, we randomly generated budgets
for buyers that lie between the buyer’s highest value
and half of this amount. In the generated instances,
the bidders truthfully bid these values and budgets.
All problem instances are available upon request.

7.1.2. Domain-Specific Adaptations for the MIBLP. In
the airport slot allocation model as described above,
buyers submit bids for various packages of two items,
where each of the items is owned by a seller (airport).
Because each trade of slots requires at least one buyer
and two sellers, it is not possible for dyadic coalitions
to block an allocation. Each buyer is interested only in
obtaining one of these packages, that is, the buyers
use an XOR bidding language. Hence, the sets A and
AL in the MIPBL of Section 5 describe all allocations
where each buyer is assigned at most one pair of two
slots. Sellers can freely dispose all slots that are not as-
signed to buyers.

7.2. Fishery Access Rights
The second market we consider is one for fishery access
rights (catch shares) that was recently implemented in

Australia (Bichler et al. 2019). A catch share describes
the right to catch a certain volume of a specific type of
fish in a specific region. After a reform, some fishers
needed more catch shares, whereas others wanted to
sell some or even all of their endowment and exit the
market. This made package bidding a necessity, be-
cause sellers who wanted to exit did not want to sell
only part of their shares. There were concerns about
buyers being financially constrained such that they
could not bid up to their net present value for shares.
We analyze an exchange design where we do consider
budget constraints explicitly and one where bidders
can only submit budget-capped values and explore
problem sizes we can solve.

In this exchange, there exists a set of share classes L
that are traded among a set I of buyers and J of sellers.
Each buyer i ∈ I can submit multiple bids, one for each
share class, and can win any combination of these
bids (OR bids). A bid for share class l ∈ L by a buyer
has to include a lower and an upper bound Xil and Xil
of the desired units of this share class and a value vil
for a single unit of l. However, each seller j ∈ J submits
a single bid for a bundle of share classes containing
the number of units per share class in the bundle and
an ask price. Sellers are interested only in selling their
entire bundle.

7.2.1. Data. We were fortunate to draw on an instance
generator used to evaluate the scalability of a combi-
natorial exchange design that was later used in the
field (Bichler et al. 2018). The instance generator is
based on information of the real-world market with
regard to the licenses each registered fishing business
owns and the estimated revenue generated by these
shares calculated by landings and fish market prices.
Given this field data, a distribution of share classes
and values was generated. For a specified number of
bidders, sellers, and share classes, the generator then
constructed corresponding instances based on these
distributions. Although these are synthetic instances
smaller than those described in Bichler et al. (2018),
care was taken to closely reflect the specifics of the
market, the very bidders that participated, their en-
dowments, and historical catch levels. The instance
generator allowed us to simulate small and large ex-
changes by taking only subsets of the participants and
share classes into account.

Based on historical market data, the generator simu-
lates values for share classes and generates bids (i.e.,
the lower and upper bound Xil, Xil of shares re-
quested by the buyer, as described in the previous
section). Budget constraints were not part of the gen-
erator, and hence, we added them based on the fol-
lowing assumption. We assumed the upper bounds
on requested shares simulated by the generator to be
induced by an underlying financial constraint. A
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buyer would bid for a larger number of shares but
could not afford to pay up to the reported valuation
for them. Therefore, we set the budget at the amount
that a buyer would pay if the buyer was to obtain all
of his or her requested shares. Afterward, we multi-
plied the upper bounds of all requested share classes
by a random factor between 1.3 and 2.0. This led to
the scenario outlined above. Buyers requested more
shares, but were able only to pay up to their values
for a smaller fraction of shares. Again, all instances
used for our experiments are available upon request.

7.2.2. Domain-Specific Adaptations for the MIBLP. In
order to adapt the MIBLP program of Section 5, for
each buyer i ∈ I, the variables xi(S) can be replaced by
variables xil ∈ N, where xil is the number of units per
share class l ∈ L that buyer i receives. Then, terms∑

S⊆Kvixi(S) can be replaced by
∑

l∈Lvilxil. Likewise, for
each seller j ∈ J, the variables yj(Z) can be replaced by
yj since they only offer a single bundle. The variables
χ and γ of the lower level can be replaced in the same
way. Furthermore, the lower and upper bounds of
share classes for each buyer have to be included in the
constraint sets A and AL, and the constraint (Imp-B)
in the lower level has to be adapted in order to imple-
ment an OR rather than an XOR bidding language for
the buyers.

8. Results
The number of participants and items were the main
treatment variables in both sets of experiments. Run-
time for the core computations and also welfare gains
compared with markets where buyers can provide
only capped values were the main focus variables.

For our experiments, we used a 24 core Intel Xeon
ES-2620 (2.00 GHz) with 64 GB memory on Ubuntu
19.04.01, using Gurobi 8.1.0 for solving the mixed-
integer linear programs.

8.1. Airport Time Slots
Let us first discuss the results for the exchange of air-
port time slots for which we used CATS to generate
several instances for the eight coordinated airports
(referred to as sellers). Treatment variables for our ex-
periments include the number of airlines that submit
bids (referred to as buyers), the number of slots that
are sold by the airports (referred to as items), and the
size n of blocking coalitions for which we can reach n-
coalition stability. First, we present results for the per-
formance of our algorithm with regard to runtime and
size of instances that can still be solved. Then, we dis-
cuss the negative effects of not considering the budget
constraints within the computation.

We consider the market for airport slot allocation
with eight sellers, between 40 and 80 items that were

endowed uniformly across all sellers, and 10 to 50
buyers. These scenarios cover markets that range
from little competition to those with a large amount of
competition over the items and the number of possi-
ble blocking coalitions becomes quite large, as shown
in Table 4. Note that each blocking coalition must in-
clude at least two sellers (because buyers are only in-
terested in bundles of items from two distinct sellers)
and contain at most two sellers for each buyer (be-
cause buyers are only interested in a bundle).

