9 research outputs found

    Dynamic Vehicle Scheduling for Working Service Network with Dual Demands

    Get PDF
    This study aims to develop some models to aid in making decisions on the combined fleet size and vehicle assignment in working service network where the demands include two types (minimum demands and maximum demands), and vehicles themselves can act like a facility to provide services when they are stationary at one location. This type of problem is named as the dynamic working vehicle scheduling with dual demands (DWVS-DD) and formulated as a mixed integer programming (MIP). Instead of a large integer program, the problem is decomposed into small local problems that are guided by preset control parameters. The approach for preset control parameters is given. By introducing them into the MIP formulation, the model is reformulated as a piecewise form. Further, a piecewise method by updating preset control parameters is proposed for solving the reformulated model. Numerical experiments show that the proposed method produces better solution within reasonable computing time

    Vehicle routing problems in rice-for-the-poor distribution

    Get PDF
    This paper characterizes the routing problems arising in distribution of rice-for-the-poor in a district and presents a generic mathematical formulation of vehicle routing problems (VRP) for solving the problems. The proposed generic model, framed as a mixed integer linear programming, is formulated in such a way to encompass three distinct features; namely multiple depots (MD) establishment, multiple trips (MT) transportation, and split delivery (SD) mechanism. This model is implemented for a real-world problem of rice-for-the-poor distribution in the Ponorogo district of Indonesia, involved for deliveries among 3 depots—8, 17, and 23 villages depended on the distribution period—using a fleet of 5 vehicles of homogeneous capacity. Three types of distribution model are identified as MD-MT-VRP, MD-VRP-SD and MD-MT-VRP-SD

    An Inventory Routing Problem with Cross-Docking

    Get PDF
    This thesis concerns inventory-transportation tradeoffs in which a number of suppliers serve multiple customers, each ordering several product types. The goal is to design optimal routes to satisfy the customers’ demands. In the proposed approach, the products are shipped to cross-docks from the suppliers, and several customers will be served by each route beginning at a cross-dock. The objective is to minimize the total cost, beginning with summing the transportation costs on those edges through which trips may go, times the shipment frequencies. The holding costs at customers, and the pipeline inventory costs on the routes, take into account that various products may have different carrying-cost parameters. Based on some analytical results, the developed model is reformulated in terms of a single set of decision variables. The holding cost makes the objective function highly nonlinear. In addition, transportation cost and pipeline inventory cost are quadratic. After linearization of the objective function, a column generation algorithm is proposed to solve the nonlinear mixed-integer programming model. The holding cost, which is the sum of a set of fractions, is linearized after objective-function decomposition. Each of the decomposed sub-problems has only one fraction, which can be linearized by replacing that fraction by a new decision variable and adding some constraints to the formulation. To linearize the quadratic parts of the objective function, we substitute a new variable for the multiplication of each pair of decision variables, and add some new constraints. We provide computational results for the model with a single product. All parameters are generated randomly. Our proposed algorithm can optimally solve some problems with up to 626 edges. However, CPU time might be very high. For instances with 500 edges, CPU time can be up to 20 hours depending on the number of iterations the algorithm needs to find the optimal solution. Instances with up to 300 edges are solved to optimality within a CPU time of only one hour on a computer with 16 GB RAM and 3.40 GHz CPU.1 yea

    Branch-and-Cut for the split delivery vehicle routing problem with time windows

    Get PDF
    The split delivery vehicle routing problem with time windows (SDVRPTW) is a notoriously hard combinatorial optimization problem. First, it is hard to find a useful compact mixed-integer programming (MIP) formulation for the SDVRPTW. Standard modeling approaches either suffer from inherent symmetries (mixed-integer programs with a vehicle index) or cannot exactly capture all aspects of feasibility. Because of the possibility to visit customers more than once, the standard mechanisms to propagate load and time along the routes fail. Second, the lack of useful formulations has rendered any direct MIP-based approach impossible. Up to now, the most effective exact algorithms for the SDVRPTW have been branch-and-price-and-cut approaches using path-based formulations. In this paper, we propose a new and tailored branch-and-cut algorithm to solve the SDVRPTW. It is based on a new, relaxed compact model, in which some integer solutions are infeasible for the SDVRPTW. We use known and introduce some new classes of valid inequalities to cut off such infeasible solutions. One new class is path-matching constraints that generalize infeasible-path constraints. However, even with the valid inequalities, some integer solutions to the new compact formulation remain to be tested for feasibility. For a given integer solution, we build a generally sparse subnetwork of the original instance. On this subnetwork, all time-window-feasible routes can be enumerated, and a path-based residual problem then solved to decide on the selection of routes, the delivery quantities, and thereby the overall feasibility. All infeasible solutions need to be cut off. For this reason, we derive some strengthened feasibility cuts exploiting the fact that solutions often decompose into clusters. Computational experiments show that the new approach is able to prove optimality for several previously unsolved instances from the literature