8.1.1. n-Coalition Stability. For each combination of
buyers and number of items, we generated eight in-
stances and tried to determine welfare-maximal core
allocations and prices with Algorithm 1 within a time
limit of 10 minutes. We also applied the algorithm to
find allocations and prices that are n-coalition stable
for n � {3, 5}. In Table 5, we report for each treatment
combination for how many of these eight instances
Algorithm 1 returned a solution within that time limit
(i.e., how many of the instances were “solved”). No-
ticeably, for all instances in which the algorithm ter-
minated, a stable outcome could be found. Further-
more, we report the mean runtime to find a solution
(in those cases where a solution was found) and its
standard error.

Even for larger-sized problems with 50 buyers and
40 items, we were able to solve five out of eight in-
stances within the 10-minute time limit. It should be
noted that in the three remaining cases, as well as six
out of eight cases for 40 buyers and 80 items, the algo-
rithm was able to derive core-stable solutions when
allowed a time limit of two hours. However, for the
largest instances with 50 buyers and 80 items, even
allowing for a two-hour time limit did not yield core-
stable outcomes. Such instances rarely find the opti-
mal solution even if run overnight.

For all instances, we were able to derive n-coalition
stable outcomes for coalitions up to size 5 within at
most two minutes of runtime. Despite the computa-
tional complexity of the problem, these results show
that we are able to find core-stable outcomes in realis-
tic markets.

In Table 6, we report results for delayed coalition
generation (DCG). Because coalitions of size n � 2 can

Table 4. Number of Coalitions of up to a Specific Size for
the Problem Sets in the Airport Market

No. of buyers No. of items

Number of coalitions of

Size 3 Size 5 Unrestricted size

10 8 280 7,420 182,350
25 8 700 90,300 ≈ 8 · 108
40 8 1,120 343,280 ≈ 2 · 1014
50 8 1,400 653,100 ≈ 2 · 1017
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never block any assignment, we start with coalitions
of size n � 3. As shown in Table 5, 3-coalition stable
outcomes can be computed in very short time. When-
ever an outcome is found that is n-coalition stable, we
increase n and search for an n + 1-coalition stable out-
come (or prove that no such outcome exists). We have
again allowed for a time limit of 10 minutes. For these
experiments, we have concentrated on the harder
cases with 40 and 50 buyers. Table 6 shows the num-
ber of instances for which we could prove whether
the problem was core-stable within 10 minutes. If the
algorithm could not prove core stability within this
time, we report the maximal n for which n-coalition
stability was proven within the 10 minutes averaged
over the instances that could not be solved
completely.

Even in instances where no core-stable solution
could be obtained without DCG, DCG could find out-
comes that were n-coalition stable for large n. For all
instances, DCG could assure 7-coalition stability, and
for 80 items an average n-coalitional stability of n ≥ 8
could be achieved. For 50 buyers and 40 items, DCG
was able to find one additional core-stable solution
compared with the results of the experiments reported
in Table 5.

In all other instances with 40 items, full core stabili-
ty could not be proven, but DCG resulted in an aver-
age n-coalition stability of n ≥ 23. In most applications
it will be very costly for coalitions of 23 participants to

form, and robustness against coalitions of this size
would be considered very stable.

Longer computation times did not lead to signifi-
cantly larger problem instances that could be solved.
However, with advances in computational optimiza-
tion, we expect to see progress made on these prob-
lems in the future.

8.1.2. Welfare Gains. An important question concerns
the welfare gains one can expect when considering
values and budgets rather than just values capped by
the budget constraints of a bidder or when ignoring
budgets at all. In the first setting, which we refer to as
capped bidding, bidders submit their values up to the
budget limit only, and the auctioneer computes
bidder-optimal core-selecting prices based on these
capped values. In a second unrestricted setting, bidders
and the auctioneer ignore their budget constraints and
bid up to their true valuations as if there were no bud-
get constraints, hoping that the prices are with-
in budget.

Table 7 shows the negative effects of ignoring finan-
cial constraints. As compared with the resulting
allocation and prices when reporting the budget con-
straints, in 21 of the 24 instances, different allocations
emerged. The gains from trade were on average 8.09%

Table 5. Computational Results of the Airport Slot Market for a Variable Number of Buyers and
Sellers

No. of buyers No. of items

3-Stable 5-Stable Core stable

Solved

Time

Solved

Time

Solved

Time

Mean SE Mean SE Mean SE

10 40 8 0.32 0.02 8 0.77 0.05 8 3.03 0.86
10 80 8 5.22 0.83 8 8.37 1.84 8 15.58 7.37
25 40 8 1.42 0.23 8 5.23 1.10 8 98.03 27.26
25 80 8 24.93 3.95 8 48.76 9.79 2 293.84 0.25
40 40 8 2.04 0.12 8 7.68 0.93 6 222.89 30.09
40 80 8 50.01 6.61 8 93.06 16.28 0 – –
50 40 8 3.07 0.27 8 11.85 0.96 5 425.53 52.21
50 80 8 69.24 4.88 8 83.68 5.96 0 – –

Note. For 8 instances each, the number of instances for which outcomes were calculated that are n-coalition stable
and the average computation time in seconds required to solve the instances are shown.

Table 6. Results of Delayed Coalition Generation for the
Airport Slot Market

No. of buyers No. of items Solved
Avgerage n-stability

of not solved

40 40 5 23.67
40 80 0 8.62
50 40 6 23.00
50 80 0 8.13

Table 7. Negative Effects of Ignoring Financial Constraints:
Welfare Loss in Case of Capped Bidding; Instances with
Prices Leading to Losses in Case of Unrestricted Bidding

No. of
buyers

No. of
items

Capped bidding Unrestricted
bidding:
instances
leading to
losses

Instances with
different
allocations

Average
welfare
loss

SE welfare
loss

10 40 6 6.30% 2.40% 3
10 80 8 16.98% 1.98% 5
25 40 7 4.66% 1.46% 8

In total 21 9.31% 1.58% 16
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lower with capped bidding. When buyers submitted
unrestricted bids up to their valuation, this resulted in
violations of their budget constraints in 16 out of the
24 instances; that is, bidders actually made a loss.

Overall, a simple bid language that does not let
buyers express valuations and overall budgets can
lead to significantly lower welfare and instability.

8.2. Fishery Access Rights
For experiments in the fishery market, treatment vari-
ables include the number of fishers that want to add
additional shares (referred to as buyers), the number
of fisheries that want to sell their shares (referred to as
sellers), and the size n of blocking coalitions for which
we can reach n-coalition stability. In contrast to the
market for airport slots in the previous section, where
airlines interested in operating flights between two
airports needed two items (slots) from these two dis-
tinct airports, fishers who want to buy shares need a
larger quantity of items (shares) of the same share
class that they can purchase from an arbitrary number
of sellers. We consider a fishery market with two
share classes of protected fish, five to 10 buyers, and
five to 15 sellers. The valuations of share classes for all
participants as well as the number of shares in these
two classes that were demanded by buyers and of-
fered by sellers was determined by the generator
based on real-world data described in Section 7.2.1.
For the smaller instances with five buyers and five
sellers, the total number of shares available in the

market was between 209 and 430, whereas for the
larger instances with 10 buyers and 15 sellers, it was
between 650 and 1,050. The variance in the number of
shares is due to the generator that created small but
realistic fishery markets with significant competition
among the participants. The number of possible block-
ing coalitions grows quickly, as is shown in Table 8.

8.2.1. N-Coalition Stability. As in the experiments for
the airport slot market, we generated eight instances
for each combination of buyers and sellers and tried to
determine welfare-maximal core allocations and prices
with Algorithm 1 within a time limit of 10 minutes. We
also applied the algorithm to find allocations and prices
that are n-coalition stable for n � {3, 5}. In contrast to
the airport slot market in Section 8.1, not all instances
that we were able to solve allowed for core-stable out-
comes. In Table 9, we report for each treatment combi-
nation, how many of these eight instances could be
solved within that time limit, and how many of these
instances are n-coalition stable. Furthermore, the aver-
age time to find a solution (in those cases where a solu-
tion was found) and the corresponding standard error
are presented. For example, with five buyers and 10
sellers, only four out of seven problem instances that
could be solved were actually 5-coalition stable; for the
other three instances, we could show that no such allo-
cation and prices exist.

In Table 10, we report results for DCG. We start
with coalitions of size n � 2, for which results can be
obtained relatively easily compared with larger sizes
of coalitions (cf. Section 6.3) and increase n whenever
an outcome is found that is n-coalition stable. Again,
we allowed for a time limit of 10 minutes. The table
shows the number of instances for which we could
prove within the time limit either (a) that the problem
was core-stable (i.e., for which we found core-stable
allocations and prices) or (b) that the problem did not
allow for a core-stable allocation. In both cases, we
considered the corresponding problem instance to be
“solved” by our algorithm. We also describe for how

Table 8. Number of Coalitions of up to a Specific Size for
the Problem Sets in the Fishery Market

No. of buyers No. of items

Number of coalitions of

Size 3 Size 5 Unrestricted size

5 5 125 575 960
5 10 375 4,275 31,712
5 15 750 16,725 1,015,776
10 10 1,000 20,425 1,046,528
10 15 1,875 62,825 33,520,640

Table 9. Computational Results of the Fishery Market for a Variable Number of Buyers and Sellers

No. of buyers No. of sellers

3-Stable 5-Stable Core stable

Solved Stable

Time

Solved Stable

Time

Solved Stable

Time

Mean SE Mean SE Mean SE

5 5 8 8 0.35 0.10 8 8 1.73 0.51 8 8 2.16 0.73
5 10 8 8 1.40 0.55 7 4 57.07 24.21 6 3 25.07 14.18
5 15 8 8 18.73 10.7 7 7 11.43 6.41 7 6 14.33 3.98
10 5 8 8 13.63 8.24 5 5 39.39 18.83 5 5 51.12 21.53
10 10 6 6 25.48 12.31 3 3 278.00 63.02 1 1 321.59 –
10 15 3 3 367.02 61.60 0 0 – – 0 0 – –

Note. For 8 instances each, the number of instances for which outcomes were calculated that are n-coalition stable and the average computational
time required to solve the instances in seconds are shown.
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many of the instances we were able to derive 3- and
5-coalitional stable outcomes and full core stability
(“core”).

Moreover, we analyze those instances that could
not be solved by our algorithm (“not solved”). For
these, in the last column of Table 10, we report the
maximal n for which n-coalition stability was proven
within the 10 minutes averaged over the instances
that could not be solved completely. For example, in
the case of 10 buyers and 10 sellers, none of the eight
instances could be solved, but we were able to show
robustness against coalitions of size 3.5 on average.

With DCG, we were able to provide a solution for
one additional instance for 10 buyers and five sellers
when compared with the experiments described in
Table 9 (where we could prove that there are no stable
outcomes against coalitions of up to six members).
Also, we were able to find 3-coalition stable solutions
when starting DCG with coalitions of size 2, as op-
posed to only considering coalitions of size 3.

In larger instances especially, it was harder to lever-
age DCG in order to prove n-coalition stability for
higher n. For example, we were not able to find the
core-stable solution for 10 buyers and 10 sellers that we
could find when directly looking for outcomes that are
stable against coalitions of arbitrary size. However, we
were able to find 2-coalition stable allocations for all in-
stances and on average 2.5-coalition stable outcomes
for the largest instances with DCG. Again, longer com-
putation times did not lead to significantly larger prob-
lem instances that could be solved.

8.2.2. Welfare Gains. Like we did for the airport slot
market, we also evaluated the negative effects of

ignoring the budget constraints in the fishery market.
Again, we considered capped bidding (i.e., bidders
submit their budget-capped valuations) and unre-
stricted bidding (i.e., bidders ignore their budget
constraints and bid up to their valuations). For the
test instances for which we were able to calculate
3-coalition stable outcomes in all instances, we com-
pared these results to the two alternatives in which
budgets cannot be communicated.