    A branch-cut-and-price approach for the single-trip and multi-trip two-echelon vehicle routing problem with time windows

    Get PDF
    The paper studies the two-echelon capacitated vehicle routing problem with time windows, in which delivery of freight from depots to customers is performed using intermediate facilities called satellites. We consider the variant of the problem with precedence constraints for unloading and loading freight at satellites. This variant allows for storage and consolidation of freight at satellites. Thus, the total transportation cost may decrease in comparison with the alternative variant with exact freight synchronization at satellites. We suggest a mixed integer programming formulation for the problem with an exponential number of route variables and an exponential number of precedence constraints which link first-echelon and second-echelon routes. Routes at the second echelon connecting satellites and clients may consist of multiple trips and visit several satellites. A branch-cut-and-price algorithm is proposed to solve efficiently the problem. This is the first exact algorithm in the literature for the multi-trip variant of the problem. We also present a post-processing procedure to check whether the solution can be transformed to avoid freight consolidation and storage without increasing its transportation cost. Our algorithm significantly outperforms another recent one for the single-trip variant of the problem. We also show that all single-trip literature instances solved to optimality admit optimal solutions of the same cost for both variants of the problem either with precedence constraints or with exact synchronization constraints

    The dial-a-ride problem with electric vehicles and battery swapping stations

    Get PDF
    The Dial-a-Ride Problem (DARP) consists of designing vehicle routes and schedules for customers with special needs and/or disabilities. The DARP with Electric Vehicles and battery swapping stations (DARP-EV) concerns scheduling a fleet of EVs to serve a set of pre-specified transport requests during a certain planning horizon. In addition, EVs can be recharged by swapping their batteries with charged ones from any battery-swap stations. We propose three enhanced Evolutionary Variable Neighborhood Search (EVO-VNS) algorithms to solve the DARP-EV. Extensive computational experiments highlight the relevance of the problem and confirm the efficiency of the proposed EVO-VNS algorithms in producing high quality solutions

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work

    On the investigation of the large-scale grouping constrained storage location assignment problem

    Get PDF
    The primary focus of this study is a novel optimisation problem, namely Storage Location Assignment Problem with Grouping Constraint (SLAP-GC). The problem stems from real-world applications and is significant in theoretical values and applicability in resource allocation tasks where groupings must be considered. The aim of this problem is to minimise the total operational cost in a warehouse through stock rearrangement. The problem consists of two interdependent subproblems, grouping same product items and assigning items to minimize picking distance. The interactions between these two subproblems make this problem significantly different from previous Storage Location Assignment Problems (SLAP), a well-studied field in logistics. Existing approaches for SLAP are not directly applicable for SLAP-GC. This dissertation lays a foundation for research on grouping constraints and other optimisation problems with similar interactions between subproblems. Firstly this study presents a formal definition of SLAP-GC. Then it others a formal proof of NP-completeness of SLAP-GC by reducing from a well-known 3-Partition problem to SLAP-GC. This suggests that the real-world instances of SLAP-GC should not be tackled with exact approaches, but with approximation and heuristic approaches. Then, we explored decomposition and modelling techniques for SLAP-GC and developed three types of promising heuristic approaches: a hyperheuristic approach, a metaheuristic approach and a matheuristic approach. Comprehensive experimental studies are conducted on both synthetic benchmark instances and real-world instances to examine their efficiency, efficacy, and scalability. Through the analysis of the experimental results, the suitability of proposed methods is verified on various SLAP-GC scenarios. In addition, we demonstrate in this study that with the proposed decomposition, large-scale SLAP-GC can be handled efficiently by the three proposed heuristic-based approaches
    corecore