Table 11 summarizes the results. As compared with
the 3-stable outcome, the gains from trade were on av-
erage 32.17% lower with capped bidding. Moreover,
in nine of the 32 instances, different allocations
emerged not only with respect to the number of share
classes traded per bidder but with respect to which
buyers traded which share classes. When buyers sub-
mitted unrestricted bids up to their valuation, this re-
sulted in violations of their budget constraints in 17
out of the 32 instances; that is, bidders actually made
a loss.

The market for fishery access rights shows that
there can be substantial welfare losses when only
capped valuations are taken into account and bidders
cannot properly express valuations and prices.
Capped valuations allow buyers to only bid for a less-
er number of items in this market, whereas in the air-
port slot market package bids are only on pairs of
slots. However, even in the airport time slot auction,
the welfare loss was significant.

9. Conclusions
In this paper, we have analyzed combinatorial ex-
changes in the presence of financially constrained bid-
ders. We have shown that ignoring budgets and

Table 10. Results of Delayed Coalition Generation for the Test Set with Two Share Classes and a Variable Number of
Buyers and Sellers

No. of buyers No. of sellers Solved 3-Stable 5-Stable Core Not solved Average n-stability of not solved

5 5 8 8 8 8 0 –
5 10 6 8 4 3 2 4
5 15 7 8 7 6 1 3
10 5 6 8 5 5 2 3
10 10 0 8 1 0 8 3.5
10 15 0 4 0 0 8 2.5

Table 11. Negative Effects of Ignoring Financial Constraints: Welfare Loss in Case of Capped Bidding; Instances with
Prices Leading to Losses in Case of Unrestricted Bidding

No. of buyers No. of items

Capped bidding Unrestricted bidding
instances leading to

lossesInstances with different allocations Average welfare loss SEwelfare loss

5 5 2 35.48% 3.62% 5
5 10 1 37.33% 2.20% 5
5 15 0 36.54% 2.29% 0
10 5 6 17.52% 3.70% 7

In total 9 32.17% 2.02% 17
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allowing bidders only to submit budget-capped val-
ues leads to welfare losses and instability, even
though the outcome was stable with respect to the
capped values. In order to maximize welfare subject
to stability of the market, a market designer should
therefore take budget constraints into account.

We have proven that computing welfare maximiz-
ing and core-stable outcomes leads to a Σ

p
2-hard

optimization problem. Problems in this level of the
polynomial hierarchy are rare in business practice and
are typically considered intractable. This is an impor-
tant insight and contributes to the literature connect-
ing algorithm design and market design. Although
the computational hardness of the problem could be
interpreted as an impossibility result at first sight, we
were able to solve markets with restricted forms of
core stability and smaller problem instances even to
full core stability.

To this end, we have introduced a bilevel integer
programming formulation and effective algorithms to
compute welfare maximizing outcomes that are ro-
bust against coalitions of restricted size, that is, n-coa-
lition stability. Although bilevel integer programs
have been discussed for several decades, they have re-
ceived more attention in the past five years. Still, there
are no established black-box approaches, because they
are available for integer programming nowadays. In
this paper, we have provided a column and constraint
generation framework that is tailored to our problem
and surprisingly effective in solving realistic problem
instances. In particular, delayed column generation
provided an effective way to systematically increase
the size of the coalitions against which a computed
outcome is stable. An outcome that maximizes welfare,
considers budget constraints, and is robust against de-
viations of coalitions with four or five participants is
computable even for large markets. This might well be
sufficiently stable in practice, because it is computa-
tionally hard for larger coalitions to evaluate whether
they can find a profitable deviation.

Given the advances in computational optimization
in the past three decades, we expect to solve increas-
ingly larger problem sizes, such that we can hope to
find core-stable solutions in real-world environments
where budget constraints matter. In addition, it will
be interesting to further explore specific types of re-
stricted bidder preferences and allocation problems
that have a lower computational complexity and al-
low for more efficient computation.

Appendix. Complexity Analysis
In the following we, prove that finding a welfare-maximizing
core allocation with exogenous budget constraints is Σ

p
2-com-

plete by a reduction from the canonical Σp
2-complete problem

QSAT2.

2-Quantified Satisfiability, QSAT2: Given a n + m vari-
able Boolean formula φ(x,y) in DNF with x � x1, : : : ,xn( )
and y � y1, : : : ,ym( ), is it true that ∃x∀yφ(x,y)?

A.1. Membership in Sp
2

We first prove that the problem of finding a core outcome
of welfare D is in the class Σ

p
2. Let x(S),y(Z),p(S),p(Z) be a

certificate for the allocations and prices. The gains from
trades can be easily verified in polynomial time by using
this certificate. Furthermore, showing that this outcome is
in the core is in co – NP, since any blocking coalition C
with corresponding assignments χC(S),γC(Z),pC(S),pC(Z)
is a certificate that the outcome is not in the core.

A.2. Idea Behind the Transformation
Before formally proving the theorem, we give a short ex-
planation of the reduction and the ensuing relationship
between an instance of QSAT2 and the corresponding
combinatorial exchange. We concentrate on the main
items and buyers with a direct correspondence to the
world of QSAT2 and omit the various auxiliary items,
buyers, and sellers. For these, we refer to the complete de-
scription of the transformation below.
In the combinatorial exchange, we define items relating

to the truth assignment of x and y variables as well as the
truth values that clauses evaluate to. For the variables x
and y, items χ and γ are introduced, and the truth assign-
ment of variables x and y in QSAT2 depends on which of
the buyers obtains these items. Each clause is represented
by n2 items of type ψ that will indicate whether the clause
evaluates to true or false, again depending on which
buyers obtain which of these items.
We introduce different types of buyers. For i ≤ n, buyers

BK
i and BM

i were each concerned with the items corre-
sponding to the truth assignments of variable xi and the
clauses affected by it. For j ≤m, buyers BG

j were concerned
with the items corresponding to the truth assignments of
yj and the clauses affected by it. The construction is such
that either all buyers of type BK win one of their preferred
packages, or they do not win any items. In the former
case, the corresponding instance of QSAT2 evaluates to
true; in the latter case, it is false.
The connection between χ,γ and ψ variables in the ex-

change and the correspondence of setting clauses to false
by assigning truth values to variables in QSAT2 is done
via defining bundles of items in which the buyers are in-
terested in. Figure 1 demonstrates the situation, showing
the items ψ corresponding to three clauses in form of a
matrix (we will refer to these as clause matrices in the fol-
lowing). Additionally, items χ, γ and bundles in which
buyers of the various types are interested in are shown.
Buyer BK

i is interested in either χi or χ i items as well as
the i-th “row” of one clause matrix. More formally, the
buyer is interested in the bundle

χi� χ̄i( )� ψ1i1, : : : ,ψ1in
{ }

� ψ2i1, : : : ,ψ2in
{ }

�⋯� ψLi1, : : : ,ψLin
{ }( )

,

where L is the number of clauses. Buyers BM
i are interested in

buying one out of χi or χi as well as the i-th “column” in all
clause matrices of clauses, which include the corresponding
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xi or xi variable. In Figure 1, a bundle for buyer BM
2 , includ-

ing χ2 and the second column of the first clause matrix
(since C1 is the only clause containing x2), is depicted. Final-
ly, buyers BG

j are interested in bundles that contain one item
out of γj or γj and complete clause matrices for clauses that
include the corresponding yj or yj variables. As can be seen,
the individual bundles block each other and cannot be ob-
tained simultaneously for each clause matrix. The corre-
sponding clause evaluates to true if and only if neither buy-
er of type BM buys a column of the matrix or buyers of type
BG buy the complete matrix. For example, in Figure 1, no
items of the second clause matrix are won by either a buyer
type BM or BG. In this case, buyers of type BK can all obtain
their respective row of the (second) clause matrix. Conse-
quently, for this example, the second clause and therefore
the entire expression evaluates to true.

The valuations and budgets of buyers are defined in
such a way that buyers of type BK have the highest value
for their respective bundles but only small budgets, which
does not allow them to bid up to their true valuation. In
contrast, buyers BM have high valuations and sufficient
budget to buy the bundle they are interested in. Buyers
BG have low valuations and cannot compete with buyers
BM. However, their budget is high enough in order to
outbid buyers BK. In order to obtain sufficiently high wel-
fare gains, buyers BK must obtain their desired bundles
(i.e. win one of the clause matrices), and the outcome
must be stable such that BG and the sellers do not want to
deviate by assigning the items to buyers BG or BM instead.
Each buyer of type BK can only obtain one of his desired
bundles containing at least one row in one clause matrix
(see Figure 1, which is equivalent to the corresponding
clause evaluating to true in QSAT2), when no other buyer
purchases a column within this matrix.

Buyers BK and BM are designed in such a way that BK
i

obtains the χi-item corresponding to the truth assignment
of xi and BM

i its negation. Thus, buyers BM obtain the col-
umns in each clause matrix relating to the clauses that are
set to false due to the truth assignment of variables x. Be-
cause of their lower valuations and budgets, buyers BG can
only compete for columns in clause matrices corresponding
to clauses not yet set to false due to the assignment of x.
These buyers maximize their payoffs when they can pur-
chase as many complete matrices as possible that are not

blocked by buyers BM. In QSAT2, this corresponds to as-
signing truth values to variables y in such a way that as
many as possible of the remaining clauses evaluate to false
(i.e. those which are not already evaluating to false due to
the assignment of x variables). Only if the buyers of type
BG cannot manage to block all remaining clause matrices
(the y variables in QSAT2), buyers BK can purchase rows
in at least one of the matrices (the x variables in QSAT2)
relating to one clause that evaluates to true. Then, the as-
signments of items corresponding to truth values of x is a
solution for the QSAT2 problem. In other words, if BK win
in every allocation, then there exists a stable outcome that
achieves the predefined welfare in the decision problem.

A.3. Transformation
We present a transformation with valuations using an
XOR bidding language. The transformation can easily be
done for an OR bidding language as well; however, this
requires additional auxiliary items.
For a given formula, φ(x,y) with clauses C1, : : : ,CL con-

struct an instance CExφ(x,y) of a combinatorial exchange with
bidders and items as follows. First, consider n+ L+ 2 sellers:

•One seller Sχi for each i � 1, : : : ,n. Each seller Sχi offers items
χi and χ i. These items will later indicate which logical values
have to be assigned to the literals x such that∀yφ(x,y) is true.

•One seller Sψl for each l � 1, : : : ,L. Each seller Sψl offers items
ψlii′ for i, i

′ � 1, : : : ,n. The sellers correspond to the clauses of
φ(x,y), and below we describe how an allocation of the items
from a seller of type Sψ corresponds to the truth value the cor-
responding clause evaluates to.

•One seller Sγ,φ who offers items γj,γj for j � 1, : : : ,m as well
as items φli for l � 1, : : : ,L and i � 1, : : : ,n. The items of type γ
correspond to the possible values that can be assigned to
literals y. The items φli are auxiliary items that indicate
which clauses evaluate to false as a result of the assign-
ment of y. Although items of type ψ already correspond to
the truth assignments of the clauses, these additional auxil-
iary items are necessary in the proof for stability reasons
since seller Sγ,φ now also needs to be part of any blocking
coalition involving items corresponding to the truth as-
signment of clauses.

• One seller Sλ who offers items λk
i and λ

k
i for i � 1, : : : ,n and k

� 1, 2. These serve as auxiliary items to increase competition
for buyers in order to drive up prices and deplete the budgets
of buyers, as we describe below:

Figure 1. Illustration of Buyers’ Interests, Concerning Only Items of Type ψ
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We introduce the following short notations for bundles
of items:

• T ψ,φ
li � ψlii′ |i′ � 1, : : : ,n

{ }⋃
φli
{ }

• Fψ
li � ψli′ i|i′ � 1, : : : ,n

{ }
• T ψ

l � ψlii′ |i, i′ � 1, : : : ,n
{ }

• Fψ,φ
l � T

ψ
l
⋃

φli|i � 1, : : : ,n
{ }

Figure 2 illustrates an example for these bundles of
items sold by Sψ1 and Sγ,φ. It can be seen that the bundles
intersect with each other in such a way that, if for any i ∈
1, : : : ,n{ } a bundle F

ψ
li is purchased by a buyer, no bundle

T
ψ,φ
li′ can be purchased for any i′ ∈ 1, : : : ,n{ } and vice versa.

Similarly, bundles F
ψ,φ
l and T

φ
li intersect with all other

bundles.
Next, we define the buyers with their preferences and

budgets. Let T < 1
n, U > nL, V > 4U, and W > 7nV. First, we

define buyers of type BK and type BM whose assignments
will directly correspond to the logical values of the literals x

• For i � 1, : : : ,n let BK
i be a buyer with a budget of V + T

and a value ofW for each of the following bundles:
— For l � 1, : : : ,L, bundleKl :� χi{ }⋃T

ψ,φ
li

— For l � 1, : : : ,L, bundleKl :� χ̄i{ }⋃T
ψ,φ
li

The buyer is interested in obtaining exactly one of these
bundles, and his or her value for obtaining one or more
of the bundles is equal to the maximal value of his or her
obtained bundles.

• For i � 1, : : : ,n, let BM
i be a buyer with a budget of 2V

and a value of 2V for the bundles
—Mi :� {χi,λ

1
i ,λ

2
i }⋃⋃

xi∈Cl F
ψ
li

—M i χ̄i, λ̄
1
i ,λ

2
i

{ }⋃⋃
x̄i∈Cl F

ψ
li

He is interested in exactly one of these bundles.
Buyers BK and BM are designed in such a way that, for

all i ∈ 1, : : : ,n{ }, buyer BK
i will obtain one of the items

χi, χ̄ i{ }, whereas buyer BM
i obtains the other item. When-

ever BK
i buys χi, this corresponds to an assignment of true

to the corresponding xi, and whenever BK
i buys χ̄i it corre-

sponds to an assignment of false. Buyer BM
i obtains the

opposite item (corresponding to its negation) as well as
the bundles F

ψ
li for all l that evaluate to false due to the

assignment of BM
i . The budgets and valuations are chosen

in such a way that none of the buyers described below
can outbid buyers of type BM

i at seller Sψl ; that is, no bun-

dles containing any item of T ψ
l can be sold when BM

i de-

sires F
ψ
li for some i ∈ 1, : : : ,n{ }. In the following, we say

that BM
i blocks the bundle T

ψ
l (and therefore the bundles

T
ψ,φ
li for all i as well as bundle F

ψ,φ
l ). We will see in the

proof that in this case buyers of types BG and BK can com-
pete only for unblocked bundles.
Additionally, we introduce the following auxiliary bid-

ders who drive up prices in order to deplete the budgets
of buyers BK and BM.

• For i � 1, : : : ,n, identical buyers Bχ,1
i and Bχ,2

i who are in-
terested in one of χi or χi have a valuation ofV for both as well
as a budget ofV

• For i � 1, : : : ,n, one buyer Bλ,1
i has a budget of U and a

value of V for bundle λ1
i and a value ofV – L for λ

1
i

• For i � 1, : : : ,n, one buyer Bλ,2
i has a budget of U and a

value of V – L for bundle λ2
i and a value ofV for λ

2
i

The reason for including these auxiliary buyers and
items is to bind an amount of V of the budget of buyer
BK
i to purchase items from seller Sλ such that the buyer

has only a budget of T left to purchase his or her remain-
ing items from sellers of type Sψ and from seller Sγ,φ. In
the following, we define the final set of buyers that com-
pete with buyers BM for these items.

• For j � 1, : : : ,m, one buyer BG
j has a budget of L and a val-

ue of 1 for each bundle:
— Gjl � γj

{ }⋃
F

ψ,φ
l for each l � 1, : : : ,Lwith Yj ∈ Cl

— Glj � γ̄j
{ }⋃

F
ψ,φ
l for each l � 1, : : : ,Lwith Yj ∈ Cl

Define as |Gj| the number of bundles of type G a buyer
BG
j obtains and with |Gj| the number of bundles of type G

a buyer BG
j obtains. Then, the buyer’s valuation for obtain-

ing a larger bundle containing one or more of the bundles

defined above is equal to max |Gj |, |G j |{ }−1
n(n+1) , that is, the maxi-

mum number of bundles of type G and type G the buyer
obtains. Thus, each buyer BG

j is interested only in obtain-
ing bundles that do not include both items, γj and γj. We
refer to a bundle that includes only one of these items
with a valuation of k as a clean bundle of size k.
The values and budgets of the key buyer types are sum-

marized in Table 12. These buyers are designed in a way

such that they compete for all bundles F
ψ,φ
l that are not

blocked by a buyer of type BM
i (buying bundle F

ψ
li ) since

the latter has a larger budget and higher valuation and thus
can always outbid buyers of type BG. Whenever a buyer
of type BG obtains such a bundle, it corresponds to the

Figure 2. Illustration of Buyers’ Interests, Concerning Only
Items of Type ψ

Table 12. Values and Budgets of Key Buyer Types

Bidder type Value Budget

BK W V + T
BM 2V 2V
BG 1 L
Bχ,1,Bχ,2 V V
Bλ,1 V for λ1 and V – L for λ̄

1
U

Bλ,2 V – L for λ1 and V for λ̄
1

U
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corresponding clause to evaluate to false. Buyers of
type BG maximize their welfare by purchasing as many
of these packages as possible, corresponding to causing
as many clauses to evaluate to false as possible, which
do not already evaluate to false due to buyers of type
BM. Only if buyers of type BG cannot buy all of these
bundles, buyers of type BK can be assigned their bun-
dles. Similarly as above, we say that a buyer of type BG

blocks bundle T
ψ,φ
l for buyers of type BK if he or she

purchases a bundle that contains F
ψ,φ
l .

A.4. Reduction
In the following, we prove that there exists a core solution
in CExφ(x,y) with a social welfare of at least nW if and only
if ∃x∀yφ(x,y) is true. We refer to such a core solution as
an nW-equilibrium.

First, we will prove these auxiliary results:

Lemma 1. In an nW− equilibrium, for each i � 1, : : : ,n, buyer
BK
i obtains one of the bundles he values at W.

Lemma 2. In an nW− equilibrium, for each i � 1, : : : ,n, buyer
BK
i obtains one of the items χ1

i or χi1, buyer BM
i obtains the

complementary item, and both pay V to Sχi .

Lemma 3. In an nW− equilibrium, for i � 1, : : : ,n, buyer BM
i

obtains all of his or her required items from sellers Sψ and Sλ.

Lemma 4. In any core allocation, buyers of type BG maximize
the combined size of their clean bundles among the ones not
blocked by buyers of type BM.

Lemma 5. There is a nW−equilibrium if and only if for
j � 1, : : : ,m, buyers BG

j are not able to block all the remaining
bundles for buyers of type BK.

Using these auxiliary results, we will be able to prove
the main result.

Lemma 1. In an nW− equilibrium, for each i � 1, : : : ,n, buyer
BK
i obtains one of the bundles he or she values at W.

Proof. Assume that a buyer BK
i does not obtain his or her

preferred bundle (and thus, the total welfare generated by
the other buyers BK

i for i′ ≠ i is at most (n− 1)W). Then,
there is no way to achieve a social welfare of at least nW,
because

W > 7nV > 2nV︸︷︷︸
Buyers BM

+ 2nV︸︷︷︸
Buyers Bχ

+ 2nV︸︷︷︸
Buyers Bλ

+ nL︸︷︷︸
Buyers BG

,

which is an upper bound on the welfare achievable by all
other buyers. Q.E.D.

Thus, in an nW−equilibrium, all buyers of type BK ob-
tain one of their desired bundles. As we described in the
transformation, this is only possible if there exists at least
one l ∈ 1, : : : ,L{ }, for which neither buyers of type BM nor
of type BG block the bundle T

ψ
l .

The following lemma is a simple observation of how
auxiliary buyers of type Bχ are used to deplete the budget
of buyers of type BK.

Lemma 2. In an nW− equilibrium, for each i � 1, : : : ,n, buyer
BK
i obtains one of the items χ1

i or χi1, buyer BM
i obtains the

other item, and both pay V to Sχi .

Proof. If either BK
i or BM

i would pay less than V, then either
Bχ,1
i or Bχ,2

i could outbid them and obtain the respective
items. In this case, seller Sχi and all buyers that obtain items
from Sχi (and in consequence, all further buyers and sellers)
can form a coalition and share the additional payment of the
buyer of type Bχ such that all members of this coalition im-
prove their payoffs. Thus, an assignment where BK

i obtains
an item from Sχi but pays less than V cannot be in the core.
Because all buyers of type BK need to obtain one of these
items in order to reach an nW−equilibrium, the lemma
holds. Q.E.D.

Lemma 3. In an nW−equilibrium, for i � 1, : : : ,n, buyer BM
i

obtains all his or her required items from sellers Sψ and Sλ.

Proof. Because of Lemma 2, an nW−equilibrium, BM
i

needs to pay V for the item he or she obtains from seller
Sχi . Then, he or she has a budget of V left to obtain the

missing items from seller Sλ and sellers Sψl in order to
complete his or her desired bundle. He or she needs to
purchase items of the form F

ψ
li from Sψl as well as either

λ1
i ,λ

2
i

{ }
or λ̄

1
i , λ̄

2
i

{ }
. No other buyer BM

j with j≠ i is inter-

ested in obtaining any of these items because they appear
in no bundles with positive valuation for them. The only
buyers interested in a subset of these items are buyers BK

i′

for i′ � 1, : : : ,n (who only have a budget of T left due to
Lemma 2), buyers of type BG (who have a budget of at
most L each), and buyers Bλ,1

i and Bλ,2
i (with a budget of

U each). Because

V > 4U > T︸︷︷︸
Buyers BM

+ nL︸︷︷︸
Buyers BG

+ 2U︸︷︷︸
Buyers Bλ

,

buyer BM
i can pay sellers Sψ and Sλ enough to obtain his or

her required items, and there is no combination of buyers
that can outbid BM

i in order to form a coalition with the sell-
ers such that all improve. Q.E.D.

The previous Lemma 3 showed that for any i � 1, : : : ,n,
buyer BM

i gets all the items he or she requires from sell-
ers Sψ and Sλ and in particular all of his or her required
bundles of the form F

ψ
li . Thus, he or she blocks the bun-

dle T l and therefore also all bundles F
ψ,φ
l for sellers of

type BG.

Lemma 4. In any core allocation, buyers of type BG maximize
the combined size of their clean bundles among the ones not
blocked by buyers of type BM.

Proof. Assume that the maximum combined size of non-
blocked clean bundles that can be obtained by buyers BG

is K but that in the core solution buyers only buy clean
bundles with a combined size of κ ≤ K− 1. There are no
other buyers except for those of type BK, which are inter-
ested in any of the items offered by sellers Sλ or sellers Sψl
for those l for which T l is not blocked. Because 1 > nT,
there can be a coalition of those sellers and buyers BG that
can generate a value of K > κ and distribute the welfare
such that all participants are better off. This is a contradic-
tion to the allocation being in the core. Then, if all buyers
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BG pay the valuation of their obtained bundle to seller Sλ,
there is no coalition among these sellers and buyers that
want to deviate because Sλ can never improve upon his
or her payoff. Q.E.D.

Lemma 5. There is a nW− equilibrium if and only if for
j � 1, : : : ,m, buyers BG

j are not able to block all the remaining

bundles for buyers of type BK.

Proof. For any i, l, buyer BK
i is able to obtain only one of

the sets T
ψ,φ
li if it is neither blocked by buyer BM or BG.

Thus, there is some l for which all buyers can obtain these
items if and only if buyers BG do not block all of these
bundles, and as of Lemma 1 there is an nW−equilibrium
if and only if all buyers BK obtain one of their bundles’
values at W Q.E.D.

Theorem 2. There exists an nW− equilibrium if and only if
∃x∀yφ(x,y) is true.

Proof. Consider an nW−equilibrium and set xi to true if
buyer BK

i obtains item χi and set xi to false if he or she ob-
tains χ̄i. Then, buyer BM

i obtains the negated item and

bundles F
ψ
li for all clauses Cl, which evaluate to false due

to the assignment of xi. This is equivalent to blocking the
bundles T l for buyers BG, who thus compete for the non-
blocked bundles. Each combination of bundles obtained by
buyer BG

j resembles a number of clauses that can be made
false by a truth assignment of yj. If BG

i obtains γi, this corre-
sponds to an assignment of yi to true, and if the buyer ob-
tains γ̄i, it corresponds to an assignment of yi to false. As
of Lemmas 3 and 4, in any core allocation (and hence, es-
pecially in an nW−equilibrium), buyers BG try to maximize
their combined number of bundles not blocked by buyers
of type BM, which is equivalent to blocking as many bun-
dles as possible for buyers of type BK. This corresponds to
assigning truth values to y so that as many clauses as pos-
sible evaluate to false in φ. However, because by assump-
tion the assignment results in an nW−equilibrium, buyers
BG are not successful in blocking all bundles because of
Lemma 5. Therefore, there is no assignment of variables y
such that φ(x,y) can be set to false for this assignment of x.

Conversely, let x be a truth assignment such that ∀yφ
(x,y) is true. Then, consider the following trades in the
combinatorial exchange, trades for seller Sχi for i � 1, : : : ,n:

• For i � 1, : : : ,n, if xi is true, assign to buyer BK
i items χi for

a price ofV.
• For i � 1, : : : ,n, if xi is false, assign to buyer BK

i items χ̄i
for a price of V.

• For i � 1, : : : ,n, assign to buyer BM
i the item not allocated

to BK
i for a price of V.

Trades for seller Sλ:
• For i � 1, : : : ,n, if xi is true, assign to buyer BM

i the items
λ̄
1
i , λ̄

2
i for a price of 2U, as well as item λ1

i to Bλ,1
i and λ2

i to
Bλ,2
i for a price ofU each.
• For i � 1, : : : ,n, if xi is false, assign to buyer BM

i the items
λ1
i ,λ

2
i for a price of 2U as well as item λ̄

1
i to Bλ,1

i and λ̄
2
i to Bλ,2

i
for a price ofU each.

Furthermore, assign to buyers BM
i their remaining required

items from sellers Sψ, paying a price of 1 to each seller the
buyer purchases from. Then, there is a nW−equilibrium that
extends these assignments. Similar to the first part of the
proof, a buyer that blocks a bundle T l for the other buyers
corresponds to a truth assignment of the corresponding vari-
able that results in the clause l to evaluate to false. Because
@y : ¬φ(x,y) for the truth assignment of x, buyers BM and BG

cannot block all bundles for buyer BK, so each of them can ob-
tain a bundle which he or she values at W. There is no coali-
tion of buyers and sellers that want to deviate from this
equilibrium:

• Buyers BG, sellers Sψ, and Sγ,φ can’t form a coalition ex-
clusively among themselves because of Lemma 5.

• For all i � 1, : : : ,n, there exists no coalition including
buyers BM

i in which all participants can be made better off:
Because BM

i needs to pay sellers Sχi and Sλ moremoney in or-
der for them to join the coalition, he or she needs to pay less
to the sellers Sψ he or she switches to. Those sellers are dis-
jointed from the sellers Sψ he or she purchased from earlier.
Thus, he or she can save at most L

2 units from switching,
which he or she needs to redistribute to Sχi and Sλ. However,
because buyers Bλ,1

i and Bλ,2
i are affected by these trades as

well, they need to be in the coalition as well and purchase
items such that Sλ can be made better off (because L

2 < 2D,
buyer Sλ cannot deviate only with BM

i ). However, because
for one of the two buyers, his or her new payoff is reduced by
L, he or she will not agree to this coalition unless payment is
also reduced by at least L. However, because the second of
these two buyers cannot pay more, as he is already capped
by his budget, this is not possible.

• All other buyers and sellers cannot deviate from the
grand coalition on their own but need at least one buyer BM

in order for all members to achieve a higher payoff. As by the
above, there is no coalition including a buyer BM that can
achieve this.
Thus, for a given truth assignment, there is a

nW−equilibrium, and the proof is complete. Q.E.D.

Endnotes
1 One can fix the allocation and set prices to zero. Then, finding a
deviating coalition reduces to the standard winner determination
problem in combinatorial auctions (Lehmann et al. 2006).
2 Note that if we assume divisible goods, then the model reduces
from a MIBLP to a continuous bilevel program, which is known to
be NP-hard. We do not discuss markets with divisible objects in this
paper.
3 Often the literature assumes divisible goods. The Eisenberg-Gale
program has been extended to accommodate indivisible objects
(Cole et al. 2017) or separable, piecewise-linear concave utilities
(Anari et al. 2018). With indivisible objects, the Nash social welfare
maximization problem is NP-hard and APX-hard in general (Lee
2017), which has led to work on efficient approximation algorithms
(Cole and Gkatzelis 2015, 2018). So far, however, the literature is re-
stricted to relatively simple valuation functions.
4 The utilitarian welfare function is assumed not only in this theo-
retical literature but also in spectrum auction markets (Bichler and
Goeree 2016), in electricity markets (Madani and Van Vyve 2015), in
markets for natural resource rights (Bichler et al. 2019), and most
other market designs in the field. In a market with multiple buyers
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and sellers, the prices cancel and the utilitarian welfare maximizes
the gains from trade. We will also talk about maximum welfare or
maximum efficiency in this case.
5 Note that even though the problem is NP-hard, there are algo-
rithms that run in polynomial time in the size of the input if the
number of bids is very large compared with the number of items
(Lehmann et al. 2006).
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